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ABSTRACT Recent years have seen deployments of increasingly complex artificial intelligent (AI) and
machine learning techniques being implemented on cloud server architectures and embedded into edge
computing devices for supporting Internet of Things (IoT) and mobile applications. It is important to note that
these embedded intelligence (EI) deployments on edge devices and cloud servers have significant differences
in terms of objectives, models, platforms and research challenges. This paper presents a comprehensive
survey on EI from four aspects: (1) First, the state-of-the-art for EI using a set of evaluation criteria is
proposed and reviewed; (2) Second, EI for both cloud server accelerators and low-complexity edge devices
are discussed; (3) Third, the various techniques for EI are categorized and discussed from the system,
algorithm, architecture and technology levels; and (4) The paper concludes with the lessons learned and
the future prospects are discussed in terms of the key role EI is likely to play in emerging technologies
and applications such as Industry 4.0. This paper aims to give useful insights and future prospects for the
developments in this area of study and highlight the challenges for practical deployments.

INDEX TERMS Embedded systems, SoC, FPGA, GPU, parallel architecture, machine learning, deep

learning, IoT, edge Al

I. INTRODUCTION

Recent years have seen the paradigms for artificial intelli-
gence (Al) technologies and IoT emerging and evolving from
studies conducted in universities and research laboratories to
become technologies which impact consumers and society.
These earlier studies were mainly software-based and exe-
cuted on general purpose computers. In recent years, Edge
Al, AI for Edge IoT and On-Device Al are the emerging
terms which are closely associated with Al [1]-[3]. In con-
trast to software-based Al approaches, these approaches also
need to consider the hardware platforms on which the Al
and embedded hardware technologies are deployed. Thus,
there is an interplay and the emergence of a new discipline
between ““intelligence” and embedded systems. We refer to
these approaches as embedded intelligence (EI) technologies
for ease of discussion. The authors in [4] discuss two cate-
gories of future Al systems: (1) Al systems which replace the
human in the control loop; and (2) Al systems which exhibit

The associate editor coordinating the review of this manuscript and

approving it for publication was Bo Pu

59236

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

humanistic intelligence to collaborate with human beings.
An example of Type (1) would be using AI for Advanced
Driver Assistance System (ADAS) and of Type (2) would be
using Al for facilitating interaction with human users through
mobile devices. In this scenario, Al techniques like face,
emotion and gesture recognition have a vital role to play.
These EI examples serve to demonstrate the need for high
performance Al algorithm performance, real-time decision-
making, energy efficiency and low power consumption to
realize EI for real-world and practical IoT deployments.
There are several challenges which need to be addressed to
realize the vision for practical EI deployments which can
be on cloud servers or edge devices: (1) Real-time decision
making — a good example to illustrate this would be the
ADAS which takes in inputs from on-board vehicle sensors
and cameras and needs to make an almost instantaneous
decision on the course of action to be undertaken. In this
scenario, the Al processing (e.g., classification of objects
on the road, identification of hazards, etc.) needs to be exe-
cuted in (near) real-time using on-board or edge Al proces-
sors. There is insufficient time (or latency) to transfer the
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data to a centralized cloud to perform the AI processing;
(2) Energy efficiency and low-power consumption — due
to Al technologies being deployed on mobile and sensor
devices or nodes, the constraints of battery-life and energy
efficiency become significant. Techniques to distribute and
balance Al tasks which can be performed on the edge and on
the centralized cloud are also important to realize the goal of
energy efficiency; (3) Al algorithms which are deployed on
the edge or on-board processing platforms still require good
algorithm and classification performance; and (4) Security
for EI deployments. A final point to note is that the challenges
and requirements for edge EI devices may be vastly different
from the challenges and requirements for EI accelerators for
servers. An El server accelerator may prioritize the capability
to be able to service diverse tasks from multiple streams and
give high precision results whereas the EI edge device may
prioritize energy efficient processing of tasks and be able to
accept lower precision results.

There are various approaches and technologies to realize
the EI vision: (1) Traditional central processing unit (CPU)
and microcontroller approaches; (2) Graphics processing
unit (GPU) approaches [5], [6]; (3) Field programmable gate
array (FPGA) approaches [7], [8]; and (4) System-on-chip
(SoC) and field programmable system-on-chip (FPSoC) [10].
There are different techniques and approaches which are
available to the designer for deployment to meet specific
El requirements. In this paper, we classify the EI tech-
niques into four categories: (1) System level techniques;
(2) Algorithm-level techniques; (3) Architecture-level tech-
niques; and (4) Technology-level techniques. Examples of
system level EI techniques would be design/task partitioning
(e.g., to decide which parts of the EI are implemented in
hardware and which in software), scheduling and load bal-
ancing. System-level techniques would often aim for through-
put, scalability and flexibility measures. Binary neural
networks [11], [12] which tradeoff classification performance
for lower complexity are examples of algorithm level tech-
niques. Other examples of algorithm-level techniques would
be tiling approaches to be able to accommodate large deep
neural networks (DNNGs) into a fixed sized memory. Exam-
ples of EI techniques at the architecture level include custom
computational primitives to perform efficient convolution
operations for DNNs, pipelining and approaches to hide the
memory latency for computational processing. Examples of
EI techniques at the technology level include novel process
technologies and implementations such as memristors and
analog approaches. For evaluation of the design targets
and comparisons amongst the EI techniques, we propose
and utilize five criterions: (1) Fast training time; (2) Fast
decision-making time; (3) Energy efficiency; (4) Low area
implementation; and (5) Scalability and supporting multiple
EI algorithms. Some aspects for security and privacy are dis-
cussed in the later section of the paper. The different criterions
will be further elaborated in Section II after discussions of
illustrative EI use cases. Figure 1 shows the four techniques
and five criterions for EI.
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FIGURE 1. El techniques and criterions.

This paper presents a comprehensive survey on EI from
four aspects: (1) First, the state-of-the-art for EI using a set
of evaluation criteria is proposed and reviewed; (2) Second,
EI for both cloud server accelerators and low-complexity
edge devices are discussed; (3) Third, the challenges and
research directions for EI are discussed; and (4) The paper
concludes with the lessons learned and the future prospects
are discussed in terms of the key role EI is likely to
play in emerging technologies and applications such as
Industry 4.0. This paper aims to give useful insights and moti-
vate researchers towards the development of EI solutions for
practical realizations and applications. The remainder of the
paper is structured as follows. Section II presents El use cases
and the proposed evaluation criteria. Sections III, IV and V
discusses EI architectures and accelerators for ASIC, FPGA
and GPU platforms respectively. Sections VI discusses appli-
cation specific architectures for EI for various scenarios
and techniques such as visual attention, mobile multime-
dia, health and biomedical, swarm intelligence, evolutionary
algorithms). The lessons learned and future prospects for
EI are discussed in Section VII. Section VIII gives some
concluding remarks.

A. EXISTING SURVEYS ON DNNS AND EI

This Some surveys on implementations of deep neural net-
works (DNNs) can be found in the literature [13]-[16].
Many of these works focus on implementations of convolu-
tional neural networks (CNNs). There are fewer works which
discuss other types of DNNs (e.g., Long short-term mem-
ory (LSTM) networks, recurrent neural networks (RNNs),
restricted Boltzmann machine (RBM), etc.). The authors
in [17], [18] provide an overview of the concepts behind
embedded intelligence (EI) and illustrate with some represen-
tative survey works. There are some authors which focused on
EI and ML implementations for different hardware platforms,
such as custom microcontrollers [19], [101], GPUs [20],
FPGAs [21], wearables [102]-[105] and IoT devices [106],
[107]. Other works have focused on parallel approaches [108]
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or large-scale processing [ 109]. Compared to other and earlier
works, this paper makes a distinctive and comprehensive
contributions to EI from different aspects:

o The review covers general architectures for EI as well as
application specific EI architectures. Different types of
EI architectures are covered from CNNss to architectures
for clustering algorithms, recommendation algorithms,
swarm intelligence and evolutionary computing;

o The review for general architectures for EI is divided
into EI architectures for three deployment platforms
(ASICs, GPUs and FPGAs). A note here is that
the various platforms possess different capabilities.
Compared to ASICs and FPGAs, GPUs have larger
computational capacity, memory and I/O bandwidth,
making them more suitable for deployment as EI server
accelerators. As a consequence, there are many more
papers discussing GPUs as server accelerators than edge
devices. We attempt to give a balanced coverage for the
different platforms;

o The El architectures are differentiated to be server accel-
erators (suitable for data centres and cloud deployments)
and EI architectures for edge devices (suitable for low
complexity IoT deployments);

« To aid designers, the paper gives a classification and dis-
cusses different techniques for EI implementations from
four aspects or levels (system-level, algorithm-level,
architecture-level, and technology-level techniques).
These techniques are then used for comparative discus-
sions throughout the paper;

o The paper proposes five criterions for EI architectures
(fast training time, fast decision-making time, energy
efficiency, low area implementation, scalability and sup-
porting multiple EI algorithms). These criterions are
then used for comparative discussions throughout the
paper; and

o The paper includes several tables showing the various
types of EI architectures and categorized using the dif-
ferent techniques levels and criterions proposed in this
paper.

Furthermore, the paper discusses some lessons learned and
the future prospects in terms of the key role EI is likely
to play in emerging technologies and applications such as
Industry 4.0.

II. El USE CASES AND EVALUATION CRITERIA

This section introduces illustrative use cases that discusses
some useful techniques for EI implementations, server accel-
erators and edge devices. This is followed by the various
criterions derived from the use cases.

A. El USE CASES

DianNao family of hardware accelerators for machine learn-
ing [22]. These are custom computing EI implementations
which have been designed with a broad application scope.
There are currently four architectures in the DianNao hard-
ware family: (1) DianNao; (2) DaDianNao; (3) ShiDianNao;
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and (4) PuDianNao. Each of these architectures can serve as
useful illustrative examples for EI and the various criterions
and objectives to be achieved. In this section, we will first
give an overview of the DianNao architecture. Next, we will
discuss use cases for EI server accelerators using DaDianNao
and PuDianNao, and EI edge devices using ShiDianNao.

