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ABSTRACT With the popularity of video conferences, video calls and other activities, video transmission
has been widely used. To meet a huge number of subscribers’ requirements, the mobile video transmission
scheme needs to overcome some disadvantages, such as resources limitation and noise interference. The
knowledge-enhanced mobile video broadcasting (KMV-Cast) is a scheme utilizing joint source-channel
coding and correlated information in clouds. However, there is an item of noise that cannot be removed in
the original KMV-Cast scheme. In this paper, an adaptive Wiener filtering denoising algorithm is proposed
to reduce such noise at the receiver in order to maximize the signal-to-noise ratio (SNR) of the reconstructed
video frame. The simulation results show that the proposed Wiener filter algorithm is superior to other
schemes without the Wiener filter under different sources and channel qualities. At lower-SNR channels
(i.e., −5dB), the proposed algorithm achieves 2dB gains in terms of peak signal-to-noise ratio (PSNR),
while at higher-SNR channels (i.e., 10dB), the proposed algorithm achieves 3dB gains in terms of PSNR.

INDEX TERMS Wireless video transmission, denoising scheme, Wiener filter.

I. INTRODUCTION
With the prediction of Cisco Annual Internet Report 2020,
nearly two-thirds of the global population will have Internet
access by 2023. There will be 5.3 billion total Internet
users (66 percent of global population) by 2023, up from
3.9 billion (51 percent of global population) in 2018 [1]. With
the increasing total number of the Internet users, the video
transmission service and its data-stream traffic also increase
accordingly, which puts pressure on the current wireless
video transmission technology. In a wireless communication
system, when the wireless resources are limited, it is
necessary to reduce the transmission rate of redundant data.
Meanwhile, channel noise affects the quality of reconstructed
video, and thus it is also necessary to remove noise in the
reconstructed video at the receiver.

As we all know, the traditional wireless video transmission
scheme is based on the Shannon source-channel separation
theory, while in 2003, M. Gastpar, B. Rimoldi and M.
Vetterli proposed that the joint source-channel coding could
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be optimal in some conditions [2]. When the channel quality
is below a certain threshold in mobile communications,
the quality of the received video declines sharply, which
is called cliff effect. To overcome such a situation, a typ-
ical scheme called Softcast was proposed with the joint
source-channel coding scheme [3]. During the process of
video coding and decoding, only linear transformation is
used, hence the quality of the reconstructed video is linearly
correlated with the channel quality. Then, based on the
Softcast scheme, some improved pseudo-analog transmission
schemes were proposed in [4]–[7]. Besides, many companies
are using cloud services, and move their applications and
services from local to the cloud [8]. As a result, the
video download from cloud services becomes a hotspot.
The knowledge-enhanced mobile video broadcasting (KMV-
Cast) is a brand-new video transmission framework [9].
Compared with other pseudo-analog video transmission
schemes in [3]–[7], it leverages cloud related information
in video coding and decoding. During the reconstruction
at the receiver, KMV-Cast eliminates the noise of mutual
interference. In this paper, we focus on reducing the residual
noise in KMV-Cast scheme further.
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FIGURE 1. KMV-Cast transmission scheme.

Generally, noise is classified into additive noise and
multiplicative noise [10]. The distribution of noise is very
important and widely used in conventional denoising algo-
rithms. Recently, the convolutional neural network (CNN)
has been widely used for denoising in image process-
ing [11]–[13]. However, such algorithms do not exploit the
relevant information in clouds [11]–[13].

Based on the statistical characteristics of Gaussian noise,
the least mean square (LMS) error has been applied as the
optimization goal [14]–[16]. For a video frame, the values
of adjacent pixels are usually near with less difference. As a
result, the Wiener filter has been widely used for the image
denoising [17]–[21]. The goal of the Wiener filtering is
minimizing mean square error (MMSE). It should be noted
that the prior knowledge on the power spectral density of the
noise should be previous given in the Wiener filter. Hence,
Wiener filtering maybe a promising method to remove the
second noise item in KMV-Cast scheme and this paper will
propose an adaptive denoising algorithm with Wiener filter.

The rest of the paper is organized as follows. We take a
brief review on KMV-Cast scheme in Section 2. We propose
a denoising algorithm in Section 3 and each pixel block is
considered as a unit which is selectively transmitted and
adaptively passing a Wiener filter. In Section 4, we present
the detailed frameworks of the proposed algorithm and
the simulation results are shown in Section 5. Finally,
Section 6 concludes this paper.

