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ABSTRACT Tron is a simultaneous move two-player game where a wall is created along the path where two
agents move and the agent that crash with the wall first is defeated. Due to the fact that the same action may
result in different outcomes (non-stationarity), it is difficult to utilize the basic approach of reinforcement
learning. In this paper, we present a modular reinforcement learning (MRL) approach to tackling the game of
Tron by decomposing the game into two phases where the first phase is non-stationary and the second phase
is stationary. We train two separate models where the first model deals with the non-stationary environments
such that two models move simultaneously and affect each other while the second model deals with the
stationary environment when two agents are separated by walls created and cannot affect each other. We show
that the latter model can be effectively pre-trained using randomly generated stationary environments.
We evaluate the performance of our algorithm by comparing with previous algorithms including the state-
of-the-art algorithm for the game of Tron (called alkOn) in different grid sizes. As a result, we demonstrate
that the proposed algorithm based on MRL outperforms all previous algorithms on 6 x 6 and 8 x 8 grids.
Although our algorithm shows slightly worse performance on 10 x 10 grid than the strongest baseline alkOn,
we show that our algorithm exhibits better scalability in terms of time complexity as the grid size increases

than search-based heuristics including the alkOn.

INDEX TERMS Modular learning, reinforcement learning, Tron, non-stationary environment.

I. INTRODUCTION

Since the advent of deep Q-networks (DQN) [1], the field of
deep reinforcement learning (RL) has been developed rapidly
through numerous approaches to improving the efficiency
and stability of learning and the performance of the trained
RL agents. As the popularity of RL continues to grow, the
target applications of RL also rapidly expanded from board
games and classic video games with simple rules and actions
to more complicated and actionable games [2], multi-agent
games [3], [4], and NP-hard graph problems [5], [6].

Since RL researchers started to tackle more complex
and difficult problems, there have been many attempts to
breaking the complex and difficult tasks down into less
complex and easier sub-tasks. This approach is called the
modular reinforcement learning (MRL) [7], [8], based on a
simple idea that it would be more efficient to decompose
a task into several sub-tasks and train an agent for each
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sub-task. Andreas et al. [9] presented an MRL approach for
multitask RL by decomposing a task into a sequence of
subtasks (policy sketch) while subtasks are shared across
multiple tasks. Mendez et al. [10] proposed to tackle MRL
problems via neural compositional learning framework by
training an agent to construct a different policy for every
task by selecting proper modules from a set of available
modules. They show that each selected module can be
improved during the process of learning different tasks
and eventually demonstrates better performance in the
tasks.

In this paper, we consider the game of Tron, a two-player
simultaneous move game played on a discrete square grid.
Tron is a competitive game in which a wall is created along
the path where two agents move simultaneously, and the agent
that crash the wall first is defeated. It is a multi-agent game
when sharing the same space with an opponent. However,
after the space is separated from the opponent, the goal is to
survive alone as long as possible because it cannot interfere
with each other’s moves [11], [12].

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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There have been many strong heuristics proposed to play
the game of Tron [11], [13]-[18] including the Monte-Carlo
Tree Search (MCTS) algorithm and minimax algorithm.
Recently, Knegt er al. [13], [15] utilized a deep neural net-
work as Q function approximator. Perick et al. [16] applied
the MCTS to the game of Tron and performed a comparison
of different node selection strategies for the MCTS algorithm.
In order to exploit the non-stationary property of the game of
Tron, Knegt et al. [13], [15] proposed a concept of opponent
modeling to predict the opponent’s next move which is
subsequently used in MCTS.

We tackle the game of Tron by decomposing the game into
two sequential sub-tasks. The first part of the game is to play
until two agents are separated on the grid so that there is no
possibility of colliding with each other. Since the next state
of an agent cannot be determined only by the agent’s action,
we consider these state to be non-stationary. The second part
of the game is that the agent needs to move along the empty
cells as long as possible. Since the agent at this point does
not need to care about the opponent’s move, we can consider
these states as stationary. In summary, we decompose the
game of Tron into two phases where the first phase is
inherently non-stationary as the opponent’s move can change
the environment and reward regardless of the chosen action
and the second phase can be considered stationary as we can
simply ignore the opponent’s region from the grid. In this
paper, we demonstrate that the modular RL approach to the
game of Tron is robust compared to the previous approaches
including the alkOn algorithm [12] who won the Google
Tron Al Challenge in 2010. Especially, we show that our
algorithm is considerably faster than the previous heuristics
as we do not perform the exhaustive tree search. Considering
that Tron is a real-time game, our algorithm can be employed
in time-sensitive scenarios. We verify the performance of
our algorithm through comparisons with other algorithms on
different size of boards. We claim that the proposed algorithm
is novel compared to previous works on MRL as we employ
the concept of pre-training the model for the stationary
environment using randomly generated environments.