1) DianNao El ACCELERATOR

DianNao [23] was the first member of the EI family to accom-
modate advanced neural network architectures and require-
ments. Figure 2 shows the architecture for DianNao. The
architecture consists of the following components: (1) Neural
Functional Unit (NFU) — The NFUs implements the compu-
tational primitives to perform the computations. It includes
multipliers, adder trees and non-linear functional units and is
designed as a pipeline; (2) On-chip memory storage — The
on-chip storage are implemented as three memory structures
to correspond to the three types of storage requirements for
input neurons, output neurons and synapses. In DianNao,
these storage (buffer) structures are termed as NBin, NBout
and SB. The memory design uses a custom design to mini-
mize memory transfer latency and enhance system efficiency.
The storage structures are implemented as scratchpad mem-
ory to avoid cache access overheads and cache conflicts.
To exploit spatial locality, three DMAs are included to serve
each of the buffers. At the algorithm level, DianNao uses loop
tiling to minimize memory accesses and to accommodate
large neural networks to fit in its buffers.

v
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Instructions

NFu-2 | ‘ NFU-3
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oo Y w Inst. %
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FIGURE 2. Architecture of DianNao [23].

2) USE CASE FOR EI SERVER ACCELERATORS - DaDianNao
and PuDianNao

DaDianNao [24] was designed to accommodate very large-
scale neural network architectures — i.e., to function effec-
tively as a ML supercomputer. In this work, the authors
identified the critical issue for accommodating large neural
network architectures is the memory storage for the convo-
lution and classifier layers. Figure 3 shows the architecture
for DaDianNao which consists of a set of nodes (or tiles,
processing elements (PEs)) arranged in a mesh topology. The
design principle is to minimize data movement by storing
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Data
to SB

FIGURE 3. Architecture of DaDianNao [24].

synapses close to their respective neurons. A central idea is
that the architecture is distributed and does not utilize a main
memory storage. Each node contains its own NFU and four
RAM banks to store the synapses. To increase the storage
density, the memory banks are implemented using eDRAM
technologies. The DaDianNao architecture was implemented
in a 28 nm process. The architecture has an area of 67.73 mm?
and a peak performance of 5585 GOP/s at 606 MHz.
The performance is 21 times higher than a modern GPU
(NVIDIA K20M) and demonstrates its high classification
performance.

The DianNao and DaDianNao architectures were designed
to only accommodate neural network architectures. Another
member of the family, PuDianNao [25] was designed as
a hardware accelerator to accommodate seven different
ML techniques (k-means, k-NN, naive Bayes, SVM, linear
regression, classification tree and DNN). Figure 4 shows
the architecture for PuDianNao. To accommodate different
ML techniques, the functional units (FUs) or computational
primitives of PuDianNao are designed as machine learning
units (MLUs) for computation of primitives such as dot
product, distance calculations and nonlinear functions. Each
FU also has an arithmetic logic unit (ALU) to perform com-
putations not supported by the MLU such as division and
conditional assignment.

[ InstBuf T Hotwuf [ coldBuf
| — :
. e FUs I :
t 3 - $ [
OutputBuf
3

FIGURE 4. Architecture of PuDianNao [25].

3) USE CASE FOR EI EDGE DEVICE - ShiDianNao

ShiDianNao [26] was designed for low-complexity embed-
ded vision systems and serves as a useful use case for EI
edge devices. In particular, we will classify ShiDianNao as an
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application specific vision processor edge device. The ShiD-
ianNao processor implements the CNN algorithm to achieve
high energy efficiency. Figure 5 shows the architecture for
ShiDianNao.

ShiDianNao: IB:
Decoder Inst.
NBin: l I
‘5 g ; ™ Bank.#o NFU:
2 : o
E E Bank #2Py-1 % Ing‘u’t
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FIGURE 5. Architecture of ShiDianNao [26].

Similar to DianNao, there are three memory structures
(NBin, NBout and SB). The input image pixels are stored
in the NBin buffers. The NBout and SB buffers store the
output neurons and synapses. For computational primitives,
the architecture contains an NFU for neuron operations (mul-
tiplications, additions and comparisons) and an ALU for
activation function operations. The computations are per-
formed in 16-bit fixed point format instead of 32-bit float-
ing point resulting in a reduced hardware area and cost for
implementation. The ShiDianNao architecture is optimized
to perform computations and exploit the locality present for
two-dimensional (2D) data which is central to processing
for the CNN. The NFU is implemented as a 2D (Px x Py)
mesh of processing elements (PEs) which fits the topology of
2D feature maps for CNN implementations. The architecture
also contains a decoder for instructing the PEs on the opera-
tions to be performed. For completeness, the architecture of
the ShiDianNao PE is shown in Figure 6.

Kernel Neuron PElright) PE(bottom)

operand

FIFO outputl

iF’E output

FIGURE 6. Architecture of ShiDianNao PE [26].

Each PE has the computational capability to implement
different primitives such as a multiplication, an addition for a
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convolutional, classifier or normalization layer, an addition
for pooling or max pooling layer, etc. Each PE has three
inputs: (1) The control operations to be performed for the
cycle; (2) The kernel values from the synapse buffer (SB);
and (3) The neuron values from either the input or output
neuron buffers (NBin or NBout) or from the right or bottom
PE. Each PE has two outputs: (1) The output computation
results to NBout or NBin; and (2) The output for propagat-
ing neurons to neighbouring PEs to achieve efficient data
reusage. The ShiDianNao architecture was implemented in
a 65 nm process. The architecture has an area of 4.86 mm?
and a power consumption of 320.10 mW at 1 GHz. The power
consumption is 60 times lower than a modern GPU (NVIDIA
K20M) and demonstrates its energy efficiency.

The DianNao use cases discussed in this section has
demonstrated the utilisation of various techniques for EI
deployments at different levels. In particular, we can dif-
ferentiate techniques applied at four levels: (1) System-
level techniques (T1); (2) Algorithm-level techniques (T2);
(3) Architecture-level techniques (T3); and (4) Technology-
level techniques (T4). The first level techniques (T1) are
system level techniques which aim to increase efficiency
and performance when there are multiple EI objectives to
be achieved. An example is the design of the PuDianNao
MLU which has been designed to have the capability to
execute EI operations for seven ML algorithms. Other exam-
ples would be EI server accelerators which are composed
of multiple EI platforms or have the capability to compute
algorithms from multiple data device streams. Techniques
to optimize parallel processing will be classified as system-
level techniques. In these cases, the importance is towards
increasing the throughput of the EI accelerators for several
tasks, and of lower importance would be the execution time
for individual tasks. The second level techniques (T2) are
algorithm level techniques which aim to aim to increase
efficiency and performance by tuning the EI algorithms.
An example is the usage of 16-bit fixed point format in
ShiDianNao instead of 32-bit floating point. Other examples
are loop unrolling techniques and performing computations
using simpler activation functions such as rectified linear unit
(ReLU). In T2 techniques, the designer makes adjustments
to the EI algorithms to make it more suitable for hardware
implementation. This may cause design tradeoffs between
classification performance (which may decrease) and simpler
hardware structures. Another example is the usage of loop
tiling to minimize memory accesses and to accommodate
larger neural networks to fit in the EI architecture buffers

The third level techniques (T3) are architecture level tech-
niques which aim to increase efficiency and performance for
specific EI operations or objectives. This is usually achieved
by designing custom computational and hardware structures.
An example is the NFU for DianNao which has been cus-
tomized to perform efficient computations for neural net-
work architectures. The usage of memory scratchpad instead
of cache in DianNao is another example of an architec-
ture level technique to avoid cache overheads and conflicts.
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The 2D mesh PE array utilized in ShiDianNao and the cus-
tom PE node also shows exploitation of T3 techniques. The
fourth level techniques (T4) are technology or circuit level
techniques which aim to increase efficiency and performance
by exploitation of advanced technologies or circuit character-
istics. For example, an EI architecture which is implemented
using 28 nm process would have lower area and power con-
sumption than an identical architecture implemented using
68 nm process. Other examples would be custom EI architec-
tures using memristors [27] or the analogue characteristics of
devices.

B. CRITERIONS FOR EI

In this section, we propose and discuss a set of criterions
for EI server accelerators and edge devices which have been
derived from the EI use cases. In particular, we can differ-
entiate five criterions: (1) Fast training time (C1); (2) Fast
decision-making time (C2); (3) High energy efficiency and
low power consumption (C3); (4) Low area implementation
(C4); and Scalability and flexibility to accommodate multiple
EI algorithms (C5). The first criterion is the requirement for
fast training. This criterion would be more applicable towards
EI server accelerators than EI edge devices. In many imple-
mentations, the training for EI edge devices is performed
offline. The trained network parameters are then hardcoded
into the device memory banks to perform the inference tasks.
The second criterion (C2) is the requirement and capability
for rapid and fast decision making or inference. This crite-
rion is important for EI architectures which are deployed as
edge devices to increase safety operations such as the ADAS
discussed in the introduction of this paper. This criterion is
also important for EI edge devices working in tandem with
EI server accelerators through communication networks to
reduce and minimize the overall round trip latency time for
decision making.

The third criterion (C3) is the requirement for high energy
efficiency. This is important for EI edge devices which
are powered by battery-powered and other limited energy
sources, and plays a particularly important role for EI devices
in IoT/fog and Industry 4.0 applications. The criterion is
also applicable in the design of energy efficient accelera-
tors used in large data centres. The fourth criterion (C4)
is the requirement for low area implementations which is
particularly critical for EI applications for wearable devices
and body sensor networks. This criterion also relates to
the model size and memory storage requirements for the
EI implementations. The fifth criterion (C5) is the require-
ment for the EI architecture to have the capability to accom-
modate scalable implementations and/or have the flexibility
to support multiple EI techniques or algorithms. Note that
we have not included a criterion on classification accuracy.
The assumption is that the classification accuracies for the
El architectures are sufficient to meet the needs of the specific
deployments and applications. The next sections will present
a review of EI architectures using these criterions as a basis
for discussions throughout the paper.
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TABLE 1. Summary of representative studies for El architectures - ASIC.