II. KMV-CAST SCHEME: A BRIEF REVIEW
The KMV-Cast transmission scheme was proposed in [9]
as shown in Fig. 1. As one can see from Fig. 1, there are
two cloud servers at the transmitter and receiver separately,
and the correlated information of the transmitted video is
available at both sides. At the transmitter, the correlated
information in the cloud is used to remove the redundant
information in the broadcasting video. At the receiver, with
the help of correlated information in the local cloud, the video
is reconstructed by maximizing SNR.

In technical, Fig. 1 mainly contains 1) hierarchical
Bayesian model, 2) related information and prior knowledge
extraction, and 3) reconstruction from received signals.

A. HIERARCHICAL BAYESIAN MODEL
In order to make full use of the relevant information, KMV-
Cast uses the hierarchical Bayesian model to describe the

relationship between transmitted video and its correlated
information in the cloud.

At the transmitter, video frames are evenly divided into
small pixel blocks (i.e., 8 by 8). For each block, the 2D-DCT
transform is introduced to reduce the redundant information.
The high-frequency DCT coefficients, close to zero, can be
discarded to save the transmission bandwidth. Then, we scale
the DCT coefficients and reshape them into an m × 1 vector
(i.e., αθ ), where α is the power scaling factor and θ is a
normalized vector. The original DCT coefficients can be
represented as λθ , where λ is the amplitude value of the block.
Besides, an m×m unitary matrix (8) is multiplied to reduce
the peak-to-average power ratio. As a result, the received
signal using the pseudo analogmodulation can be represented
as

y = α8θ + v (1)

where v is an m× 1 vector and represents independently and
identically distributed Gaussian noise with zero-mean and a
known variance σ 2

0 .
At the receiver, the work in [9] proceed the video

reconstruction based on Eqn. (1) with the hierarchical
Bayesian model, and the likelihood function of the received
signal can be represent as

p
{
y|θ, σ 2

0

}
=

1

(2π)m/2 σm0
exp

{
−
1
2
(y−α8θ)T σ−20 (y−α8θ)

}
.

(2)

To simplify, the work in [9] also use a Gaussian distribution
to approximate the probability density function of the DCT
coefficients θ , i.e., θ ∼ (0, �). Given the received signal
y and hyperparameter �, the posterior probability density
function of θ can be written as a multivariate Gaussian
distribution, that is,

p
{
θ |y, �, σ 2

0

}
=

p
(
y|θ, σ 2

0

)
p (θ |�)∫

p
(
y|θ, σ 2

0

)
p (θ |�) dθ

. (3)

Since the posterior probability in Eqn. (3) is a multivariate
Gaussian distribution, it can be denoted as

θ |y, �, σ 2
0 ∼ N (u, 6) . (4)

In Eqn. (4), u and 6 are the mean value and the variance of
the Gaussian distribution respectively, which are given as [9]

u = 6α8Tσ−20 y (5)

6 =
(
α2σ−20 I +�−1

)−1
. (6)

If we take the mean value of the posterior probability in
Eqn. (4) as the reconstructed video block, there is a mutual
interference at the reconstructed signal (see Eqn. (5)). The
KMV-Cast scheme proposed a method to cancel such mutual
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interference at the transmitter by rotating original DCT
coefficient as [9]

θ̃ =

[
I −

(
α2σ−20 �+ I

)−1]−1
pθ (7)

where p is a constant and will be defined in Eqn. (14), and
thus the new received signal like Eqn. (1) can be rewritten as

y = α8θ̃ + v. (8)

Thus, the Bayesian estimation of the reconstructed video can
be rewritten as

θ̂ = pθ +
(
α2σ−20 I +�−1

)−1
α8Tσ−20 v. (9)

B. RELATED INFORMATION AND PRIOR KNOWLEDGE
EXTRACTION
Bayesian estimation is used again for relevant information in
order to find the video structure information �. Assume that
there areN related video pixel blocks available in clouds, that
is, {

Eθi|i = 1, 2, . . . ,N
}
. (10)

Here, we choose the most correlated pixel block in the cloud,
and the corresponding Bayesian estimation of video structure
information with the maximal SNR can be written as [9]