Il. BACKGROUND

A. REINFORCEMENT LEARNING

There are two well-recognized criteria for classifying the
research directions of the RL. First, the RL algorithms
can be classified into either model-free and model-based
algorithms. The model-free RL algorithms (such as DQN [1],
DDPG [19], etc.) try to estimate the optimal policy without
using or estimating the transitions and reward functions of
the environment. On the other hand, the model-based RL
algorithms (such as AlphaZero [20], MuZero [21], etc.)
employ the transition function and the reward function to
estimate the optimal policy.

Second, we can also classify the RL algorithms into two
classes, namely policy-based and value-based. In the policy-
based RL, we directly learn a policy that maps states to
actions (mapping  : s — a) without using a value function.
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FIGURE 1. Two tron agents that started the game from a point-symmetric
location on a 6 x 6 game board. A large circle and a large diamond are
the current location of the agents. The longest path of the circle-shaped
agent is 16, and the diamond-shaped agent's is 7.

On the contrary, in the value-based RL, we only use a value
function that estimates the values of the states and derive the
policy from the value function by picking the action with the
best value based on the value function.

The policy-based and value-based RL implicitly mixed in
the field of RL but explicitly combined in the advantage
actor-critic algorithms (such as A3C [22], A2C, ACTKR [23],
etc.). The actor-critic algorithm consists of two networks
called the actor and the critic. The actor network (approximat-
ing the policy function) chooses an action at each step and the
critic network (approximating the value function) evaluates
the quality of the given state. As the critic network learns
which state is better or worse, the actor relies on the critic
to choose the states leading to better future rewards.

Reinforcement learning is a machine learning method that
trains neural networks for decision-making processes based
on the Markov Decision Process (MDP) [24]. In MDP, state
transitions #(s(+1)|s;, a;) occur when a particular action a,
is selected according to policy m(a;|s;) in a given state
s;, and agents receive rewards R;. In order to know the
exact sum of future rewards, we make choices at each time
and add the total rewards. However, as the search space
increases, it is practically impossible to find the correct sum
for all possible situations. Therefore, we need an expression
that can approximate the total future rewards with only the
current information, which is called the Q-value. As the
reinforcement learning is based on the Bellman equation [25],
we aim to train an agent that selects an action that maximizes
the Q-valve defined as follows:

Q(s. ) = ElR 1 +y max Q(sr+1, @)

where y is the decay factor. Unlike present rewards that have
a clear value, future rewards have unclear value. Therefore,
when evaluating future rewards at the present time, a penalty
is given by multiplying y.

B. ACTOR-CRITIC ALGORITHMS

The Actor-Critic [22], [23], [26] algorithm employs two
neural networks: an actor network that determines an action
from a state, and a critic network that estimates a value
of a state. The objective function for training the actor
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network is defined using the advantage function A(s;, a;) =
QO(sy, a;) — V(sy), which is the difference between the actual
Q value and the estimated value V (s;) by the critic network.
Then, we optimize the actor network by maximizing the
probability of actions with higher advantages. In other words,
the objective function for the actor network is

E[A(s;, ar)Ve log 7 (a]s1)].

On the other hand, we train the critic network by
minimizing A(sy, ar)?, the squared difference between the O
value and the estimated value by the critic network. Finally,
we add the following term called the entropy loss to the
objective function to encourage exploration and discourage
premature convergence to a sub-optimal policy:

— Z 7 (als)log m(als).

In order to increase the diversity of training data, the
asynchronous advantage actor-critic (A3C) [22] algorithm
executes a set of environments in parallel and the parallel
agents update the global network asynchronously. The
advantage actor-critic (A2C) is a synchronous version of A3C
introduced by OpenAl in their published baselines. In A2C,
all of the updates by the parallel agents are collected to update
the global network. The actor-critic using Kronecker-factored
trust region (ACKTR) [23] is an advanced method from A2C.
The ACKTR improves sample efficiency by applying a Fisher
information matrix which is mathematically identical to the
derivative of Kullback-Leibler divergence in the optimization
process of A2C. At this point, ACKTR uses approximations
using the basic properties of Kronecker product instead of
second-order derivation to reduce computational costs.