Techniques Criterion
Year | Focus of work Algorithm | S |E | T1 | T2 | T3 |[T4 |Cl1 | C2 | C3 | C4 | C5 | Ref
2021 | Hybrid precision CIM architecture | DNN/CNN \ N MR [29]
2021 | CIM precision-programmable CNN | CNN N N N N [28]
inference
2021 | ReRAM-based CIM architecture LSTM N N NR [30]
for LSTM computations
2021 | Hybrid digital-CIM architecture RNN N N NRE [31]
and novel dataflow
2018 | Pipeline ReRAM-architecture for GAN N N NR [32]
GAN
2019 | Approximate computing CNN N N N N N N [37]
reconfigurable architecture (ARA)
2021 | CNN inference and approximate CNN N N N N N N [33]
multipliers
2019 | Approximate multipliers for CNN | CNN/MLP N N N [34]
and MLP
2018 | Low-power CNN SoC with DSPs | CNN v N x/ [38]
2020 | Dual core deep learning accelerator | Multiple N N N N [39]
for smartphone edge devices
2018 | Hardware acceleration for online ELM N N N N [40],
ELM [41]
2017 | Intelligence Boost Engine (IBE) for | SVM N N N N [42]
sensor hub SoCs
2017 | Configurable and scalable neural ML N N N [43]
coprocessor
2017 | Low-power robust deep tree search | Al tree N N N [44]
in Al SoCs search
2017 | HW-accelerated DCNN SoC CNN N N N [45]
S — server accelerator E — edge device
T1 - system-level T2 — algorithm-level T3 — architecture-level T4 — technology-level
C1 — fast training C2 — fast decision-making C3 — low power C4 — small area C5 — scalability/flexibility
Ill. ARCHITECTURES AND TECHNIQUES FOR EI - ASIC I e s
This section discusses architectures and techniques for ot 3 1 11 Output Output
EI for deployment on application specific integrated cir- [ Computing Elements |=» Computing
cuits (ASICs). The discussions will utilize the four cate- Energy/bandwidth Memory >
gories (system-level — T1, algorithm level — T2, architecture il
level — T3 and technology level -T4) techniques and five Memory Parallel
criterions (C1 — CS5) described in Section II. For ease of Macro l"ﬁ;ﬁ Buffer dTL .

discussions, we have divided the topics into three categories:
(1) Computing-in-Memory (CIM) approaches; (2) Approx-
imate computing approaches; and (3) Low-power SoC
approaches. Table 1 shows a summary of the ASIC EI archi-
tectures discussed in this section. The table also gives an
indication of the suitability of the architecture for server
accelerators — S and/or edge devices — E.

A. COMPUTING-IN-MEMORY APPROACHES AND
TECHNIQUES

A recent trend for ASIC EI deployments is to exploit
non-digital or novel technologies and characteristics of cir-
cuits to realize efficient EI implementations. Examples of
these approaches can be categorized as computing in mem-
ory (CIM) or also termed as in-memory computing (IMC)
architectures. CIM are examples of technology level tech-
niques which in this case enables low power consumption
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FIGURE 7. Von-Neumann and CIM computing structures [28].

and high energy efficiency for EI architectures. There are
different types of CIM technologies based on non-volatile
memories (NVMs) such as ReRAM or NOR flash. CIM can
be characterized as non-Von Neumann computing structures.
Figure 7 shows the key difference between a conventional
von Neumann and the CIM computing structures [28]. The
von Neumann structure requires data to be transported from
buffer/memory storage to the computing elements for pro-
cessing, resulting in increased energy requirements. In con-
trast, the key idea for the CIM structure is to perform the
computations inside the memory structure to reduce the data
movements and increase energy efficiency.
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The authors in [29] proposed a hybrid precision CIM
architecture. The CIM architecture proposed by the authors
consists of high precision layers and many binarized lay-
ers. The CIM computation scheme has the capability to
support both high-precision multi-bit (MB) and binarized
operations (BIN) schemes. The BIN operations trade off the
classification performance for a simpler architecture and are
examples of algorithm level techniques to reduce complex-
ity. The MB datapath contains components like 8-bit DACs,
4-bit NOR flash cell arrays, current-to-voltage (ITV) con-
verters and dual-mode ADCs. The BIN datapath contains
components like a configurable wordline driver, a 1-bit cell
array and ADCs. The network weights are stored in an MB
array or a BIN array. The convolutional layers are computed
and sent to the MB or BIN datapaths. The proposed archi-
tecture was implemented on a 0.22m CMOS process. Their
experimental results showed that the hybrid CIM architecture
could achieve a 90% accuracy for various applications and
a 2.15 TOPS/W power efficiency. Another example for the
CIM approach for EI can be found in the work by authors
in [28]. In this work, the authors designed a static RAM macro
termed as CAP-RAM to leverage a specifically designed
charge-domain multiply-and-accumulate (MAC) mechanism
and circuitry to achieve energy-efficient and accurate infer-
ence for CNN. Their architecture was able to achieve 98.8%
and 89.0% inference accuracy on the MNIST and CIFAR-10
datasets, and gave a peak throughput of 573.4 GOPS and
energy efficiency of 49.4 TOPS/W.

The CIM approach has also been exploited to enable
energy efficiency for other EI algorithms such as LSTM,
RNN and GAN. The authors in [30] proposed a
ReRAM-based CIM architecture for LSTM computations.
The CIM architecture can be characterized as an externally-
digital, internally-analog computational machine. The net-
work weights are stored as conductances in the memory
elements. The computationally intensive matrix vector mul-
tiplication (MVM) for the LSTM can be efficiently imple-
mented by exploiting the CIM architecture. The DACs drive
the bitlines by voltages which are proportional to the input
activations and causes induced currents which is the sum
of the activation weights. The current can be integrated
onto a capacitance and final voltage values read out through
the ADCs. Their architecture was able to achieve 90% infer-
ence accuracy on the Google speech dataset and energy
efficiency of 25ulJ/decision.

The authors in [31] proposed a CIM architecture for RNN
computations. Their approach utilized a hybrid digital-CIM
architecture and a novel dataflow to reduce 85.7% of memory
accesses. Their architecture was able to achieve 90.2% infer-
ence accuracy, processing speed of 127.3 u s/inference and
energy efficiency of 5.1 pJ/neuron. The authors in [32] pro-
posed a pipeline ReRAM-based CIM architecture for GAN
computations termed as ReGAN. Their approach utilized
a pipeline architecture for the layer-wise computations to
increase the system throughput. Their architecture was able
to achieve an average performance improvement of 240 times
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over a GPU implementation and a 94 times improvement in
energy efficiency.

B. APPROXIMATE COMPUTING APPROACHES AND
TECHNIQUES

Approximate computing approaches tradeoff computation
precision for energy efficiency. These approaches can be
applied at different levels of the design process (program,
architecture and circuit) and has growing popularity for
efficient EI implementations. The authors in [37] proposed
an EI architecture framework termed as ARA (Approxi-
mate computing based Reconfigurable Architecture) to accel-
erate CNNs on edge/embedded devices and achieve high
energy efficiency. The ARA architecture has three inno-
vations: (1) At the algorithm level, the authors proposed
hardware friendly compression framework, dynamic layered
CNN structure and kernel shrinking methods to reduce the
computing and convolution operations; (2) At the archi-
tecture level, the complexity of the computation primitives
are reduced by utilizing approximate computing units to
improve the energy efficiency. The approximate computing
units include a multi-port SRAM LUT based multiplier, pre-
cision controllable approximate multiplier and approximate
adder with error correction logic; (3) At the system level,
the ARA architecture has the capability to accommodate
different CNNs by having approximate computing units with
a configurable datapath.

The ARA architecture consists of the following mod-
ules: (1) ARM7TDMI to function as system controller;
(2) Scratchpad memory (SPM); (3) Convolution neuron pro-
cessing unit (CNPU); and (4) Modules for system scheduling.
The CNPU consists of neuron processing element arrays.
Figure 8 shows the architecture of a neuron processing ele-
ment (NPE) which can be reconfigured to operate in four
modes: (1) Zero detection mode; (2) MAC mode — for
calculation of multiplication, addition, MAC and activation
operations; (3) Pooling mode; and (4) Activation mode. The
ARA architecture was implemented in TSMC 45 nm process
technology and achieved a power consumption of 204 mW @
1.1 V,200 MHz and 21.1 mW @ 0.9 V, 40 MHz. The authors
remarked that the performance of ARA is 1.51 ~ 4.36 times
better than other state-of-the-art accelerators.

The authors in [33] proposed an approach for CNN infer-
ence using a precision controller and approximate multipliers.
There are two innovations in this work: (1) At the algo-
rithm level, the preprocessing precision controller is used to
determine the adequate precision which is required for the
El classification task; (2) At the architecture level, a reconfig-
urable datapath designs are utilized to select the approximate
multipliers (high precision or low precision) to be used based
on the input from the precision controller. Figure 9 shows the
reconfigurable design with the approximate multipliers for
high-precision and low-precision computations. Their archi-
tecture was implemented using CMOS 15 nm process, and
gave significant improvements in power, speed and area with
a minimal loss in classification accuracy when compared
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FIGURE 8. NPE architecture of approximate computing-based
reconfigurable architecture (ARA) for CNN [37].

with exact multipliers. The classification accuracies for the
designs were validated using simulations with VGG19, Xcep-
tion and DenseNet201 models and the ImageNet dataset.
The authors in [34] performed a study to evaluate a large
number of approximate multipliers for application in CNN
and MLP neural networks. In this work, 100 deliberately-
designed and 500 CGP-based (Cartesian genetic programing)
approximate multipliers were evaluated using the MNIST
and SVHN datasets. Their experimental results showed that
CGP-generated multipliers are better used for application in
neural network implementations. Another finding is that net-
works which use approximate multipliers can provide higher
accuracies compared to networks that use the same number
of exact multipliers. The approximate multipliers add small
amounts of noise which helps to mitigate overfitting.

