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ABSTRACT The RSA is one of the current default cryptosystems that provides security with applications
such as encryptions and digital signatures. It is important to further study the weak characteristics of the
RSA to ensure correct utilisation in order not to be susceptible to adversaries. In this paper, we give detailed
analysis on security of the Murru-Saettone variant of the RSA cryptosystem that utilised a cubic Pell
ed − k

(
p2 + p+ 1

) (
q2 + q+ 1

)
= 1 as key equation and N = pq as RSA modulus. We propose some

attacks on this variant when the prime difference |p−q| is small. Our first approach is to utilise the continued
fractions algorithm to determine the parameter d which enables us to determine the secret p and q. Our
second approach considers the Coppersmith’s method and lattice basis reduction to factor the modulus N .
Our attacks improve recent cryptanalyses on the cubic Pell equation variant of RSA. Furthermore, our attacks
prove that under small prime difference scenario, the number of susceptible private exponents for the cubic
Pell equation variant of RSA is much larger than the standard RSA.

INDEX TERMS Continued fractions, Coppersmith’s method, cubic Pell equation, factorization, RSA.

I. INTRODUCTION
The existence of cryptography becomes essential aligning
to the demands of using the digital platform to transmit the
data. Prior to the 70’s, the data was relayed via symmetric
cryptography. However, the designated cryptography was no
longer effective as the number of users escalated significantly.
The problem arose led to the development of asymmetric
cryptography namely the RSA [15]. By employing different
encryption key and decryption key, the RSA designed by
Rivest, Shamir and Adleman publicised the key pair (N , e)
purposely for encryption and at the same time ensure (N , d)
private as they are needed to decrypt the data safely. To this
day, RSA has been worldwidely implemented in various
applications such as smart-cards, e-commerce, email and
remote login session as it guarantees security of the user’s
information.

One main features of the RSA is the modulus N = pq
which p and q are large primes satisfying q < p < 2q.
Let φ(N ) = (p − 1)(q − 1) be the Euler totient function.
Suppose that e and d are designated as public and private
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RSA parameters satisfying the equation ed ≡ 1 (mod φ(N )).
An ingenious element of this cryptosystem is that the mes-
sage is encrypted and decrypted using modular equation.
That is, for encryption, the sender is required to compute
C ≡ M e (mod N ) where C is the ciphertext and M is the
original message or plaintext. Since d is the multiplicative
inverse of e, thus one simply requires to compute M ≡

Cd (mod N ). However, the task of decryption would not be
possible if one does not have the value d . Futhermore, the
values of p, q, φ(N ) are also kept private. Hence, it makes the
cryptosystem secure from attacks.

Since its invention, RSA has been widely used for encryp-
tion and has been intensively studied for vulnerabilities [5].
There are attempts on factoring the modulus N = pq by
studying its features and the methods that are applicable to
factor it. In fact, the study in [7] showed that the 768-bit RSA
modulus is insecure to be utilised as it can be factored by
using number field sieve factoring method. Meanwhile, the
work in [11] studied the method of semi-prime factorization
and showed that their method managed to factor the RSA
modulus from [7]. Other than that, the usage of small d
may also lead to vulnerability although it helps to improve
its efficiency. Wiener [19] presented a method, based on the
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continued fractions algorithm, to factor N when d < 1
3N

1
4 .

By implementing the Coppersmith’s technique [3] and lattice
reduction methods [9], there is a more recent improvement of
the bound to d < N 0.292 [2].
Application of variants of RSA is another endeavour made

by the researchers to increase its efficiency. For instance,
Takagi [17] utilised multi-power RSA N = prq and proved
that it can shorten the execution time for decryption process
provided the Chinese Remainder Theorem andHensel Lifting
lemma are used. Note that, [17] only consider the case when
r is small. Incited by the advantage of this new finding,
few more studies have been made upon this matter. [10]
and [16] managed to find the weakness of using this variant.
They showed that this cryptosystem is vulnerable to attacks if
certain conditions are satisfied. Their attacks are workable on
large values of r . Later, Murru and Saettone [12] constructed
a newRSA variant based on the cubic Pell equation x3+ry3+
r2z3 − 3rxyz = 1 modulo an RSA modulus N = pq. Both e
and d satisfy the following equation,

ed − k
(
p2 + p+ 1

) (
q2 + q+ 1

)
= 1. (1)