C. RL IN STATIONARY AND NON-STATIONARY
ENVIRONMENTS

An environment is said to be stationary [27], [28] if the
next state s,y is determined based on the agent’s current
action a; and the current state s;. This is also known as
the Markov property [24]. In general, most reinforcement
learning algorithms assume a stationary environment where
there is no stochastic element involved in determining the
next state.

On the contrary, an environment is called non-stationary
if the next state s;4; cannot be determined solely based on
the agent’s current action a; and the current state s;. There
exist additional factors &; that determine the next state such
as other agents’ behavior, randomness, past behaviors and
states, etc. It is widely known that basic approaches of rein-
forcement learning in non-stationary environments are very
unstable.

D. MINIMAX ALGORITHM

Minimax [29] is a well-known recursive algorithm that selects
the most favorable action through valuation within a game
tree. Each node in the game tree has a selection value, which
is computed by means of a position evaluation function.
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FIGURE 2. The Voronoi regions of two agents in the game of Tron (left).
The area of the circle-shaped (red) agent’s region is 14 and the area of
the diamond-shaped (blue) agent’s region is ten. Articulation points
obtained from the Voronoi regions of two agents (right).

When an agent explores its action, the minimax algorithm
selects a node with the highest selection value. Similarly, the
opponent is expected to make the most favorable choice from
the opponent’s point of view. Therefore, when exploring the
opponent’s action, the agent selects the node with the lowest
selection value. As the computation cost of the minimax
algorithm can be very expensive as the depth of search
increases, we can improve the performance of the minimax
algorithm by the use of alpha-beta pruning [30]. If an agent
finds an action by the minimax algorithm from the game tree
of depth n, we can ensure that the chosen action is the most
favorable action for the agent after n steps.

The Voronoi diagram [31] is used to partition a plane into
regions close to each of a given set of points. Figure 2 left
shows an example of a Voronoi diagram computed on a grid
of Tron. Considering that an agent can only move in four
directions in the game of Tron—up, down, left, and right—the
Voronoi diagram of an agent represents the set of cells with
the closest L1 distance for the agent. Cells with the same L1
distance from both agents [32] belong to neutral region.

We implement a minimax agent playing the game of Tron
by relying on the computation of Voronoi diagram at each
turn [11]. More specifically, the selection value of a node for
agent 1 is defined as Ry — R, where R; is the area of the
Voronoi region of agent i. In other words, an agent always
selects the node in the manner that the area of its Voronoi
region is larger than the area of the opponent’s Voronoi
region as much as possible. Similarly, the opponent always
selects the node with the minimum selection value. If there
are multiple nodes with the same maximum value, the agent
randomly choose one of the nodes. In our implementation,
we set the exploration depth of the minimax algorithm to two
due to time constraints.

E. TREE OF CHAMBERS HEURISTIC: a1kOn

However, the Voronoi heuristic has a clear limitation as in
the situation depicted in Figure 2 right. While the area of the
Voronoi region of the diamond-shaped agent is larger than
that of the circle-shaped agent, the region will be divided into
two regions if the diamond-shaped agent moves toward the
wall and chooses one of the directions. If the circle-shaped
agent blocks the selected area of diamond-shaped agent, the
resulting remaining area of the circle-shaped agent will be
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larger. Therefore, if an agent can take one of two paths and
only reach one of two areas as a result of the choice of the
path, the area estimated by the Voronoi heuristic can be very
different to the area the agent actually can reach. In these
reasons, the alkOn [12], the Google Tron AI Challenge
champion, uses the biconnected component algorithm using
the articulation points computed from the Voronoi region of
the agent.

If two agents are separated, then the alkOn algorithm relies
on the simple wall-following heuristic. Note that the original
alkOn algorithm utilizes the iterative deepening search with
runtime constraint but we re-implemented the tree search
algorithm as the simple depth-limited search with depth
one.

ill. PROPOSED METHOD

Before explaining our methods more specifically, let us
briefly recall how the game of Tron proceeds. The initial
position of agent 1 is randomly determined and the initial
point of agent 2 is automatically set to be a cell so that the
initial grid possesses central symmetry. At each time, agents
move one cell of grid up, down, left, and right direction
simultaneously. The trajectories where agents have passed
will be filled with walls, and the first agent that crash with
any kind of wall will be defeated. If both agents crash at the
same time (or crash with each other), the result of the game
is a draw.