C. LOW-POWER SOC APPROACHES WITH Al
COPROCESSORS

A third trend for EI ASIC accelerators is to exploit the
availability of low power SoC containing Al coprocessors.
Examples of such SoCs with Al coprocessor capabilities are
the Intel Myriad X with a Neural Compute Engine copro-
cessor [35], Google Coral with a TPU coprocessor [36] and
Qualcomm Snapdragon with AIE DSP coprocessor [37]. This
section discusses some studies which exploits the SoC capa-
bilities for energy efficient EI architectures. Due to the focus
on low power device implementations, these approaches and
techniques are mostly used for implementation on EI edge
devices.

The authors in [38] proposed integrating the Orlando Ultra
Low-Power Convolutional Neural Network with hardware
accelerated blocks, DSPs and on-chip memory to imple-
ment energy-efficient convolutions for DCNNs. The pro-
posed architecture contains the following components and
features: (1) ARM Cortex microcontroller; (2) DSP clusters;
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(3) Reconfigurable dataflow accelerator with sensor pro-
cessing pipelines; and (4) Convolutional accelerators. Mul-
tiple chips can be connected together through chip-to-chip
highspeed serial links of up to 8Gb/s to support larger net-
works. The Orlando SoC contains other components like
configurable accelerator framework (CAF), DMA units, and
IO interfaces.

The authors in [39] proposed a power-efficient deep
learning accelerator (DLA) for smartphones which aims to
minimize memory accesses. Their DLA has the following
components and features: (1) Data processing engine with
the capability to use different numerical representations;
(2) Data-reuse techniques to reduce memory dependencies;
(3) Weight compression and zero-activation skipping tech-
niques to reduce DRAM data transfers; and, 4) Parallel exe-
cution of DLA cores with L2 SRAM to share each layer’s
activations and weights. The utilization of two cores is an
example of an architecture-level technique. Each DLA core
contains components like command engine (CMDE), mod-
ules for convolutional (CONV) operations, engines for non-
convolutional operations, L1 SRAM shared buffer (SB), and
a shared-buffer direct-memory-access (SBDMA) module.

The authors in [40], [41] proposed a SoC hardware imple-
mentation for embedded online sequential extreme learning
machine (termed as OS-ELM) classification for real-time
human action recognition. Their architecture was imple-
mented on SoC FPGA (Zyng-7000) platform for efficient
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hardware acceleration. Their architecture consists of five
modules: (1) Training Module; (2) Prediction Module;
(3) Memory Module; (4) Communication Module; and
(5) Clock Domain. Their experimental results showed that the
OS-ELM implementation reduced the utilization of FPGA
logic resources by 19% to 55%. Furthermore, the proposed
architecture was two hundred times faster than an ARM
Cortex-A9 for matrix inversion operations with a power con-
sumption of 157 mW of on-chip power.

The authors in [42] proposed the IBE (Intelligence Boost
Engine) which is a hardware accelerator to support applica-
tions for sensor hub SoCs. The IBE processes the algorithms
for sensor fusion and machine learning (e.g., SVM) for the
SLH200 sensor hub SoC. The IBE was fabricated in 55nm
process. The IBE has components such as a control unit
(CU), DMA, internal buffers and PEs (processing elements).
An architecture-level technique used in the IBE is to skip
multiplication steps for zero elements which are detected in
the matrix. The CU stores information about the operational
mode and size of input data. The DMA loads the input data
and stores the data results. The authors in [43] proposed a
configurable and programmable coprocessor core to com-
pute ANNSs in heterogeneous SoC. The proposed architecture
cooperates with a interconnect IP layer to enable the seam-
less integration of heterogeneous resources. The prototype
of the SoC scalable neural processor contains two coproces-
sors and two BRAMs connected to a companion MAI core.
The architecture consists of a CPU, coprocessor units, Block
RAMs (BRAMs) and UART for communication to external
devices.

The authors in [44] proposed a low-power robust deep
tree search transposition table (TT) with the following com-
ponents and features: (1) On-chip/off-chip hybrid TT archi-
tecture to reduce the hit latency; (2) On-chip buffer cache
to reduce the hit latency/off-chip memory access, and to
prevent the write stalls of search cores; and (3) Progress-
based entry replacement policy, are proposed to increase the
hit rate, and to avoid the hash key collisions. The proposed
hybrid TT is fabricated in a 65nm CMOS technology. The
64-bit bus is used for data communications between the
8 tree search cores and the L1-KTT. For the 2nd level com-
munications between each tree search cluster and L2-BTT,
the NoC (network-on-chip) is utilized. The L3-DTT is the
off-chip DRAM connected through the external interface.
The authors in [45] proposed a hardware accelerated DCNN
SoC processor architecture with the following components
and features: (1) DCNN convolutional accelerators for ker-
nel compression; (2) On-chip reconfigurable data-transfer to
reduce on-chip and off-chip memory traffic, (3) DSP array to
support image processing and computer vision applications;
(4) ARM-based host subsystem; (5) High-speed 10 interfaces
for transferring the image and sensor data; and (6) Chip-to-
chip multilink to pair multiple devices. The SoC architecture
includes the Convolutional Accelerator (CA) as shown in the
figure. The authors in [4] surveyed the recent trends demon-
strated in chip implementations of CMOS DNN accelerators.
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Their work aimed to look at real-chip implementations to
present a contrast with discussions of unimplemented DNN
chip architectures.

IV. ARCHITECTURES AND TECHNIQUES FOR EI - FPGA
Big This section discusses architectures and techniques for EI
deployment on field programmable gate arrays (FPGAs). The
discussions will utilize the four categories (system-level — T1,
algorithm level — T2, architecture level — T3 and technology
level -T4) techniques and five criterions (C1 — C5) described
in Section II. For ease of discussions, we have divided
the topics into four categories: (1) Approximate computing
approaches; (2) Hardware-software co-design approaches;
(3) Model reduction approaches; and (4) Design workflows.
Table 2 shows a summary of the FPGA EI architectures. The
table gives an indication of the suitability of the architecture
for server accelerators — S and/or edge devices — E.

A. APPROXIMATE COMPUTING APPROACHES AND
TECHNIQUES

The authors in [46] proposed the design and implemen-
tation of systolic neural network accelerator (termed as
SNNAP) in programmable logic. The SNNAP is a flexible
FPGA-based neural accelerator for approximate programs
and automatically configures the topology of multi-layer per-
ceptron (MLP) neural network and weights instead of the
programmable logic itself. The design of the SNNAP is based
on systolic arrays. The SNNAP architecture was implemented
on the Zynq PSoC (programmable system-on-a-chip). The
architecture of SNNAP consists of a cluster of Processing
Units (PUs) connected through a bus. Each PU contains a
chain of Processing Elements (PE). The PEs form a systolic
array that feeds into the sigmoid unit. The authors in [47]
(Wang, 2018) performed a study on the tradeoff between real-
time processing (Quality of Service — QoS) and computation
approximation (Quality of Result — QoR) for a CNN infer-
ence accelerator. The authors proposed an architecture termed
as ELNA (ELastic Neural acceleration Architecture) to sup-
port multiple precision modes, optimization methods and
accommodate different ranges of network parameters. The
ELNA accelerator contains two main components: (1) Recon-
figurable CNN accelerator; and (2) Software CNN synthe-
sizer. The reconfigurable CNN accelerator can be switched to
perform different operation modes. The CNN synthesizer is
used to search the different CNN topologies to meet the QoR
and QoS constraints. The ELNA accelerator utilizes a SIMD
structure to fetch network weights and data for computation
in the PEs. The architecture contains a 16 x 16 PE array,
a weight buffer (375 KB) and two data buffers (128 KB). The
ELNA architecture was implemented on a Xilinx Zynq-7020
clocked at 100 MHz. Their experimental results showed that
ELNA could outperform conventional approaches by 316%
when meeting the QoR requirement, and the architecture
consumes 20% less energy when meeting both QoS and QoR
requirements.
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TABLE 2. Summary of representative studies for El architectures - FPGA.

Techniques Criterion

Year | Focus of work Algorithm |S |E |T1 [T2 | T3 |[T4|C1 |C2 | C3 | C4 | C5 ]| Ref

2015 Systolic neural network MLP N N N N [46]
accelerator in programmable
logic (SNNAP)

2018 Elastic Neural Acceleration CNN N N N N [47]
Architecture (ELNA)

2020 | FPGA accelerator for clustering | Clustering R \ N N \ \ \ [48]

2020 Custom instruction set Collaborative | V N N N N N N N [49]
architecture recommender filtering

2018 Systolic co-processor for DNN DNN N N N [50]
inference.

2020 High performance accelerator CNN N N N N [51]
architecture with DSP and
scheduling

2020 | Energy efficient fast CNN N N N N [52]
convolution for deep CNN

2020 Advanced feature point CNN N N N N [53]
extraction for CNN

2018 Throughput optimization using N N N [54]
batch processing and pruning

2020 Workflow for mapping & CNN N N N [55]
programming low-cost FPGA
SoCs

S — server accelerator E — edge device

T1 — system-level T2 — algorithm-level T3 — architecture-level T4 — technology-level
C1 - fast training C2 — fast decision-making C3 — low power C4 — small area C5 — scalability/flexibility

B. HARDWARE-SOFTWARE CODESIGN APPROACHES
AND TECHNIQUES

Hardware-software co-design approaches aim to exploit the
reconfigurable capability of FPGAs and/or in-built compo-
nents (e.g., DSP for computation, BRAM for storage) for
custom based architectures (e.g., pipelined, systolic, parallel)
for EI. The instruction set architecture (ISA) and dataflow
may need to be re-designed (e.g., unrolling of loops for
convolutions) to fully realize the advantages of the custom
architectures.

Some examples of ISA customization approaches for EI
can be found in [48], [49]. The work in [48] proposed an
accelerator architecture which was deployed on FPGA for
clustering algorithms. The proposed architecture has several
novelties: (1) Combination of a basic ISA with a custom
ISA tailored towards the clustering applications for increased
computational performance and efficiency; (2) Capability
and flexibility to accommodate four established clustering
algorithms (k-means, DBSCAN, PAM and SLINK) and two
distance measure computations (Euclidean and Manhattan
distances) to support a wide variety of EI applications; and
(3) Applying tiling techniques to improve the efficiency of
Memory accesses.