For the proposed scheme, its security is being examined
in [12]. In [14], Nitaj et al. presented a cryptanalysis of
the scheme by considering the continued fractions and the
Coppersmith’s method. In particular, an adversary can break
the system if d = N δ such that δ < 7

3 −
2
3

√
3α + 1 where

e = Nα . For e ≈ N 2, that is α ≈ 2, the former bound reduces
to δ < 7

3 −
2
3

√
7 ≈ 0.569. In [20], Zheng et al. presented

another cryptanalysis of the scheme and gained a better bound
for δ, namely δ < 2−

√
2 ≈ 0.585. Hence, these recent works

arose the following questions:
1) Based on Murru-Saettone scheme, is there any feature

of the primes p and q that could lead to factorization?
2) What is the size of d that is safe from attack?

OUR CONTRIBUTION
In order to answer the questions above, we push further the
cryptanalysis of the Murru-Saettone scheme by considering
a specific RSA modulus N = pq, which p and q are two
prime factors which have their most significant bits of the
same structure. This implies the prime difference |p − q| is
much smaller than the ordinary case where |p − q| ≈ N

1
2 .

By considering e = Nα , |p− q| = Nβ and d = N δ , we show
that one can extend themethods in [14] to improve the bounds
on δ. Typically, using the continued fractionmethod, we show
that the scheme is vulnerable if

δ <
7
4
−

1
2
α − β. (2)

Similarly, we apply the Coppersmith’s method and show that
the scheme is vulnerable if

δ <
5
3
+

4
3
β −

2
3

√
(4β − 1)(3α + 4β − 1). (3)

For β = 1
2 , we get the bounds as in [14]. This shows that our

new cryptanalysis is an extension of the method of [14] and
gives better bounds.

This following is the organization for this paper. Section II
gives the preliminaries required for subsequent sections.
Various results are presented in Section III to ease the under-
standing of Sections IV and V. In Section IV, we detail
our approach based on the continued fractions algorithm.
In Section V, we describe our approach based on the Copper-
smith’smethod and lattice reduction techniques.We conclude
the paper in Section VI.

II. PRELIMINARIES
We give brief description on the continued fractions, lat-
tices, Coppersmith’s method and the Murru and Saettone
scheme [12] in this section.

A. CONTINUED FRACTIONS
The expression of continued fractions expansion of ξ ∈ R
can be written in these forms

ξ = a0 +
1

a1 + 1
a2+ 1

a3+
1

···+
1
aµ

(4)

which can also be written as ξ = [a0, a1, · · · , aµ, · · · ]. If ξ
is a rational number, then ξ = [a0, a1, · · · , aµ] and we
can perform the continued fractions expansion algorithm in
polynomial time. The convergents r

s of ξ are the fractions
denoted by r

s = [a0, a1, · · · , ai] for i ≥ 0. The following
theorem is a useful result on continued fractions which is
important in our attack.
Theorem 1: Let ξ > 0. Suppose that gcd(s, r) = 1 and∣∣∣ξ − r

s

∣∣∣ < 1
2s2

. (5)

Then r
s is a convergent of the continued fractions expansion

of ξ .

B. LATTICES
Let ω ≤ n be an integer. Consider l1, . . . , lω ∈ Rn such that
they are linearly independent. We call the set of all integer
linear combinations of the vectors vi as the lattice L spanned
by {l1, . . . , lω}, i.e.

L =
{

ω∑
i=1

xili, xi ∈ Z

}
. (6)

The set {l1, . . . , lω} is the basis of lattice L as it is used to
generateL. To find the lattice dimension, one simply needs to
count the number of basis of L. In our case, the lattice L has
dimension dim(L) = ω, and L is offull ranked when ω = n.
In 1982, Lenstra et al. [9] invented a very useful tool known
as the LLL algorithm to determine the shortest basis vector
that generates a lattice. The following theorem presents the
results on LLL reduced basis vectors.
Theorem 2 (LLL [9]): Let {l1, . . . , lω} be a basis of a lat-

tice L. The LLL algorithm outputs a new basis {b1, . . . , bω}
of L such that

‖b1‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)
4(ω+1−i) det(L)