A. RL AGENT FOR STATIONARY ENVIRONMENTS

In Tron, a state that two agents are in an independent
space and cannot influence each other is considered to be
stationary environments [27], [28], as shown in Figure 1.
After beginning the game from a non-stationary environment,
the game may transition to a stationary environment if
two agents are isolated on the grid. In the stationary
environment, the agents only need to survive as long as
possible. Note that the problem of finding the longest path
in the grid is equivalent to the longest path problem in the
grid graph [33], which is known as NP-complete. Therefore,
we can assume that there is no polynomial time algorithm
that finds the optimal path for agents in the stationary state if
P # NP.

Therefore, we aim at solving the NP-complete problem
using a neural network as it is proven in many cases that
the neural network can solve intractable problems effectively
compared to previous successful heuristics [5], [6]. In order
to train an agent playing in stationary states to find the longest
survival path, we randomly generate stationary environments
that the agent may encounter during real games. The
algorithm for generating the random stationary environment
is explained in Algorithm 1.

B. RL AGENT FOR NON-STATIONARY ENVIRONMENTS

We distinguish between the non-stationary and stationary
environments and finish the game as soon as it is converted to
a stationary environment from a non-stationary environment.
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Algorithm 1 Random Stationary Environment Generation

Input: An empty game map
Output: A random stationary environment (map)
1: Randomly select one of the four sides;
2: Place a cursor to one of the cells from the selected side;
3: while cursor is not on one of the three unchosen sides do
4:  Make the list of directions except for the direction
where the cursor started from;
5. if cursor moved in the same direction (grid width — 3)
times in a row then
6: Remove the direction from the list;
7:  end if
8:  Remove the opposite direction of the previous cursor
move from the list;
9:  Randomly select one direction from the list;
10:  Move a cursor to selected direction and place a wall
behind;
11: end while
12: Choose a side from two separated regions;
13: Fill walls to the unchosen side;
14: return A randomly generated map

Algorithm 2 Training Agent for Non-Stationary Environ-
ment

1: Pretrain a stationary agent on randomly generated

stationary environments;

2: Initialize a non-stationary agent;

3: while training is not finished do

4:  Start self-play of same neural network agents in the

non-stationary environment;
5. if game is changed to the stationary environment then

6: Compute the approximate length of the longest path
using the pretrained agent;
7: Determine the result of the game by comparing the
approximate lengths of two agents;
8: else
9: Determine the result of the game in the
non-stationary environment by detecting crash
of agents;
10:  end if
11:  Give reward to the non-stationary agent based on the
result;

12: end while

Then, the win or lose is determined by the remaining
longest path of each agent. It is a draw if two agents
crash in a non-stationary environment at the same time,
or if the remaining longest path is same in a stationary
environment. The whole training procedure of the agent
playing in non-stationary states is explained in Algorithm 2.

Therefore, the agent that plays non-stationary environ-
ments is trained with the goal of making the remaining
longest path is longer than opponent agent’s. This agent
named P agent.
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C. REWARD FUNCTION

The reward function should be designed to guide agents’
behaviours in reinforcement learning. The most intuitive way
to design a reward function in the grid world is to give a
positive reward for each step so that the agent tries to survive
as much as possible. However, we find it inappropriate for the
game of Tron as the positive reward for each step results in
an unexpected side effect [34]. Since we train agents through
self-play training, the agent tries to avoid to get close to
the opponent during the self-play games. As a result, the
agent trained with positive reward for each step tends to
survive more steps but exhibits poorer performance against
the other agents compared to the agent trained with negative
reward for each step. We notice that negative step reward
results in a more aggressive agent playing better against the
other agents on average while positive step reward results
in a more defensive agent playing worse against the other
agents. For this reason, we opt to use the negative reward
for each step to training our neural-network agents in our
experiments.

D. NEURAL NETWORK ARCHITECTURE

Our neural network consists of seven convolutional layers
followed by two linear (affine transformation) layers with
residual connections as shown in Figure 3. We use the same
neural network for both non-stationary and stationary agents.
Finally, a policy network and a value network consist of two
and three linear layers, respectively, with Mish activation
function [35] in between.

When the grid size is 6 x 6, the linear layer right after an
average pooling layer has a size of 256, and 576 when the grid
size is 8 x 8 or 10 x 10. The numbers in convolutional layers
from Figure 3 are kernel size, number of input channels,
and the number of output channels. Note that a stationary
environment consists of two channels (due to the absence of
the opponent) instead of three channels for a non-stationary
environment. The padding size of all convolutional layers and
pooling layers is | kernel size/2].