Figure 10(a) shows the custom ISA which has been
proposed for the clustering accelerator. The authors
derived the custom ISA by identifying the computational
primitives for the various clustering algorithms to be
supported (e.g., Euclidean distance computations can be
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accelerated by utilizing the VECTOR_SUB, VECTOR_
MULT and SCALAR_SUM instructions, whereas Manhat-
tan distance computations can be accelerated by utilizing
the VECTOR_SUB, VECTOR_FAB and SCALAR_SUM
instructions). Figure 10(b) shows the accelerator datapath
architecture. The accelerator datapath contains the following
components: (1) Instruction buffer; (2) Accelerator con-
troller; and (3) Multiple execution units. The accelerator is
operated in SIMD mode through running instructions on the
execution units in parallel. For the memory accesses, the
architecture uses tiling techniques to reduce the number of
off-chip memory accesses for the distance calculations.

The objective is to exploit the data locality aspects in the
algorithm for the memory accesses by utilizing a small on-
chip memory. The loops of objects and cluster centroids are
tiled and each tile is defined for the distance calculations
between the T objects and the S cluster centroids. The EI clus-
tering architecture was implemented on a Xilinx Zynq FPGA.
Their experimental results showed that the accelerator could
give a 23 times speedup compared to Intel Xeon processors,
and an average energy efficiency ratio of 78.51 times and
9.46 times compared to CPU and GPU baselines. The overall
design of this EI clustering architecture illustrates the various
approaches and techniques available to the designer to meet
the different criterions as discussed in Section II.

The authors in [49] demonstrates another example
of hardware-software co-design approach using custom
instruction sets for EI architectures. In this work, the authors
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FIGURE 10. FPGA clustering accelerator [48].

proposed an EI accelerator architecture termed as WooKong
which was deployed on FPGA for recommendation algo-
rithms, focusing on neighborhood-based collaborative fil-
tering (CF). The architecture has the capability to support
different CF recommendation algorithms (user-based CF,
item-based CF and SlopeOne) together with supporting vari-
ous similarity metrics (Jaccard, Cosine, CosinelR, Euclidean
and Pearson). The datapath architecture has capabilities for
both learning/training and prediction. The architecture uses
a custom instruction set architecture for mapping the three
types of CF recommendation algorithms for the learning and
prediction computations. The EI architecture was deployed
on Xilinx Zynq FPGA. Their experimental results showed
that the learning and prediction accelerators could achieve a
computational speedup of 8.0 and 1.7 times respectively com-
pared with an Intel i7, and energy efficiency of 137.4 times
compared with an NVIDIA Tesla K40C GPU.
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Some examples of architecture customization approaches
for EI can be found in [SO]—[53]. The authors in [50] proposed
a systolic co-processor for DNN inference. The co-processor
is utilized for matrix multiplication between the inputs on
the DNN layer and the weight values. The co-processor is
integrated with an ARM processor (Cortex-A9) through the
standard AXI4 bus and deployed on Xilinx Zyng-7000 SoC.
Figure 11 shows the architecture for the proposed systolic
co-processor for DNN inference. The systolic array is utilized
for one matrix multiplication, i.e., the matrix multiplication
in one DNN layer. To compute the whole DNN layer, four
matrix multiplications are implemented by time multiplexing
method in DNN controller. The authors in [51] utilize the
DSP of the FPGA and efficient scheduling mode to increase
the performance of CNN accelerator. By doing so, the feature
maps and weights can be stored in one FPGA chip and signifi-
cantly reduce the cost on data transfer to the external memory.
The two main techniques used in the research are adopting
row pass scheduling and merging two weights together to
improve the performance. Their experimental results showed
that only 31% of DSP is utilized to run the convolutional
and pooling part of AlexNet which is significantly higher
performance compared to other approaches. There are three
main categories of data flow scheduling mode and parallelism
strategies. The first is known as “‘row column channel” and
has the highest benefit of reuse efficiency with the trade-
off that high storage is required to store the entire data as
intermediate variables. The second is known as ‘“‘channel-
row-column” where a small memory is required but all the
kernel is unable to reuse. The third is known as row pass
or also known as ‘“‘row-channel-column”. The disadvantage
of this approach is that the weights and intermediate storage
are required. The advantage of this dataflow is that the archi-
tecture can be fully pipelined. The control module handles
the weights extraction from RAM and improve the loading
time of the PE. The researchers used the ping pong buffer
techniques to utilize the calculation time for data transmission
since the loading time of weights is typically shorter than
calculation time. Thus, the time of updating the buffer can
be decreased without increasing the storage space for the
weights in the layer. Furthermore, the authors also set the
register and line buffer to be of equal length, and able to use
the cache to calculate the content spontaneously.

The multiplication and addition trees in PEs can be exe-
cuted in full pipeline and pre-fill zeros into the pipeline
calculation by referring to the convolutional mode. The
PE architecture for pooling and convolution is similar
where the FPGA multiplication and accumulation blocks are
used to perform the operation for max pooling or average
pooling. The architecture also utilizes dynamic quantization
techniques based on the range of the data to prevent the
precision of small range data to get impacted. The pro-
posed architecture and associated techniques significantly
improve the throughput and resource utilization to reduce the
latency between the data transfers. The authors in [52] pro-
posed an approach to improve the energy efficiency for high
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FIGURE 11. Architecture for systolic co-processor for DNN inference [50].

dimensional convolutional computation and the associated
data movements. Their approach had two main strategies:
(1) Row stationary to optimize the data reuse for the
spatial architecture; and (2) Computations using the one-
dimensional Winograd minimal filter algorithm to reduce the
multiplication. Their work showed that the dataflow was able
to improve the factor up to 1.5 times and the on chip and off
chip memory access was able to improve by 1.07 times and
1.46 times respectively.

The authors in [53] proposed an approach to implement
advanced CNN-based feature point extraction to run in real
time on FPGA embedded system. The FPGA hardware that
used by the author is XILINX ZCU102 platform for both
CNN and post processing operations. The algorithmic tech-
niques used for the feature extraction is to improve the post
processing operations with normalization, ranking and Non-
Maximum Suppression (NMS) to reduce the computational
complexity. Their experimental results utilized 8-bit fixed
point binary representations in the softmax operation and
gave insignificant accuracy loss for implementing state-of-
the-art CNN based feature extraction methods. The Softmax
module consists of three main categories which are adder tree,
comparer tree and divider. In the architecture, 65 inputs will
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be read at once and the adder tree computes the inputs to the
power of 2 by using shift register.

C. MODEL REDUCTION APPROACHES AND TECHNQIUES
The authors in [54] investigated throughput optimization
using two orthogonal techniques which is batch processing
and pruning. They proposed techniques to reduce the data
transfer and speed up the network inference. The concept
of batch processing is to reuse the weights that is already
transferred and store for one section by processing input sam-
ples through time division multiplexing before proceeding to
the next execution. Some researchers term this as mini-batch
processing in the context of stochastic gradient descent which
efficiently reduce the data transfer.

Figure 17 shows the architecture for throughput optimiza-
tion. From the architecture, the researcher utilizes the matrix
coprocessor that computes the transfer function to carry out
all compute intensive function such as matrix vector that
required pruning and batch processing is required. Their work
showed that 16 bits are the most common used bit width
that able to offer most accurate as single prevision precision
floating point weights. Next module is the activation function
which consist of large number of comparators and arithmetic
operation.

The challenge of using this architecture is to balance
between the latency vs the throughput on batch processing
due to batch processing is reducing the number of weight
transfer. On the analysis of this architecture, the authors
highlighted that at least over 70% of parameters is being
prune but there are accuracy drops is non-noticeable. This
technique can be used in application that can accept a low
amount of latency. In summary, the performance and speed
able to accelerate the inference that learned fully connected
DNN by using the FPGAs-based embedded Soc.

D. DESIGN WORKFLOWS AND TECHNIQUES

The authors in [55] proposed the CNN-Grinder workflow
for mapping Caffe mobile-friendly CNNs, such as Squeeze
Net and ZyngNet to HLS code which can be used for
programming low-cost FPGA SoCs. CNN-Grinder provides
developers an approach to map a CNN on an FPGA SoC
for customizable CNN architectures and FPGA devices.
The workflow is utilized by the Squeezelet-2 accelera-
tor which implements the convolutional, Rectified Lin-
ear Unit (ReLU), and max-pooling CNN layers. Their
experimental results showed that their approach could
achieve 14.18 frames/second (fps) and 11.69 fps for the
SqueezeNet v1.1 and the ZyngNet CNN inference imple-
menting stages on the FPGA SoC device for practical deploy-
ment and usage for real-time mobile systems.

V. ARCHITECTURES AND TECHNIQUES FOR El - GPU

Graphics processor units (GPUs) were designed to support
the acceleration of graphics capabilities in hardware. The
GPU platform contain a large number (hundreds to thou-
sands) of small computational units or cores structured in a
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TABLE 3. Summary of representative studies for El architectures - GPU.

Techniques Criterion

Year Focus of work Algorithm |S |E |T1 | T2 |T3 |T4 |Cl |C2|C3 | C4|C5 |Ref

2019 ML-based load balancing ML N R R v [59]
scheduler (Troodon)

2020 | Queuing model for DNN DNN N N N [60]
inference

2020 | Performance and power analysis CNN N N N N [61]
of GPU workloads

2020 | Block circulant matrices (BCM) DNN N v N v [66]
for DNN compression

2018 Batch orchestration algorithm DL N N \/ [67]
(BOA) for deep learning models

2017 | Blocked LU decomposition ELM N N N [68]
algorithms for GPU training

2020 | Machine learning for analysis of Multiple N v N [69]
GPU kernel execution

2019 | Residual Gradient Compression DNN N N v [70]
(RGC) to accelerate DNN training

S — server accelerator E — edge device

T1 — system-level T2 — algorithm-level T3 — architecture-level T4 — technology-level
C1 — fast training C2 — fast decision-making C3 — low power C4 — small area C5 — scalability/flexibility

single instruction multiple data (SIMD) organization and has
the capability to accelerate computationally-intensive tasks
and workloads in a highly parallel architecture. In recent
years, GPU platforms have become useful and is a popular
option for the acceleration of EI capabilities in hardware.
Some tutorials on GPU architectures and structures can be
found in [9], [56]-[58]. This section discusses architectures
and techniques for EI deployment on GPUs. The discus-
sions will utilize the four categories (system-level — T1,
algorithm level — T2, architecture level — T3 and technology
level -T4) techniques and five criterions (C1 — C5) described
in Section II. For ease of discussions, we have divided the
topics into two categories: (1) Task scheduling and load
balancing approaches; and (2) Algorithm and computation
approaches. Table 3 shows a summary of the GPU EI
architectures discussed in this section. The table gives an
indication of the suitability of the architecture for server
accelerators — S and/or edge devices — E.