1
ω+1−i , (7)

for 1 ≤ i ≤ ω.
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C. THE COPPERSMITH’s METHOD
Suppose that we know how to factorize the modulus into
its factors, then the solutions of a modular equation can be
determined easily [4]. However, there are situations which
we do not have any information on factorizing the modulus,
thus finding the solutions can be difficult. Coppersmith [3]
contributed on solving this problem by proposing a way to
determine the small solutions of modular polynomial specif-
ically for a univariate case and heuristically for a multi-
variate case. There are two important tools required in the
Coppersmith’s method: the LLL algorithm and the following
result reformulated in [6].
Theorem 3 (Howgrave-Graham): Let h(x, y) =

∑
aijx iyj

be a polynomial over integers with at most ω monomials. The
norm of f (x, y) is defined by ‖h(x, y)‖ =

√∑
a2ij. If |x0| < X,

|y0| < Y , and

h (x0, y0) ≡ 0 (mod em), ‖h(xX , yY )‖ <
em
√
ω
, (8)

then h (x0, y0) = 0 is true over the integers.

D. THE MURRU-SAETTONE SCHEME
Murru and Saettone [12] designed a scheme using cubic Pell
equation

x3 + ry3 + r2z3 − 3xyzr = 1, (9)

where r is not a cube of an integer.
Let (G,+, ·) be a field. Let A be the quotient field A =
G[t]/(t3 − r) such that it contains elements in the form of
x + ty+ t2z where (x, y, z) ∈ G3. Then, a product • between
elements in A can be defined by

(x1, y1, z1) • (x2, y2, z2) = (x1x2 + (y2z1 + y1z2)r,

x2y1 + x1y2 + rz1z2,

y1y2 + x2z1 + x1z2). (10)

Next, consider the set

A = {(x, y, z) ∈ G3, x3 + ry3 + r2z3 − 3xyzr = 1}. (11)

Then, (A, •) is a commutative group with (1, 0, 0) as the
identity element; and the inverse element of (x, y, z) is (x2 −
ryz, rz2 − xy, y2 − xz).
Let B be the quotient group defined by B = F∗/G∗, which

consists elements in the following forms:m+nt+t2, orm+t ,
or 1. Consider the point at infinity (α, α) for the addition �
defined by the following cases:

1) (m, α)� (p, α) = (mp,m+ p);
2) if n+ p = 0,

a) and m = n2, then

(m, n)� (p, α) = (α, α);

b) and m 6= n2, then

(m, n)� (p, α) =
(
mp+ r
m− n2

, α

)
;

Algorithm 1 Key Generation
Input: n, the modulus N bit-size.
Output: A public key (e,N , r) and a private key (d, p, q).

1. Choose prime integers p and q.
2. Compute N = pq.
3. Choose an integer r such that it is not a cube integer and

not a cubic modulo p, q, and N .
4. Choose an integer e ∈ Z satisfying

gcd(e, (p2 + p+ 1)(q2 + q+ 1)) = 1.
5. Compute the multiplicative inverse d satisfying:

ed ≡ 1 (mod (p2 + p+ 1)(q2 + q+ 1)).
6. Output the public key (e,N , r) and the private key (d, p, q).

Algorithm 2 Encryption
Input: A pair of messagesM1,M2 ∈ ZN .
Output: The ciphertext (C1,C2).

1. Compute (C1,C2) ≡ (M1,M2)�e (mod N ) using the
addition operation �.

2. Output the ciphertext (C1,C2).

3) if n+ p 6= 0, then

(m, n)� (p, α) =
(
mp+ r
n+ p

,
m+ np
n+ p

)
;

4) if m+ p+ nq = 0,

a) and np+ mq+ r = 0, then

(m, n)� (p, q) = (α, α);

b) and np+ mq+ r 6= 0, then

(m, n)� (p, q) =
(
mp+ (n+ q)r
np+ mq+ r

, α

)
;

5) if m+ p+ nq 6= 0, then

(m, n)� (p, q) =
(
mp+ (n+ q)r
m+ p+ nq

,
np+ mq+ r
m+ p+ nq

)
.

Moreover, if k is a positive integer, the exponentiation
(m, n)�k is defined by

(m, n)�k
= (m, n)� (m, n)� . . . (m, n), (k times). (12)

Consequently, we can reduce B to

B = (G×G) ∪ (G× {α}) ∪ {(α, α)}. (13)

Let p be a prime. If we take G = Z/pZ, then one can choose
α = ∞. n this case, A = Gp3 is the finite field with pe

elements. It follows thatB is a cyclic group of order p2+p+1.
As a consequence, we always have (m, n)�p2+p+1

= (α, α)
(mod p) for all (m, n) ∈ B. The RSA cryptosystem variant
presented in [12] is based on the former observations. Their
construction of algorithms are presented as follows.
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Algorithm 3 Decryption
Input: Ciphertext (C1,C2).
Output:MessagesM1,M2.