�̂ = rI + Eθi EθTi . (11)

Redefine C = α2σ−20 as the power scaling parameter, r is
an undetermined parameter and the expression (7) can be
rewritten as:

θ̃ =
[
I − (C�+ I )−1

]−1
pθ (12)

where

(C�+ I )−1 =
[
C(rI + Eθi EθTi )+ I

]−1
=

I
Cr + 1

−
C Eθi EθTi

(Cr + 1) (Cr + C + 1)
. (13)

Since θ and θ̃ are both normalized vectors, we have ‖θ̃‖2 =
1 and thus

p2 =
(

Cr
Cr + 1

)2 { K 2

[r (Cr + C + 1)+ 1]2

−
2K 2

r (Cr + C + 1)+ 1
+ 1

}−1
. (14)

In Eqn. (14), K = (EθTi θ ) represents the correlation
coefficient.

C. RECONSTRUCTION FROM RECEIVED SIGNALS
At the receiver, the goal is to maximize the quality of the
reconstructed video. The demodulated signal at the receiver
can be written as

θ̂ =
(
α2σ−20 I +�−1

)−1
ασ−20 8T y

= pθ +
ασ−20 r8T v

Cr + 1
+

ασ−20
Eθi Eθ

T
i

(
8T v

)
(Cr + 1) (Cr + C + 1)

. (15)

Since the transmitter and the receiver both have the
information Eθi in their cloud, we can multiple EθTi at both sides
of Eqn. (15) simultaneously to get

EθTi θ̂ =
EθTi

(
α2σ−20 I +�−1

)−1
ασ−20 8T y

= pEθTi θ+
ασ−20 r EθTi

(
8T v

)
Cr + 1

+

ασ−20

(
EθTi
Eθi

)
EθTi

(
8T v

)
(Cr+1) (Cr+C+1)

.

(16)

Thus, we can calculate

EθTi

(
8T v

)
=

EθTi θ̂ − pK
ασ−20 r
Cr+1 +

ασ−20
(Cr+1)(Cr+C+1)

. (17)

Then, the third item in Eqn. (15) can be removed given the
result in Eqn. (17) and Eqn. (15) can be rewritten as

θ̂ = pθ +
ασ−20 r8T v

Cr + 1
. (18)

From Eqn. (18), we obtain the noise power as:

PN = E

tr

(
ασ−20 r8T v

Cr + 1

)(
ασ−20 r8T v

Cr + 1

)T


= E

{
tr

{
α2σ−40 r28T vvT8

(Cr + 1)2

}}
=

mCr2

(Cr + 1)2
. (19)

The corresponding signal-to-noise ratio SNR1 of the recon-
structed signal in Eqn. (18) is

SNR1 =
PS
PN
=

p2

PN
=
(Cr + 1)2 p2

mCr2
. (20)

Two new variables are denoted in [9] for simplicity,

t = r (Cr + C + 1) (21)

A =

√
C (t + 1)√

K 2 − 2K 2 (t + 1)+ (t + 1)2
. (22)

Substitute the Eqn. (22) into Eqn. (14) to get the power
expression,

p2 =
Cr2A2

(Cr + 1)2
(23)

and the expression of SNR1 can be transformed into

SNR1 =
A2

m
. (24)

III. ADAPTIVE DENOISING WITH WIENER FILTER FOR
THE KMV-CAST SCHEME
This section will propose the adaptive denoising algorithm
withWiener filter, which will further reduce the noise exising
in KMV-Cast scheme. The diagram of this algorithm is
highlighten in Fig. 2.

In Fig. 2, the dashed lines represent the original transmis-
sion framework of KMV-Cast scheme, and the solid lines
at the receiver are the framework of the proposed adaptive
denoising algorithm.
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FIGURE 2. Adaptive denoising scheme.

FIGURE 3. The wiener filter model.

The proposed algorithm mainly contains three parts: 1)
comparing the SNR vaules of the reconstructed pixel block
with or withoutWiener filtering; 2) selective adding aWiener
filter to maximize the SNR of the pixel block; 3) optimizing
parameters to maximize the whole reconstructed frame’s
SNR.

A. WIENER FILTERING
The essence of Wiener filtering is to minimize the mean
square error (MMSE) of the estimated signal. The process
of Wiener filtering can be represented as Fig. 3.