A. TASK SCHEDULING AND LOAD BALANCING
APPROACHES

The authors in [59] proposed a load-balancing scheduler
termed as Troodon which is machine learning-based schedul-
ing mechanism. The Troodon scheduler contains a scheduling
mechanism (termed as E-OSched) for mapping and balancing
jobs on CPU and GPUs. The Troodon architecture contains
the following components and features: (1) Kernel Feature
Extractor; (2) Device Suitability Classifier; and (3) Speedup
Predictor. The Kernel Feature Extractor performs the extrac-
tion of the OpenCL kernel code-features. The Device Suit-
ability Classifier module performs the classification of jobs
based on the device suitability. The Speedup Predictor com-
ponent performs the prediction of the job’s speedup. Their
experimental results showed the proposed scheduler could
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achieve a reduction of the execution time by 38% while giving
higher system throughput and device utilization.

The authors in [60] proposed a formulation and model
based on service queues for GPU servers. Their work focused
on modelling the latency of GPU-based inference servers for
different batch sizes and processing times. They performed
experiments using three types of networks (MobileNet,
ResNet50 and SSD-MobileNet) on the Tesla V100 and Tesla
T4 GPUs. Their experimental results showed their approach
could give high energy-efficiency within a latency require-
ment. The authors in [61] proposed a performance and power
analysis of CNN workloads on different GPU platforms:
(1) NVIDIA DGX-1 (eight Pascal P100 GPUs); and (2) Intel
Knights Landing (KNL) CPUs. Their experiments used dif-
ferent CNN topologies such as CifarNet [62], AlexNet [63],
GoogLeNet [64], and ResNet [65]. Their implementation
gave theoretical equivalence to the sequential algorithm for
batch gradient descent. Their experimental results showed
that Pascal GPUs gave the highest overall performance.

B. ALGORITHM AND COMPUTATION APPROACHES

This section discusses some examples of algorithm and com-
putation approaches for GPU. A critical issue to be addressed
is to speed up the training time for the EI architectures.
The authors in [66] proposed an approach to leverage Block
Circulant Matrices (BCM) to perform compression of the
linear transformation layers and acceleration of the DNN
training by reducing the redundant computations for forward
and backward propagation. In this work, the authors pro-
posed techniques for: (1) Decomposition and interaction of
individual operations; and (2) GPU kernel design and modifi-
cations to remove redundant computations, kernel optimiza-
tions, and data sharing patterns. Their experimental results
using an NVIDIA Tesla V100 and the AlexNet topology gave
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performance improvements and speedups of 1.31 times and
2.79 times for the convolutional layers and fully-connected
layers respectively. The authors in [67] proposed a batch-
orchestration algorithm (BOA) to reduce the training time
of deep learning model by improving hardware efficiency in
GPU clusters. Their approach performs the coordination of
mini-batch sizes for workers to reduce the iteration time for
training. The batch orchestration process containing the two
major stages: (1) GPU stage for computation time estimation;
and (2) Coordination stage of the local mini-batch sizes.

The authors in [68] proposed efficient blocked algo-
rithms to implement extreme learning machines (ELM)
on GPUs. Their approaches were termed the blocked LU
decomposition algorithm, blocked Cholesky decomposition
algorithm, and blocked heterogeneous CPU-GPU algorithm.
Figure 12 shows the proposed ELM-LRF architecture. The
blocked LU decomposition algorithm was proposed to over-
come the limitation of global memory size to enable the
training of different sizes for the ELM-LRF models. The
heterogeneous blocked CPU-GPU parallel algorithm exploits
the resources on a GPU to further accelerate the performance
of the blocked Cholesky decomposition for ELM-LRF. Their
experimental results showed the blocked Cholesky decom-
position algorithm could achieve two times performance
improvements and speedup in comparison with blocked
LU decomposition.
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FIGURE 12. Architecture of heterogeneous blocked CPU-GPU
for ELM-LRF [68].

The authors in [69] utilized several types of machine
learning techniques (k-nearest neighbors, logistic regression,
multilayer perceptron and XGBoost) to investigate how the
kernel resource requirements could impact the GPU perfor-
mance. In this work, the authors performed experiments on
two different GPUs using the Rodinia, Parboil and SHOC
benchmarks: (1) GPU Tesla (Pascal architecture); and (2)
GPU RTX 2080 (Turing architecture). Their experimental
results showed that features such as number of blocks/grid,
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number of threads/block and the number of registers are
resource consuming parameters and affects the performance
of the concurrent execution. The authors in [70] proposed
a Residual Gradient Compression (RGC) system termed as
RedSync to improve the performance speedup for DNN train-
ing by using the RGC to reduce the end-to-end training time
on multi-GPU systems. Their approach gave good solutions
and addressed two major challenges on multi-GPU systems:
(1) High overhead incurred by GPU compression; and
(2) Low support for sparse data structures and its data
communications. Their experimental results showed that
their approach gave significant speedups and performance
improvements for high-intensity communication networks
such as VGG and AlexNet.

VI. El APPLICATION-SPECIFIC ARCHITECTURES

This section discusses EI for application-specific archi-
tectures from various perspectives: (1) Visual attention
El architectures; (2) Human computer interface (HCI) EI
architectures; (3) EI architectures for mobile applications;
(4) EI architectures for multimedia and computer vision;
(5) Health and biomedical EI architectures; (6) EI architec-
tures for swarm intelligence; and (7) EI architectures for evo-
lutionary and genetic algorithms. Table 4 shows a summary
of the EI application specific architectures discussed in this
section.

A. VISUAL ATTENTION EI ARCHITECTURES

The authors in [71] proposed an embedded DNN (E-DNN)
for energy efficient computation of visual attention (VA).
The E-DNN VA processor architecture has two components
and features: (1) CNN to realize the top-down VA; and
(2) Configurable PE architecture for CNN and MLP compu-
tations. The EI algorithms use the same hardware resources
for energy efficiency. The E-DNN processor was imple-
mented in 65 nm CMOS process. The system consists of the
E-DNN VA processor, a camera sensor, feature detectors for
SIFT and filtering accelerator.

The authors in [72] proposed a VA engine (VAE) for
saliency-based algorithm based on a digital cellular neural
network architecture. The VAE is a hardware accelerator to
reduce processing time and increase the energy efficiency.
optimized for the saliency-based VA algorithm to speed up
object-recognition. The proposed embedded VAE was imple-
mented in 0.13-u m CMOS process. The VAE contains the
following hardware components: (1) Object recognition SoC
with eight processing element clusters (PECs); (2) Matching
accelerator (MA); and (3) Host RISC processor. The VAE
performs saliency-based detection on the image and outputs a
pixel map marking the ROIs. The object recognition SoC uses
the ROI map to perform object-recognition for the regions of
high saliency.

B. HUMAN COMPUTER INTERFACE (HCI) EI
ARCHITECTURES

The authors in [73] proposed a gesture and gait process-
ing human computer interaction (HCI) architecture SoC
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TABLE 4. Summary of representative studies for application specific El architectures.

Techniques Criterion

Year | Focus of work Algorithm S|E |T1 | T2 | T3 |T4|Cl |C2|C3 |[C4|C5 |Ref

2015 | Embedded DNN visual attention | CNN, MLP N N N N N [71]
architecture

2010 | VA engine for saliency-based CNN N N N N [72]
CNN processing

2020 | Gesture and gait processing SoC | DNN v v N N [73]
for rehabilitation

2020 | EEG emotion classification SoC | DNN N N N [74]
for autistic children

2020 | Mobile inference SoC with ANN N N N [75]
multicore CPU, GPU, NPU

2019 | Energy-efficient sparsity aware Neural N N N N [76]
neural processing unit processing

2010 | High performance machine Image and N N N [77]
learning SoC for multimedia feature stream

2010 | Semantic analysis SoC for video | Vector-level N N N N [78]
processing and machine learning | machine

learning

2017 | Intelligent Boost Engine (IBE) Sensor fusion N N \ [79]

2020 | Parallel architecture for super DCNN N N N N [80]
resolution

2015 | Seizure onset and termination SVM N N N [81]
detection SoC

2015 SoC for FSCV neurochemical FSCV sensing N N N N [83]
sensing

2013 | Machine learning cardiac sensor | VCG MI N N N [84]
SoC detection

2021 | Deep learning COVID-19 chest | CNN N N N [86]
detection

2017 | Deep neural network on CNN N N v [87]
ultrasound

2021 | 3D semantic liver segmentation DNN N N v [88]

S — server accelerator E — edge device

T1 —system-level T2 — algorithm-level T3 — architecture-level T4 — technology-level
C1 — fast training C2 — fast decision-making C3 — low power C4 — small area C5 — scalability/flexibility

for rehabilitation. In their work, the HCI SoC has the fol-
lowing components and features: (1) Mixed-signal feature
extraction and integrated low-noise amplifiers; (2) Low-cost
and low-power analog front end from training of the DNN
classifier; (3) On-chip learning of DNN engine for user spe-
cific operations; and (4) On-chip training for user-specific
DNN model and multi-chip networking capability. The neural
network architecture contains four layers of fully-connected
neurons with 12 input neurons, 24 second-layer neurons,
18 neurons for gesture classification and 18 neurons for gait
classification.

The authors in [74] proposed an EEG-based emotion
classification SoC architecture for autistic children. Their
architecture combines a patient-specific (PS) DNN processor
with a Analog Front-end (AFE). The proposed EEG-based
emotion classification SoC architecture was implemented in
0.18 um CMOS process. The emotion classification pro-
cessor incorporates the following components and features:
(1) Feature Selection (FS) and Classification Engine (CE)
for classification of valence and arousal features; and
(2) Emotion Decision Logic (EDL) block for classification
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of four emotion states (happy, sad, relaxed and angry). The
DNN consists of an input layer of size 4 x 8, two hidden
layers of sizes 8 x 16 and 16 x 32 and an output layer of
size 32 x 1.