1. Compute (M1,M2) ≡ (C1,C2)�d (mod N ) using the
addition operation �.

2. Output the messages (M1,M2).

III. USEFUL LEMMAS
Consider an RSAmodule N = pqwith q < p < 2q. Let1 =
|p− q|. The next statement describes a relationship between
p, q, N and 1 [18].
Lemma 1: If N = pq, then

0 < 4(p+ q)
√
N − 8N < 12. (14)

If1 < 2N
1
4 , then p+q =

⌈
2
√
N
⌉
. Since N = pq, we can

substitute N = pq into the previous statement and determine
p and q. As a consequence, we make the assumption that1 >

2N
1
4 throughout this paper.
The following describes some bounds for p and q in rela-

tion to the term N (See [13]).
Lemma 2: Suppose that p and q are unknown integers

satisfying q < p < 2q. Consider N = pq, then

2
√
N < p+ q < 3

√
N . (15)

By applying Lemma 2, we can estimate the value of ψ(N ),
where ψ(N ) =

(
p2 + p+ 1

) (
q2 + q+ 1

)
.

Proposition 1: Suppose that p and q are unknown integers
satisfying q < p < 2q. Consider N = pq > 230 and

ψ0(N ) =
(
N +
√
N + 1

)2
. Then

|ψ(N )− ψ0(N )| <
1
3
12
√
N . (16)

Proof: We have

ψ(N ) =
(
p2 + p+ 1

) (
q2 + q+ 1

)
= (p+ q)2 + (N + 1)(p+ q)+ N 2

− N + 1, (17)

and

ψ0(N ) =
(
N +
√
N + 1

)2
=

(
2
√
N
)2
+ (N + 1)2

√
N + N 2

− N + 1. (18)

Then,

|ψ(N )− ψ0(N )|

=

(
p+ q− 2

√
N
) (

p+ q+ N + 2
√
N + 1

)
=

(p− q)2

p+ q+ 2
√
N

(
p+ q+ N + 2

√
N + 1

)
. (19)

Set |p−q| = 1. By Lemma 2, we have 2
√
N < p+q < 3

√
N .

Then,

|ψ(N )− ψ0(N )| <
12

4
√
N

(
N + 5

√
N + 1

)
. (20)

For N ≥ 231, we have N + 5
√
N + 1 < 4

3N . This implies
that

|ψ(N )− ψ0(N )| <
1
3
12
√
N , (21)

which completes the proof. �
If ψ(N ) is known, we can perform factorization on the

modulus N = pq by the following result [14].
Proposition 2: Suppose that p and q are unknown integers

satisfying q < p. Consider N = pq and suppose that ψ(N ) is
known. Then,

p =
1
2

(
S +

√
S2 − 4N

)
, q =

1
2

(
S −

√
S2 − 4N

)
, (22)

where

S =
1
2

(√
(N+1)2 + 4

(
ψ(N )−

(
N 2 − N+1

))
− (N + 1)

)
.

(23)

IV. APPLICATION OF CONTINUED FRACTIONS
We try to estimate the values for d , so that it could be deter-
mined via the continued fractions algorithm. Then, we can
determine p and q from the modulus N = pq.

A. OUR ATTACK ON THE SCHEME
Theorem 4: Suppose that p and q are unknown integers

satisfying q < p < 2q and |p− q| = Nβ . Consider N = pq.
If ed − kψ(N ) = 1, where e = Nα and d = N δ . Then, for
1
2 + 2β < α < 7

2 − 2β, one can determine d and factor N in
polynomial time if

δ <
7
4
−

1
2
α − β. (24)

Proof: Let N = pq with satisfying the conditions in the
hypothesis. If ed − kψ(N ) = 1, then∣∣∣∣ kd − e

ψ0(N )

∣∣∣∣ = |ed − kψ0(N )|
dψ0(N )

≤
|ed − kψ(N )| + k|ψ(N )− ψ0(N )|

dψ0(N )
,

(25)

where ed − kψ(N ) = 1, and ψ0(N ) =
(
N +
√
N + 1

)2
.