As we can see from Fig. 3, the input of the filter is the sum
of the original signal and the noise, and the ideal output is
the original signal pθ . But the actual outputH θ̂ cannot be the
optimal. Based on MMSE criterion, the transfer function is
derivated in our previous work as [22]:

H = Rss (Rss + Rvv)−1 . (25)

In Eqn. (25), H is the matrix of the optimal transfer function,
Rss is the autocorrelation matrix of the original signal, and
Rvv is the autocorrelation matrix of the noise. Then, the two
autocorrelation matrixes in Eqn. (25) can be calculated as:

Rss = E
{
p2θθT

}
= p2E

{
θθT

}
= p2� (26)

Rvv = E

{
α2σ−40 r2

(
8T v

) (
8T v

)T
(Cr + 1)2

}
=

Cr2

(Cr + 1)2
I . (27)

Based on the expression of� in Eqn. (11), the autocorrelation
matrix can be represented as

Rss = p2rI + p2 Eθi EθTi . (28)

So, the transfer function can be represented as:

H =
(Cr + 1)2 p2I

(Cr + 1)2 p2 + Cr

+
Cr (Cr+1)2 p2 Eθi EθTi[

(Cr+1)2 p2+Cr
] [
(Cr+1)2 p2 (r+1)+Cr2

] . (29)

Considering the Eqn. (29) is independent of time, the output
signal through the Wiener filter can be written as

H θ̂ = H

(
pθ +

ασ−20 r8T v

Cr + 1

)
. (30)

As a result, the noise of the signal processed again is changed
into

noise = H θ̂ − pθ = H
ασ−20 r8T v

Cr + 1
− (I − H) pθ. (31)

Similar to the KMV-Cast, we can calculate the noise power
through

PN = E
{
tr
{
noise · noiseT

}}
(32)

and the noise power is the sum of the following three parts:

PN1 = E
{
tr
{
p2 (I − H) θθT (I − H)T

}}
(33)

PN2 = E

{
tr

{
H
α2σ−40 r28T vvT8

(Cr + 1)2
HT

}}
(34)

PN3 = E

{
tr

{
−2pH

ασ−20 r8T v

Cr + 1
θT (I − H)T

}}
. (35)

We can use the notation in Eqn. (22) to rewrite the SNR2 of
the KMV-Cast scheme after Wiener filtering as (36), shown
at the bottom of the next page.

From Eqn. (24) and Eqn. (36), two SNRs are determined
by variances t , r , A. From Eqn. (21) and Eqn. (22), one can
see that the variance r and A are both the function of t , and
one solution of variance r can be calculated as

r =
− (C + 1)+

√
(C + 1)2 + 4Ct

2C
. (37)

Then the two SNRs in Eqn. (24) and Eqn. (36) can be
represented by t . Therefore, we can plot the two SNRs’ curve
with respect to t . Under different values of power scaling
parameter C and the same value K , we can get the results
in Fig. 4.

From Fig.4, it can be seen that the improvement with
Wiener filter is obvious when the power scaling parameter
C is small. However, when power scaling parameter C
increases, the scheme without a Wiener filter is better.

B. ADAPTIVE USING WIENER FILTER
Sometimes, there are some correlated pixel blocks with
the high similarity to the transmission pixel block. In this
case, it is better to reconstruct the pixel block directly
with the index of the corresponding pixel block received
instead of DCT coefficients. Such case will not only reduce
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FIGURE 4. The signal-to-noise ratio curves of the two methods under the
same K2 = 0.9 and different values of power scaling parameter C , where
SNR1 is the signal-to-noise ratio of the KMV-Cast scheme (blue) and
SNR2 is the signal-to-noise ratio of the scheme with a Wiener filter (red).
(a) C = 100, (b) C = 300, (c) C = 500.

bandwidth consumption, but also improve the quality of the
reconstructed video.

If we only use the relevant information and transmit
the index of the similar pixel block Eθi, the SNR of the
reconstructed video block is

SNR0 =
1
|1|2

=
1

2 (1− |K |)
. (38)

In Eqn. (38), one can see that the SNR is only determined by
the similarity coefficient K .
Considering the use of the related information in cloud,

we need to choose the best way among three possible cases
to reconstruct the image, corresponding to the peak values
of SNR1 and SNR2 as SNR1max and SNR2max respectively.
Through comparison, we decide whether or not to transmit
the coded pixel block, and whether or not to adopt a
Wiener filter at the receiver. The detailed algorithm is
in TABLE 1,

TABLE 1. Framework of transmission and filter.