C. EI ARCHITECTURES FOR MOBILE APPLICATIONS

The authors in [75] presented an evaluation of mobile SoCs
focusing on its capabilities to perform inference. The archi-
tecture of the mobile SoC incorporates with multi-core CPU,
GPU and NPU. In this work, the authors investigated the
power-performance characteristics on the various neural net-
work components within the mobile SoC. Their experimental
results demonstrated that the mobile SoC could provide up to
two times improvement with parallel inference.

The authors in [76] proposed a neural processing
unit (NPU) with the focus on energy efficiency. The NPU has
the following features and components: (1) Dual core acceler-
ator with 1,024 MACs; (2) Parallel architecture in computing
CLs and FCLs; (3) Feature-map selection and MAC oper-
ations; and (4) Bandwidth efficient network traversal. The
proposed NPU was implemented in § nm CMOS technology.
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The NPU has an area of 5.5mm?, utilizes a supply voltage
of 0.5-t0-0.8V, and has a clock frequency of 933-MHz. The
architecture contains one NPU controller (NPUC) and two
NPU cores. The DMA has responsibility for managing the
transfer of the weights and feature maps.

D. EI ARCHITECTURES FOR MULTIMEDIA AND
COMPUTER VISION

The authors in [77] proposed a machine learning SoC (termed
as MLSoC) architecture for accelerating the content analysis
of machine learning and computer vision algorithms. The
architecture was implemented with an area of16 mm area
using 90 nm CMOS technology. The MLSoC contains two
components: (1) Image stream processor (ISP); and (2) Fea-
ture stream processor (FSP). The ISP and FSP connects to
the high-bandwidth dual memory (HBDM) by using the local
media bus (LMB). Their experimental results showed that
the architecture could achieve a performance throughput of
62.5 Gpixel/cycle and 16 vector/cycle for image processing
and machine learning operations respectively.

The authors in [78] proposed a Semantic Analysis SoC
(SASoC) architecture for performance speedup and accel-
eration of machine learning and video processing algo-
rithms. Some example applications for the SASoC include
concept-based image retrieval for scene recognition and
photo classification in consumer electronics and face detec-
tion for camcorders. The architecture contains the fol-
lowing three components and features: (1) Image-Stream
Processing System (ISPS) and Feature-Stream Process-
ing System (FSPS). The ISPS performs the pixel-level
task for feature extraction whereas the FSPS performs the
vector-level machine learning tasks for semantic analysis;
(2) Hierarchical memory organization and stream network
design; (3) Dynamic frequency scaling and multiple clock
domains to improve the energy efficiency and reduce the
power consumption.

The authors in [79] proposed the IBE (Intelligence Boost
Engine) which is a hardware accelerator to support sensor
fusion for predicting the orientation and rotation informa-
tion based on collected sensor data. The architecture has the
following features and components: (1) Processing elements
(PEs); (2) Control unit (CU). The CU stores information and
performs the required operations for the IBE; and (3) DMA
unit which loads and stores the result data independently.
Their architecture was fabricated using 55nm technology.
With the rapid evolution of CNNs, real time image super
resolution (SR) is not commonly implemented in FPGA plat-
form due to the long execution time. The authors in [80]
proposed an energy efficient architecture with high paral-
lelization methods for SR application. The research showed
that by reducing the data bit width and number of parameters
also able to generate high resolution of image.

E. HEALTH AND BIOMEDICAL EI ARCHITECTURES
The authors in [81], [82] proposed an architecture for
a patient-specific (PS) seizure onset and termination
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detection SoC with machine-learning. The SoC architecture
contains the following components and features: (1) PS
seizure onset and termination detection classification proces-
sor. The machine learning classification is performed with
a 16-channel feature extraction (FE) engine using a linear
SVM; (2) Low-power pulsating voltage transcranial electrical
stimulator (PVTES); and (3) On chip SRAM for EEG storage.
The authors in [83] proposed a SoC architecture for neu-
rochemical sensing. The SoC architecture contains the fol-
lowing components and features: (1) DSP unit to perform
real-time processing on neurochemical data; (2) Brain-
implanted electrodes incorporating fast scan cyclic voltam-
metry (FSCV); (3) Wireless frequency shift keyed (FSK)
transmitter; and (4) Clock generator. The authors in [84],
[85] proposed a ML assisted cardiac sensor SoC for mobile
healthcare applications. Figure 13 shows the architecture
of the proposed CS-SoC. The architecture has the follow-
ing features and components: (1) Cardiac signal acquisition;
(2) Feature extraction and classification with DSP; and
(3) Data management processor (DMP) to improve quality
and perform data compression for storage. The proposed
architecture is implemented in a 90-nm CMOS technology.
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FIGURE 13. SoC architecture for cardiac sensor [84].

The authors in [86] proposed a deep learning architecture
to automatically detect and identify the COVID-19 disease
in chest X-ray images. They used a dataset containing CXR
database of 659 COVID-19, 1660 healthy and 4265 non-
COVID (viral and bacterial pneumonia) samples. They gen-
erated a robust Convolutional Neural Network (CNN) model
for multi-class classification (COVID vs. normal vs. bacterial
pneumonia vs. viral pneumonia) and binary classification
(COVID-19 vs. non-COVID). Their model could perform
rapid disease detection in 137 milliseconds per image in a sys-
tem with NVIDIA GTX 1060 GPU for the online screening.
The authors in [87] proposed an architecture to implement
deep learning algorithms on a research scanner with GPU
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FIGURE 14. Parallel SIA models for GPU architectures [89].

software beamforming. Two deep neural network architec-
tures were implemented and evaluated on the ultrasound
research platform termed as USPlatform. The authors used
a six layer CNN architecture that was trained on two models.
The first model used a dataset of 786 ultrasound images of
baby body parts. The second model was used for brachial
plexus localization and trained and evaluated on 5640 ultra-
sound B-mode frames. The architecture was deployed on a
Nvidia Titan cluster integrated with the ultrasound platform.
The authors in [88] proposed a deep learning model called
3D-DenseUNet-569 to perform fast training for semantic
liver and tumor segmentation. The architecture also reduces
the pooling layer by adopting a standard convolution with
strides, and this decreases the memory consumption. The
proposed architecture uses Depthwise Separable Convolu-
tion compared to traditional convolution. Their experimental
results showed that DS-Conv could significantly decrease
memory requirements and computational cost and achieve
high performance.

F. EI ARCHITECTURES FOR SWARM INTELLIGENCE

The authors in [89] proposed an overview for accelerating
swarm intelligence algorithms (SIAs) on GPU architectures.
The authors discussed several considerations for implement-
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ing efficient parallel architectures of SIAs on GPUs. In this
work, the authors discussed four categories for parallel
implementation of SIAs on GPU architectures: (1) Naive
parallel model; (2) Multiphase parallel model; (3) All-
GPU parallel model; and (4) Multiswarm parallel model.
These parallel SIA models for GPU architectures are shown
in Figure 14.

In the naive parallel model, the SIAs offload the fit-
ness evaluations onto the GPU for parallel execution. The
implementation can be coarse grained (task parallel) or
fine-grained (data parallel). In the multiphase parallel model,
computation from different phases with explicit or implicit
parallelism are offloaded onto GPUs. One important fac-
tor for the STA implementation is that the communication
between GPU and CPU is very slow. The All-GPU paral-
lel model combines multiple kernels into a single one and
executes a whole program on the GPU. Two strategies are
commonly used to overcome the need for hardware synchro-
nization by the GPU: (1) Coarse-grained strategy where all
threads are organized into a single block (i.e., the swarm
is mapped on a single thread, and each particle is mapped
on a single thread); and (2) Fine-grained strategy where
data dependency is removed, or software synchronization
is utilized. The multiswarm parallel model is useful for
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implementing high-dimensional and large-scale SIA prob-
lems as it reduces the search time and improves the quality
of the solutions provided. In this architecture, the swarm is
divided into a few subswarms, and each of them evolves
separately utilizing different threads.

The authors in [90] proposed a GPU-based SIA architec-
ture for the exploration and mining of association rules in
big data. Their approach used a bee SIA optimization method
(termed as GSum-BSO) in the meta-rules discovery process
which is implemented using GPU-based parallel program-
ming. In this work, a parallel algorithm for GPU architecture
is proposed. The neighborhood search is performed on CPU
while the tasks for evaluating the potential solutions are
implemented in parallel on the GPU architecture.

The authors in [91] proposed an algorithm termed as Par-
ticle Swarm Stepwise Algorithm (PaSS) for deployment on
CPU-GPU clusters. Although PaSS can outperform some
existing techniques, the issues for target optimization is a sig-
nificant challenge. In this work, the authors aimed to shorten
the computational time by proposing a parallel architecture
on CPU and GPU clusters. The initial state is when multiple
particles are selected. The particles update the values of
their objective function by utilizing the information collected
from other particles. Their experimental results showed that
the approach achieved scalability on multiple threaded CPU
and seven times speedup and performance improvements
on GPU.

The authors in [92] proposed an improvement for the
efficiency of PSO for parallel implementation on multicore
processors with GPU acceleration. Their experimental results
with high-dimensional and complex functions showed that
significant performance improvements and speedups could
be obtained. The authors in [93] implemented pseudoran-
dom number generators (PRNGs) on CPUs and GPUs. They
demonstrated the effect of PRNGs on a parallel architec-
ture of the PSO on a GPU. The performance of PSO algo-
rithms is affected by the quality of the PRNGs running
on a GPU. Their experimental results showed that the pro-
posed parallel implementation of SPSO could give up to
307 times performance improvements and speedup com-
pared to a serial CPU implementation. The authors in [94]
proposed a multi-swarm parameter estimation of biological
systems architecture for GPU. Their proposed methodology
is based on PSO and termed as MS2PSO. The MS2PSO
enables significant speedup for the computation by utilizing
ODE numerical integrators which are accelerated on GPUs.
Their approach utilizes the master-slave distributed model
to partition calculations required by MS2PSO on multi-core
CPUS and GPUs. The master-slave approaches utilize par-
allel fitness evaluations. The master process performs the
communication tasks among the slave processes.