By Proposition 1, we have |ψ(N ) − ψ0(N )| < 1
31

2
√
N .

This implies∣∣∣∣ kd − e
ψ0(N )

∣∣∣∣< 1+ 1
3k1

2
√
N

d
(
N +
√
N + 1

)2 < k
d

1+ 1
31

2
√
N(

N +
√
N + 1

)2 .
(26)

Therefore, kψ(N ) = ed−1 < ed , and, sinceψ(N ) > p2q2 =
N 2, we have

k
d
<

e
ψ(N )

<
Nα

N 2 = Nα−2. (27)
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Also, we have

1+ 1
31

2
√
N(

N +
√
N + 1

)2 < 1
21

2
√
N

N 2 =
1
2
12N−

3
2 =

1
2
N 2β− 3

2 .

(28)

This leads to∣∣∣∣ kd − e
ψ0(N )

∣∣∣∣ < 1
2
Nα−2N 2β− 3

2 =
1
2
Nα+2β−

7
2 . (29)

If α + 2β − 7
2 < −2δ, that is δ <

7
4 −

1
2α − β, then∣∣∣∣ kd − e

ψ0(N )

∣∣∣∣ < 1
2d2

. (30)

As a consequence, k
d is a convergent of e

ψ0(N ) . This can
be determined by applying Theorem 1. Rearranging the term
ed − kψ(N ) = 1, we have ψ(N ) = ed−1

k .
Applying Proposition 2, we can use ψ(N ) to determine the

values of p and q.
Note that since δ > 0 is required, we must have

7
4
−

1
2
α − β > 0 ⇔

7
2
− 2β > α.

On the other hand, we require α + δ ≥ 2, which implies that
α > 1

2 + 2β. �
Observe that, if e ≈ N 2, then the method will succeed

δ < 3
4 − β. This is the same condition obtained in [18] by

extending the attack of Wiener on RSA to the case with small
prime difference.

B. A SMALL NUMERICAL EXAMPLE
Consider the following small public parameters

N = 4558143647108879719061752042477591

42820681933\460576277, (31)

= 89318660683192004778977270823799035085

4341374\0680311658355673914042095035536361

90032305700\06480613996041199. (32)

Then e = Nα with α ≈ 1.993.
Let ψ0(N ) =

(
N +
√
N + 1

)2
. When applying the

continued fractions algorithm to e
ψ0(N ) , we get the first 40 par-

tial quotients

[0, 2, 3, 15, 11, 6, 1, 1, 1, 2, 1, 3, 4, 58, 1, 3, 4, 9, 1, 12,

1, 1, 1, 5, 2, 1, 7, 3, 45, 1, 1, 27, 1, 29, 1, 2, 7, 1, 1, 57, . . .]

(33)

Each convergent a
b of e

ψ0(N ) is a candidate for the solution
k
d . We only need the convergents which satisfy the condition
where ψ = eb−1

a ∈ Z. Note that the 2nd, 3rd, and 33th
convergents satisfy this condition.

Next, we need the convergents so that there exists solution
for the equations

(
p2 + p+ 1

) (
q2 + q+ 1

)
= ψ , pq = N .

This can be computed by Proposition 2. Upon verification,

we check that the 33th convergent a
b =

282741560637038515
657693369725239904

fulfils the conditions. We take

k = 282741560637038515,

d = 657693369725239904, (34)

which gives

ψ(N ) =
ed − 1
k

= 20776673507679039408468794600987706409

4115\2532944472318792765401861761318555

83281749\788903115749862628168293. (35)

Then, by Proposition 2, we solve the equations pq = N
and

(
p2 + p+ 1

) (
q2 + q+ 1

)
= ψ . We obtain

p = 675147604133696055740471063, (36)

q = 675132907115560710964512179. (37)

Observing that d = N δ where δ ≈ 0.332, and |p−q| = Nβ

where β ≈ 0.413. This makes all the conditions of Theorem 4
fulfilled.

In [14], the method based on the continued fractions algo-
rithm works when the bound δ < 5

4 −
α
2 is satisfied. In our

example, we have α ≈ 1.993, δ ≈ 0.332, and 5
4−

α
2 ≈ 0.253.