C. OPTIMIZED PARAMETERS
From the expressions of SNRs, one can see that there are four
parameters should be calculated out, i.e., A, C , r , t . Among
them, A and r can be represented by t . Based on maximizing
the SNR of each pixel block, we can calculate parameters

TABLE 2. Framework of maximizing SNR of pixel block.

A, r , t , while based on maximizing the SNR of the whole
reconstructed video frame, we can calculate the parameter C .
The detailed algorithm is presented in TABLE 2.

In order to maximize the SNR of the reconstructed
video frame, we should minimize the total noise power
of all transmitted pixel blocks with the given constrain
of signal power P and the noise power is calculated
in TABLE 3.

TABLE 3. Framework of calculate noise power.

Then, the minimum total noise power can be written as

min
M∑
j=1

λ2j lj

Cj
(39)

with the power constraint condition:

M∑
j=1

Cj ≤
P

σ 2
0

(40)

where λ2j lj/Cj is the noise power of the jth reconstructed
block. In order tominimize the total noise of the reconstructed
video, we need to allocate the power scaling Cj parameter by

SNR2 =
PS
PN
=

(
PN1 + PN2 + PN3

p2

)−1
=

{
1+mr2A2−2rA(

rA2+1
)2 +

[
(−2r−1)A4−2A2

]
K 2
+
[
2r (r+1)A5−2A

]
K+

[
2r (r+1)A4+(2r+1)A2

](
rA2+1

)2 [
(r+1)A2+1

]2
}−1

. (36)
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TABLE 4. Framework at the transmitter.

Lagrange multipliers as

Cj =

√
λ2j lj∑M

k=1

√
λ2k lk

, j = 1, 2, . . . ,M . (41)

IV. THE FRAMEWORK OF THE PROPOSED ALGORITHM
The framework of the proposed algorithmmainly includes the
frameworks at the transmitter and the receiver, respectively.
The detailed frameworks at both sides are introduced in
TABLE 4 and TABLE 5.

V. EXPERIMENTAL RESULTS
The factors affecting the quality of the reconstructed video
include: 1) the similarity of the correlated information;
2) the quality of the channel; 3) the characteristics of
the video source. As a result, we analyze the perfor-
mance of the proposed algorithm considering such three
factors.

In this section, we evaluate the performance of the
proposed adaptive denoising algorithm in terms of PSNR.
Assume that the transmission channel is slow fading and
its distortion can be canceled by the equalizer. With the
standard video test sequences as the sources, we simulate
the video transmission scheme under the additive white
Gaussian noise channel. To compare the simulation results,

TABLE 5. Framework at the transmitter.

we mainly choose three typical transmission schemes to
compare with the proposed algorithm, which are uncoded
transmission scheme, Softcast scheme and KMV-Cast
scheme.

A. THE EFFECT OFP CORRELATED INFORMATION
Similar to the KMV-Cast transmission framework, the
transmitted video is segmented into frames and the correlated
information can be known at both the transmitter and the
receiver. Specifically, the frames transmitted before the
current frame can be chosen as the correlated informa-
tion in clouds and its similarity can be changed by the
spacing between the reference frame and the transmission
frame.

With the standard video test sequence ‘‘Foreman’’,
we choose the 4th frame as the correlation information
in clouds, and respectively transmit 5th, 15th and 215th
frames with the highly correlated, fairly correlated and
uncorrelated information in clouds. Set the channel SNR
as 10dB, and the simulation results are shown from
Fig.5 to Fig.7.

Totally, the proposed algorithm is superior to other three
schemes. In details, from Fig.5 with highly correlated
information in clouds, there are 12.5dB and 2.7dB of PSNR
gains of the proposed algorithm under high quality channel,
compared with Softcast and KMV-Cast scheme, respectively.
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FIGURE 5. Reconstructed video quality comparisons with highly
correlated information in clouds. Channel SNR = 10dB. (a) Reconstruct
5th frame using uncoded video transmission (23.71dB). (b) Reconstruct
5th frame using SoftCast (32.89dB). (c) Reconstruct 5th frame using
KMV-Cast (42.64dB). (d) Reconstruct 5th frame using proposed
KMV-Cast + Wiener filter (45.38dB).