Matrices provided in Figure 4 show how we encode states
of the game as matrices to feed the neural network. An input
matrix for a non-stationary environment consists of three
channels where the first channel encodes the locations of side
walls, the second encodes current and previous (already filled
with walls) locations of the current agent, and the last encodes
the current and previous locations of the opponent. On the
other hand, an input matrix for a stationary environment
consists of only two channels as there is no need to encode
any information about the opponent. In input matrices, a wall
is represented by one, an empty cell by zero, and location
occupied by an agent is ten.

IV. EXPERIMENTS

In this section, we first describe the experimental setup and
present the experimental results and discussion for various
experiments conducted to verify the proposed idea.
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FIGURE 3. The proposed neural network architecture.

A. IMPLEMENTATION DETAILS

The experiments are performed on a computer with a 6-core
Intel Core i7-8700K 3.70GHz CPU, 48GB RAM, and an
NVIDIA GeForce GTX 1080 Ti GPU. We use Python 3.7.6,
PyTorch 1.7.1, CUDA 11.1 running on Ubuntu 18.04.5 LTS.

B. BASELINES

We measure the performance of the proposed algorithm
(named P agent) against several baseline approaches includ-
ing the state-of-the-art Tron algorithm.

1) A neural network agent based on backtracking algo-
rithm (named B agent): In stationary environment, the
truth longest path is obtained by backtracking search.
The non-stationary agent uses a neural network and
unlike the P agent, it is trained via backtracking search
results. However, 8 x 8 and 10 x 10 games are
almost impossible to use backtracking search due to
exponential computational costs. So, this agent is only
trained in 6 x 6 games with small state-space game.

2) A neural network agent based on greedy length
approximation (named G agent): The greedy algorithm
is as follows: the agent prioritizes four directions and
explore the possible directions as deep as possible

VOLUME 11, 2023
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FIGURE 4. Encoding of a non-stationary input state (above) and a
stationary input state (below) from circle-shaped (red) agent’s point of
view.

according to the priority. A cell cannot be visited again
once visited and when we reach a dead end during the
search, we search from the last cell where there are still
remaining directions to be searched. The length that
the agent explored most deeply is considered to be the
longest survival path for the agent. An agent playing in
non-stationary states uses a neural network trained via
greedy length approximation results.

3) A single neural network agent (named S agent): This
agent relies on a single neural network trained to play
the entire game. Note that the neural network receives
three-channel input instead of two-channel even in
stationary states as there is no distinction between a
stationary and a non-stationary state.

4) A minimax agent and DLS (depth-limited search)
approximation (named M agent): How the minimax
agent plays in non-stationary environments is described
in Section II-D. The depth of minimax search is fixed to
two. In stationary environments, a length of the longest
path is approximated by depth-limited search, which
is maximizing remaining area. The depth of search is
limited to one.

5) alkOn agent and wall-following heuristic (named A
agent): How the alkOn agent plays in non-stationary
environments is described in Section II-E. The depth
of minimax search is fixed to two. In stationary
environments, the longest path is approximated by
DLS, that wall-following bonus added. If the maximum
remaining area is the same for several possible
directions, an agent choose the direction with the most
walls around it. The depth of search is limited to
one.

6) Neural network agents based on the area of agent’s
region (named RP agent and RG agent): The
non-stationary agent uses a neural network trained
via remaining region measurement without any path
searching process. Therefore, this agent is trained with
values greater than or equal to the actual possible
longest path. This has no problem with training, but it is
unfair with other agents during evaluation. Therefore,
we use pretrained approximation (RP agent) and greedy
approximation (RG agent) in evaluation.
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FIGURE 5. The ratio of longest path to width of each agent in randomly
generated stationary environments.

C. EXPERIMENTAL METHODS

We measure how well six methods except for region
approximation approximate the ratio of longest path to area
in the game board of stationary environments generated
by the method mentioned in 3.2. Backtracking method is
measured only in 6 x 6 games due to exponential time of
computation. Also, the same experiment is carried out in
stationary environments generated during real plays. In this
case, all games are self-plays for agents with the same
approximation scheme (e.g., the pretrained approximation’s
ratio of longest path to area is measured in P agents’
self-plays, and the greedy approximation’s is measured in
G agents’ self-plays.). Each match is played 10,000 games,
and the average is obtained by dividing the total area
from the total longest path. The performance of each agent
in non-stationary environments is measured in round-robin
tournament [11], [16], except for the same agent-to-agent
match. Each agent will play 1000 games per match, including
match against B agent in 6 x 6 games.