As a consequence, the bound δ < 5
4 −

α
2 is not satisfied, and

the method in [14] will not succeed to factor N .

C. COMPARISON WITH FORMER ATTACKS ON STANDARD
RSA UNDER SAME ASSUMPTION
In this section we provide a comparison with a former attack
upon the standard RSA under the same assumption that is
the modulus N = pq contains primes that share MSB’s
and that the strategy to conduct the attack is via continued
fractions. As provided in Table 1, it is visible that the bound
for insecure private exponent d derived from the cubic Pell
equation variant of RSA is much larger than the standard
version. This implies the cubic Pell equation variant of RSA
has much more insecure private exponents than the standard
RSA under the sharing MSB’s assumption and continued
fractions analysis strategy. Thus, one needs to choose the
parameters carefully so that the cryptosystem is insusceptible
through the communication networks.

V. APPLICATION OF THE COPPERSMITH’s METHOD
Consider e and d in the Murru-Saettone scheme which sat-
isfies the equation ed − k

(
p2 + p+ 1

) (
q2 + q+ 1

)
= 1.

We can transform this equation into a modular equation of the
form x(y2+ay+b)+1 (mod e), where a and b are constants.
We can apply the Coppersmith’s method to determine its
small solutions, and then determine the factors p and q of N .
The method described here is a generalization of the method
described in [14].

A. THE SMALL INVERSE PROBLEM
Theorem 5: Suppose that p and q are unknown integers

satisfying q < p < 2q. Consider N = pq and a, b ∈ Z+.
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TABLE 1. The values of δ for α = logN e = 1 and β = 0.25,0.33,0.50.

Let

f (x, y) = x(y2 + ay+ b)+ 1. (38)

If f (x, y) ≡ 0 (mod e) where e = Nα , y < Nβ , and x < N γ .
Then, we can determine x and y in polynomial time if α > 2β
and

3γ < 3α − 2
√
6αβ + 4β2 + 2β. (39)

Proof: Let m ∈ Z+. For 0 ≤ k ≤ m, define the
polynomials (see [14], Theorem 5),

gk,i,j(x, y) = x i−kyj−2k f (x, y)kem−k ,

for 2k ≤ j ≤ 2k + 1, k ≤ i ≤ m; or 2k + 2 ≤ j ≤ 2i + t ,
i = k .
Note that if f (x, y) ≡ 0 (mod e), then gk,i,j(x, y) ≡ 0

(mod em). Define L as the lattice spanned by the coefficient
vectors of the polynomials{

gk,i,j(xX , yY ) : X ,Y ∈ Z+.
}

The rows of the matrix of the lattice are formed by the poly-
nomials gk,i,j(xX , yY , zZ ). The rows are ordered according to
the order of (i, j, k). Note that themonomials x iyj are arranged
according to the order of (i, j). This leads to a triangular
matrix which has determinant

det(L) = XnXY nY ene . (40)

Consider τ ≥ 0 which we will compute the optimal value
later. Let t = τm. We give some approximations for the
parameters nX , nY , ne andω = dim(L) (see [14], Theorem 5),

nX =
1
6
(3τ + 4)m3

+ o(m3),

nY =
1
6

(
3τ 2 + 6τ + 4

)
m3
+ o(m3),

ne =
1
6
(3τ + 4)m3

+ o(m3),

ω = (τ + 1)m2
+ o(m2). (41)

Assume that

2
ω
4 det(L)

1
ω−1 <

em
√
ω
, (42)

we have

det(L) <
2−

ω(ω−1)
4(√

ω
)ω−1 em(ω−1). (43)

Then, using (40), we get

ene−mωXnXY nY <
2−

ω(ω−1)
4(√

ω
)ω−1 e−m. (44)

Assume that x < X = N γ , y < Y = Nβ , and e = Nα .
Substituting (41) into (44), we get

6βτ 2 + 6(2β + γ − α)τ + 4(2β + 2γ − α) < −ε1, (45)

where ε1 > 0 is a small value depending on m and N .
On the left side, the optimal value is τ = α−2β−γ

2β . We have

−3γ 2
+ 2(3α + 2β)γ − 3α2 + 4αβ + 4β2 < −ε2, (46)

where ε2 = 2βε1. Solving the equation, we get the condition

γ < α +
1
3

(
2β − 2

√
6αβ + 4β2

)
.