FIGURE 6. Reconstructed video quality comparisons with fairly correlated
information in clouds. Channel SNR = 10dB. (a) Reconstruct 15th frame
using uncoded video transmission (23.61dB). (b) Reconstruct 15th frame
using SoftCast (32.73dB). (c) Reconstruct 15th frame using KMV-Cast
(37.18dB). (d) Reconstruct 15th frame using proposed KMV-Cast + Wiener
filter (38.36dB).

However, in Fig.7 with less correlated information, there
are respectively 3.3dB and 1dB of PSNR gains. Therefore,
it can be seen that the performance gain increases with the
increasement of correlated information similarities between
the transmitted signal and the correlated information in
clouds.

FIGURE 7. Reconstructed video quality comparisons with no correlated
information in clouds. Channel SNR = 10dB. (a) Reconstruct 215th frame
using uncoded video transmission (23.46dB).(b) Reconstruct 215th frame
using SoftCast (34.18dB). (c) Reconstruct 215th frame using KMV-Cast
(36.53dB). (d) Reconstruct 215th frame using proposed KMV-Cast +
Wiener filter (37.47dB).

FIGURE 8. Transmitted image and correlated image in clouds. (a) transmit
image (20th frame). (b) correlated image in clouds (19th frame).

B. QUALITY OF CHANNEL
Assume the transmitted signal is highly correlated with
the information in clouds. With the standard video test
sequence ‘‘Carphone’’, we select 19th frame as the correlated
information in clouds and 20th frame as the transmitted
signal in Fig.8. Let us change SNRs of the received signal
and analyze the impact of the SNRs on the qualities
of reconstructed video frames with different transmission
schemes. Set SNRs as −10dB, −5dB, 0dB, 5dB, and
the four schemes’ simulation results are shown in Fig.9-
Fig.12. From Fig.9 to Fig12, we can see that the proposed
adaptive denoising algorithm adopted in the KMV-Cast video
transmission scheme has the best performance. Compared to
the KMV-Cast transmission scheme, the proposed algorithm
achieves the PSNR gains of 0.7dB, 1.9dB, 1.4dB and 1.4dB
under SNRs as −10dB, −5dB, 0dB and 5dB, respectively,
while compared to the SoftCast transmission scheme, the
proposed algorithm achieves the PSNR gains of 17dB,
14dB, 14dB and 13dB, respectively. At lower-SNR channel
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FIGURE 9. Reconstructed image (20th frame) using uncoded video
transmission. (a) Channel SNR = −10dB (3.00dB). (b) Channel SNR =
−5dB (7.99 dB). (c) Channel SNR = 0dB (12.87dB). (d) Channel SNR = 5dB
(18.05dB).

FIGURE 10. Reconstructed image (20th frame) using Softcast. (a) Channel
SNR = −10dB (16.73dB). (b) Channel SNR = −5dB (20.47dB). (c)Channel
SNR = 0dB (24.18dB). (d) Channel SNR = 5dB (28.21dB).

(i.e., −10dB), KMV-Cast transmission scheme utilizes more
correlated pixel blocks to reconstruct the video frame
instead of transmission, and thus the improvement of the
proposed algorithm is limited. As the quality of the channel
improves, the number of transmitted blocks increases and the
performance of the algorithm gradually appears.

C. SOURCES
Sometimes, different sources can achieve different perfor-
mances. Assume the transmitted signal is highly correlated
with the information in clouds. Choosing the standard
video test sequences, ‘‘Carphone’’, ‘‘Container’’, ‘‘Bridge

FIGURE 11. Reconstructed image (20th frame) using KMV-Cast.
(a) Channel SNR = −10dB (33.42dB). (b)Channel SNR = −5dB (33.42dB).
(c)Channel SNR = 0dB (37.14dB). (d) Channel SNR = 5dB (40.64dB).

FIGURE 12. Reconstructed image (20th frame) with proposed KMV-Cast +
Wiener filter. (a) Channel SNR = −10dB (34.09dB). (b)Channel
SNR = −5dB (35.30dB). (c) Channel SNR = 0dB (38.51dB). (d) Channel
SNR = 5dB (42.01 dB).