Other works for SIA implementation on GPUs can
be found in [95], [96]. The authors in [95] proposed a
GPU-Accelerated PSO for the SHE in multilevel converters
with unequal DC levels. In this work, the authors imple-
mented the PSO in parallel on the GPU with CUDA.
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Their experimental results showed that the execution effi-
ciency improved by hundreds of times faster compared to
its CPU based counterpart. The authors in [96] proposed a
novel parallel approach to run standard PSO on GPUs for
application to the travelling salesman problem (TSP). Their
approach showed that the correct choice of PSO settings
applied to the TSP could give a solution within a reasonable
time.

G. EI ARCHITECTURES FOR EVOLUTIONARY AND
GENETIC ALGORITHMS

The authors in [97] presented an overview for perfor-
mance speedup and acceleration of genetic algorithms (GAs)
on GPU. In this work, the authors discussed coarse-grained
and fine-grained parallel architectures, and proposed three
categories for parallel implementation of GAs on GPU archi-
tectures: (1) Master-slave or panmictic model; (2) Island
model; and (3) Cellular model. These parallel GA models for
GPU architectures are shown in Figure 15. The models can
be divided based on how the mating mechanisms for the GAs
are performed. On the one hand, the panmictic model is a
global model where individuals mate freely within the entire
population. On the other hand, the cellular model is a local
model where individuals mate only with its neighbors. The
island model is a combination of the panmictic and cellular
models. In this model, the population is separated into sub
groups (termed as islands). The individuals on an island can
mate freely while restrictions are placed for mating across
islands. A migration operator is used to bring a part of a
sub-population amongst islands for genetic diversity. In the
implementation, each island could be allocated to a GPU and
the migration process is specified amongst the GPUs.
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FIGURE 15. Parallel GA models for GPU architectures [97].

The authors in [98] proposed a GPU-based parallel imple-
mentation of a multi-objective evolutionary algorithm to train
artificial neural networks (ANNs). They proposed a method-
ology for the prediction of energy consumption in buildings
for increased energy efficiency. In their work, two machine
learning techniques were combined. The first technique is
ANN which were used to model and predict energy usage.
The second technique is the multi-objective evolutionary
algorithm to obtain the optimal ANN models for forecasting.
Their experimental results compared a sequential implemen-
tation of the evolutionary algorithm (NSGA-II) with their
architectures developed in parallel and implemented on GPU.
Their approach showed better and faster execution time.
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The authors in [99] proposed an approach termed as
ERulesD2S for performing the induction of classification
rules which are evolved with genetic programming. In this
work, the authors proposed a highly efficient GPU-parallel
architecture which could give performance improvements on
data streams. The authors showed that ERulesD2S could
scale to accommodate data streams with high dimensions
while giving fast update and classifications. Their experimen-
tal results compared ERulesD2S with state-of-the-art classi-
fiers and showed that their approach gave better performance
than other approaches. The authors in [100] developed an
optimization tool for wind turbine TMD using a combination
of RBF neural networks and genetic algorithms. The authors
developed a tool termed as PYGAOWT. Their experimental
results showed that their proposed architecture gave good
performance for the TMD application.

VII. LESSONS LEARNED, FUTURE PROSPECTS AND
CHALLENGES

The previous sections have discussed EI architectures, the
techniques for increasing their performances, the various cri-
terions to target, and the challenges and potential solutions
to address these main criterions. In this section, we discuss
the lessons learned, future prospects, challenges and research
directions for EI architectures. We identify a critical chal-
lenge and research direction towards addressing security, pri-
vacy and trust challenges for EI and discuss future prospects
and applications for EI such as Industry 4.0.

A. LESSONS LEARNED FOR EI
The discussions in Sections III, IV and V have enabled us
to derive several useful observations and lessons relevant
to EL In particular, Tables 1, 2, 3 and 4 have shown a
snapshot of the broad spectrum of representative studies and
the techniques (system-level, algorithm-level, architecture-
level, technology level) which are being utilized to achieve
the various criterions (fast training, fast decision-making,
low power, small area and scalability) to meet the different
EI applications and requirements. For example, the require-
ments for EI architectures (or accelerators) for servers/data
centers will be different for EI architectures for edge devices.
We give the following observations. First, many
authors have proposed techniques to exploit the fact that
ElI algorithms and applications can tolerate imprecision
in the computations. This tolerance for imprecision can
be exploited at different levels. At the algorithm level,
approximate computing approaches can be utilized such as
binarized operations/neural networks, and processing units
(e.g., approximate multipliersyMAC) using approximate
computing. At the architecture level, the designer has differ-
ent tools for hardware-software co-design, design of custom
instruction sets and datapaths for EI modules, and a variety
of different hardware platforms such as ASIC, FPGA and
GPU to select from. This tolerance for imprecision in EI
can also be exploited at the technology level. The authors
in [27] demonstrated an approach using Conductive Bridging
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RAM (CBRAM) devices and stochastic computing
(i.e., computation is usually non-deterministic) to optimize
deep learning parameters and reduced the size of Multiply
and Accumulate (MAC) units by five orders of magnitude
without incurring a notable performance decrease for clas-
sification task. A significant challenge which remains to be
resolved would be the optimal tradeoff between the architec-
ture complexity and the classification performance of the EI
which can be tolerated.

Second, an analysis of the literature has shown that many
EI architectures have been focused on the CNN architec-
ture. There are far fewer architectures which have been pro-
posed for other types of EI. The continuing challenge for the
research community is to develop a portfolio of EI schemes
and architectures to meet different application requirements
and scenarios which may evolve in the future. Some exam-
ples of these EI architectures would be for recommendation
systems, adversarial machine learning, intelligent swarms,
etc. These EI architectures will also need to be designed
to meet different criterions such as the ones proposed in
Section II. Third, some authors have proposed to exploit
new technologies and move away from the conventional Von
Neumann and digital computing approaches to realize effi-
cient EI architectures. Examples of these approaches would
be the CIM computing structures which have the advantage
of performing computations inside the memory structure to
reduce data movements and increase energy efficiency. The
authors in [111] discuss the potential of analog computing
for deep learning hardware. The authors remarked that ana-
log computing for deep learning is not expected to drive a
fundamentally new ecosystem but will augment the existing
digital platforms.

Fourth, the full realization and potential for EI requires a
concerted effort by the research community to address the
unique technical and interoperability challenges for EI. A step
towards this direction is the development of the IEEE P2805
Standards [110]. Although these standards were developed
for industrial and shop floor environments, the standards
define protocols for self-management, data acquisition, and
machine learning through cloud-edge collaboration on edge
computing nodes (ECNs), and give guidelines for the apply-
ing machine learning algorithms for low-powered embedded
devices. Figure 16 shows a schematic of the IEEE P2805
Standard for ECNs; and (5) Fifth, there are significant chal-
lenges which remain to be addressed for security, privacy and
trust. New technologies such as blockchains may offer useful
solutions. This will be discussed in the next sub-section for
future prospects and research directions for EI.

B. FUTURE PROSPECTS AND RESEARCH

DIRECTIONS FOR EI

The expectation is that EI would continue to play an impor-
tant role in emerging technologies for social advancements
and applications such as Industry 4.0 [112]. The integration
of EI into smarter systems for manufacturing and produc-
tion will enable improvements in areas such as predictive
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maintenance of machinery, early detection of product failures
and optimized production lines. This leads on to improve-
ments in manufacturing for better utilization of resources
such as materials, machinery, labor and energy. Another trend
that we see will impact practical applications and deployment
of EI for society is that several other diverse technologi-
cal trends are also emerging at the same time such as IoT,
immersive visualization technologies (virtual and augmented
reality (VR/AR)), digital twins and blockchains. While IoT
technologies and smart sensing systems have been well inves-
tigated for integration with EI, the other trends for VR/AR,
blockchains and digital twins have not been as well investi-
gated. Some discussions for integrating EI and machine learn-
ing with VR/AR can be found in [113] and for integrating EI
with digital twin technologies can be found in [114], [115].
A critical challenge which has been identified is the need
for EI systems which addresses security, privacy and trust
issues. One approach is to modify existing machine learning
algorithms to be able to handle these issues. An example is
the development of federated machine learning [116], [117]
techniques to strengthen data privacy and security. A sec-
ond approach is to utilize new blockchain technologies to
achieve these goals. The authors in [118], [119] gives some
discussions and challenges on the potential of integrating
blockchains for edge computing systems.

Finally, we give remarks on future directions for
EI research: (1) There remains significant challenges to
continuously improve EI systems in terms of the five crite-
rions which have been discussed. This could be in terms of
developing new or improved system-level, algorithm-level,
architecture-level or technology-level techniques; (2) Com-
pared with applications for Industry 4.0 environments which
have conditions which can be controlled, we see EI progress-
ing and moving towards being more and more deployable
in spontaneous scenarios and even unknown environments
(ETin the wild); (3) A critical challenge is towards developing
security, privacy and trust techniques for EI systems. These
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techniques can be incorporated into EI systems on a level-by-
level basis and/or cross-layer approaches can be developed;
and (4) The areas for integrating EI with other emerging
trends such as blockchains, VR/AR and digital twins remain
as significant challenges to be addressed for the research
community and serve as useful future research directions.

VIil. CONCLUSION

This article addressed the convergence of increasingly com-
plex embedded intelligence (EI) techniques and deployments
into hardware architectures for server accelerators and edge
devices. Our discussion began with a set of use cases and
proposing some criterions for EI deployments and architec-
tures. Using the criterions, we then presented discussions for
EI architectures and accelerators for ASIC, FPGA and GPU
platforms. Next, we discussed application specific EI archi-
tectures for various applications and scenarios. The paper
gives a classification and discusses different techniques for
EI implementations from different aspects or levels. We also
discussed the lessons learned and the future prospects and
broader perspectives for EI. This paper has presented the
various issues and challenges for practical EI architectures
and deployments and aims to open new avenues for future
research directions in this area.
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