Also, the optimal value τ should be positive, that is γ ≤ α−
2β. Then, for α > 2β, we get

γ < min
(
α − 2β, α +

2
3
β −

2
3

√
6αβ + 4β2

)
⇒ 3γ < 3α − 2

√
6αβ + 4β2 + 2β. (47)

From the reduced basis, we consider two polynomials h1(x, y)
and h2(x, y) which satisfy

h1(x, y) = h2(x, y) = 0. (48)

If both h1(x, y) and h2(x, y) are independent algebraically,
then we can consider the Gröbner basis method to solve
for (x, y). �

B. THE ATTACK WITH SMALL PRIME DIFFERENCE
AND SMALL d
In this section, we consider the attack on the Murru-Saettone
variant of the RSA in [12]. For N = pq, we assume that the
value of |p− q| is small.
Theorem 6: Suppose that p and q are unknown integers

satisfying q < p < 2q and |p− q| = Nβ . Consider N = pq.

Suppose that ed − kψ(N ) = 1 with e = Nα and d = N δ .
Then, we can determine d and compute p and q in polynomial
time if α > 2β, and

δ <
1
3

(
5+ 4β − 2

√
(4β − 1)(3α + 4β − 1)

)
. (49)

Proof: Let e be a public parameter of the RSA variant
satisfying ed − kψ(N ) = 1. Let M =

⌊√
N
⌋
. A straightfor-

ward calculation shows that

ψ(N ) = (p+ q− 2M )2 + (N + 4M + 1)(p+ q− 2M )

+N 2
+ 4M2

+ 2MN + 2M − N + 1. (50)
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We set x0 = k , y0 = p + q − 2M , a = N + 4M + 1, and
b = N 2

+ 4M2
+ 2MN + 2M − N + 1.

We can now rewrite ed − kψ(N ) = 1 as a modular
equation,

x0(y20 + ay0 + b)+ 1 ≡ 0 (mod e).

Now, considering the polynomial f (x, y) as in (38) . Then
f (x0, y0) ≡ 0 (mod e), and the small solutions can be com-
puted by applying Theorem 5.

Assume that |p − q| = Nβ , e = Nα , and d < N δ .
By Lemma 1, we have y0 = p + q − 2M < N 2β− 1

2 . We set
Y = N 2β− 1

2 . On the other hand, since ψ(N ) > p2q2 = N 2,
we obtain

x0 = k =
ed − 1
ψ(N )

< Nα+δ−2. (51)

We set X = Nα+δ−2. Then, by Theorem 5, the condition to
find the small solutions is

γ < α +
2
3

(
2β −

1
2

)

−
2
3

√
6α
(
2β −

1
2

)
+ 4

(
2β −

1
2

)2

, (52)

where γ = α + δ − 2. This implies

δ <
5
3
+

4
3
β −

2
3

√
(4β − 1)(3α + 4β − 1), (53)

and thus completes the proof. �
Suppose that e is an exponent of full size, then e ≈ N 2,

and δ satisfies the following bound

δ <
5
3
+

4
3
β −

2
3

√
(4β − 1)(5+ 4β).

In fact, this is twice the bound obtained by de Weger [18] for
the attack on RSA with small prime difference.

C. EXPERIMENTAL RESULT
We experimented the method of Theorem 6 in Windows
10 on a 1.8 GHz Intel (R) CoreTM i7-8550U processor.
In particular, we generated p and q of different sizes up to
1024 bits randomly, where p and q are prime satisfying q <
p < 2q, and |p− q| = Nβ for various sizes of β where N =
pq. Furthermore, we generated various integers d satisfying
gcd (d, ψ(N ))) = 1, and d = N δ with δ < 0.76. Finally,
we computed the inverse e of d with ed ≡ 1 (mod ψ(N )),
and applied Theorem 6 to determine the solution for equation
x(y2 + ay+ b)+ 1 ≡ 0 (mod e) with a = N + 4M + 1, and
b = N 2

+ 4M2
+ 2MN + 2M − N + 1 where M =

⌊√
N
⌋
.