(close)’’ and ‘‘Hall Monitor’’ as sources, and changing the
channel’s quality SNR from −10dB to 20dB, the simulation
results are shown at Fig. 13. One can see that, under
different video sources and channel SNRs, the proposed
algorithm has the best performance. Specifically, when the
reconstructed frame of KMV-Cast scheme contains more
Gaussian noise, the proposed algorithm achieves good
performance, see Fig.13(c). At the channel SNR 0dB, the
simulation results of reconstructed 20th frame are shown
in Fig. 14.

From the simulation results shown in this section, one can
see that the proposed algorithm is an enhancement version of
the conventional KMV-Cast transmission scheme.
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FIGURE 13. Reconstructed video quality comparisons under different channel qualities. (a) Standard video test
sequence ‘‘Carphone’’. (b) Standard video test sequence ‘‘Container’’. (c) Standard video test sequence ‘‘Bridge (close)’’.
(d) Standard video test sequence ‘‘Hall Monito’’.

FIGURE 14. Reconstructed video quality comparisons with highly
correlated information in clouds. Channel SNR = 0dB. (a) Reconstruct
20th frame using KMV-Cast (28.33dB). (b) Reconstruct 20th frame with
proposed KMV-Cast + Wiener filter (42.71dB).

VI. CONCLUSION
In this paper, the Wiener filter-based adaptive denoising
algorithm has been proposed for pseudo analogy video
transmission, i.e., KMV-Cast video transmission scheme. The
residual noise existing in KMV-Cast is reduced to further
improve the quality of the reconstructed video at the receiver.
Specifically, we set the maximizing SNR as the optimization
goal, and adaptively determine whether to add a Wiener filter
or not at the receiver. The simulation results have shown
that the proposed denoising algorithm performs the best,

comparing with the other three typical schemes. Our future
work will focus on denoising scheme with deep learning on
pseudo analogy video transmission.

APPENDIX
A. EQN. (14) DERIVATION
Set normalized vector ‖θ̃‖2 = 1, we can get

‖θ̃‖2 = p2
(
Cr + 1
Cr

)2

θT

[
I −

Eθi Eθ
T
i

r (Cr + C + 1)

]T

×

[
I −

Eθi Eθ
T
i

r (Cr + C + 1)

]
θ

= p2
(
Cr + 1
Cr

)2 { K 2

[r (Cr + C + 1)+ 1]2

−
2K 2

r (Cr + C + 1)+ 1
+ 1

}
= 1 (42)

and then, we can get the expression of p2 (Eqn. (14)).

52768 VOLUME 10, 2022



W. He et al.: Wiener Filter-Based Adaptive Denoising for Pseudo Analogy Video Transmission

PN1 = E

tr
 C2r2p2θθT[
(Cr + 1)2 p2 + Cr

]2 +
[
(−2r − 1)C2r2 (Cr + 1)4 p6 − 2C3r4 (Cr + 1)2 p4

] (
θθT Eθi Eθ

T
i

)
[
(Cr + 1)2 p2 + Cr

]2 [
(Cr + 1)2 p2 (r + 1)+ Cr2

]2



=
C2r2p2[

(Cr + 1)2 p2 + Cr
]2 +

[
−2C3r4 (Cr + 1)2 p4 + (−2r − 1)C2r2 (Cr + 1)4 p6

]
K 2[

(Cr + 1)2 p2 + Cr
]2 [
(Cr + 1)2 p2 (r + 1)+ Cr2

]2
= p2

{
1

(rA+ 1)2
+

[
(−2r − 1)A4 − 2A2

]
K 2

(rA+ 1)2
[
(r + 1)A2 + 1

]2
}

(43)

PN2 = E

{
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Cr2 (Cr + 1)2 p4[
(Cr + 1)2 p2 + Cr

]2
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8T vvT8

σ 2
0

)}}

+E

{
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. (45)

B. EQN. (36) DERIVATION
The noise power in Eqn. (32) is the sum of the Eqn. (33),
(34), (35), and the three parts of the noise can be calculated
as (43)–(45), as shown at the top of the page. Sum Eqn. (43),
Eqn. (44), and Eqn. (45), we can get the noise power PN in
Eqn. (32) to solve SNR2.
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