If any, the solution should be x0 = k , y0 = p + q − 2M .
We also used the parameters

X =
⌊
Nα+δ−2

⌋
, Y =

⌊
N 2β− 1

2

⌋
. (54)

The run time of the method is essentially dominated by
executing the LLL algorithm to reduce the basis of the lattice.
We present the result when the size of primes are 512 bits. Let

N = 15273989484902463983337753042259861722680

07150\4634878113197961852984477125703822029

400462860\376081677625622077929216919754589

7392610901759\42379000777483548138152161583

75780199829069004\8922221345891498135207980

949649379585280615647\475978218632635988121

7561140947928704700812265\67474275105787656

0406156530033909, (55)

and

e = 8244376305746274359300173489874081528855956

8482\465667484173811542500989998809495696168

68015780\6569433453622440644181415775753012

1822796439617\088333156516278192475403767051

39622053100606198\66751754200183789552975377

115083444272305558809\364798309880187026554

48889460615818702745223761\18956404855286080

772320251009493573118971757375\6172725515465

2961409337124180076907441094886778\634146197

98977193873652948719174578749740209352\79223

627799706634383012338235589963296661612783\

4414132595103713458559851812732797498751860

1436\59786626755538337749948071191808413784

280125588\266816795365975285068062449929580

49790680437328\99345. (56)

When m = 4, t = 3, ω = 40, X =
⌊
N 0.7

⌋
, Y =

⌊
N 0.5

⌋
,

we get

y0 = 30896995692241729653000044454688904071040

2409\3715914152905743302080517899738635020

48651511\60145439397721308864. (57)

Using p+ q = 2
⌊√

N
⌋
+ y0 and pq = N , we get

p = 12358798276896691861199399841961716793823

0363\66250313910481119990252931090005579893

9049216\01494481153955328692424171393706944

5771638689\82937357157548266937, (58)

q = 1235879827689669186119816396213402712463

69164\2626611773880173768661630605861453178

19058963\0838548059596593820026402194559154

90442946265\65797986463090550557. (59)

Then, one can observe that |p− q| = Nβ with β ≈ 0.428,
d = N δ with δ ≈ 0.615, and e = Nα with α ≈ 1.998.
The bound on δ in Theorem 6 is then δ < 0.780. We believe
that by increasing m and t , our method will succeed to
solve the problem for bounds on δ approaching the optimal
value 0.780.
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TABLE 2. The values of δ for α = logN e = 2 and β = 0.5.

D. COMPARISON WITH FORMER ATTACKS ON STANDARD
RSA UNDER SAME ASSUMPTION
In this section we provide a comparison with a former attack
upon the standard RSA under the same assumption that is
the modulus N = pq contains primes that share MSB’s and
that the strategy to conduct the attack is via Coppersmith’s
method. As provided in Table 2, it is visible that the bound for
insecure private exponent d derived from the Murru-Saettone
RSA variant is much larger than the standard version. This
implies that, the cubic Pell equation variant of RSA has much
more insecure private exponents than the standard RSA under
the sharing MSB’s assumption and Coppersmith’s method
analysis strategy. Thus, one needs to choose the parameters
carefully so that the cryptosystem is insusceptible through the
communication networks.

VI. CONCLUSION
In this paper, we present two novel attacks on the variant
of the RSA crytosystem designed in [12]. This variant uses
an RSA modulus of the form N = pq, a public parameter
e = Nα , and a private parameter d = N δ . Our new results
extend the former results in [14]. Our work focuses on the
conditions that a potential user of the cryptosystem being
analyzedmust avoid at all costs. The disadvantage for the user
who is not careful enough when generating the keys, would
result in a total break of the cryptosystem. As such, our work
provides important inputs for the user in order not to be at
a disadvantage when utilizing the cryptosytem that we have
analyzed.

For the first approach, we utilised the continued fractions
algorithm, and proved that the variant of the RSA crytosystem
is vulnerablewhenever δ < 7

4−
1
2α−β whereas for the second

attack, we applied Coppersmith’s method and showed that
when d < N δ for δ < 5

3 +
4
3β −

2
3
√
(4β − 1)(3α + 4β − 1),

then the private p and q can be solved in polynomial time.
Finally, as shown in Table 1 and 2, the cubic Pell equation

variant of RSA which utilizes primes that share MSB’s has
a larger set of weak private keys when compared with the
standard RSA algorithmwhen analyzed under the assumption
that |p− q| = Nβ is sufficiently small.

Ultimately, if a user of the cryptosystem being analyzed
adheres to our analysis, our attack would not be fruitful.
Specifically, the user needs to ensure that the decryption
exponent and the difference between both the primes are
larger than our bound.
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