D. RESULTS

1) PERFORMANCE OF LONGEST PATH APPROXIMATION IN
STATIONARY ENVIRONMENTS

In randomly generated stationary environments, the ratio of
approximated longest path to area by agent is shown in
Figure 5. First of all, we can see that the algorithm closest
to the backtracking search results is wall-following heuristic.
The pretrained approximation is also close to backtracking
and we can see that neural networks approximates the
longest path problem well enough, which is NP-hard
problem. Interestingly, the greedy approximation, which
has lower time complexity compared to other methods,
showed an approximate ratio of 0.9 or higher on all board
sizes. Other approximation methods shows relatively lower
performances.

However, the stationary environments generated during
the actual game play resulted in different outcomes. Wall-
following approximation had a higher rate of filling regions
than backtracking agents. This refers to the distribution
difference between the stationary environments generated
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TABLE 1. Results of the round-robin tournament in 6 x 6 grid.

Agent vsP vsG vsS vsM vsA vsRP vsRG

254 244 472 285 515 483
275 501 293 483 545
S - 417 208 393 370
M 95 92 183 - 141 420 464
A 192 217 290 498 - 525 535
RP 52 105 110 218 108 - 104
RG 62 47 114 183 96 80 -

T
=
\&}

104 165

from A agents and the stationary environments generated
from B agents. In other words, even though the stationary
environments generated by the B agent is lower in longest
path to area ratio compared to the A agent, the actual
remaining area is wider and the remaining longest path
is longer. Additionally, the single approximation results
were much higher than those of Fig 6. In 8 x 8 games,
the approximate ratio was higher than even the pretrained
approximation, as the S agent was well trained on stationary
environments generated by real games, but never learned
about randomly generated stationary environments. From
this experiment, we can see that the pretrained neural
network trained through the random stationary environments
generation algorithm shows relatively good performance.
However, some degradation from distribution differences
from stationary environments generated from real games
remains room for improvement.

2) RESULTS OF THE ROUND-ROBIN TOURNAMENT

The results of the round-robin tournament with the proposed
algorithm and the baseline algorithms are provided in
Tables 1, 2, 3 and 4. Each agent plays against the other
agents 1,000 times. The number of wins of each agent during
the tournament is presented. Note that the number of draws
can be obtained by subtracting the numbers of two agents’
wins from 1,000. The P agent recorded a higher number of
wins than the number of losses for all agents in 6 x 6 and
8 x 8 games, and the A agent recorded a higher number of wins
than the number of losses in 10 x 10 games. G agent achieved
slightly lower performance than P and A agent. The RP and
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TABLE 2. Results of the round-robin tournament in 8 x 8 grid.

Agent vsP vsG vsS vsM vsA vsRP vsRG

203 378 492 308 594 625

P

G - 315 496 262 612 595

S 222 203 - 418 205 508 509
M 134 196 265 - 172 546 559

A 287 314 379 576 - 663 661
RP 65 51 70 185 74 - 197
RG 49 63 81 195 62 174 -

TABLE 3. Results of the round-robin tournament in 10 x 10 grid.

Agent vsP vsG vsS vsM vsA vsRP vsRG

299 349 504 259 598 584
281 482 228 544 553
386 148 479 507
131 675 666

- 752 761
P 52 34 37 133 39 - 192
G 46 34 48 138 42 229 -

P )
G 197 -

S 218 197 -
M 194 192 290 -
A 399 401 473 593

TABLE 4. Winning percentages of each agent from the round-robin
tournament (without counting draws).

Agent On6x6 On8x8 Onl0x 10
P 77.690%  73.178% 70.100%
G 71.786%  70.622% 66.386%
S 57.675%  58.120% 56.695%
M 37.866%  44.214% 48.996%
A 66.617%  72.672% 79.957 %
RP 22.390%  17.170% 12.938%
RG 18.878%  16.552% 14.132%

TABLE 5. Results of games against the backtracking agent in 6 x 6 grid.

Agent Wins/Draws /Losses  Winning Percentage
P 99 /742 /159 38.372%
G 120/ 641 /239 33.426%
S 120/586 /294 33.426%
M 110/374/516 28.956%
A 167 /503 /330 33.602%
RP 871/402/511 14.548%
RG 737394 /533 12.046%

RG agent lost more times than winning in all matches. P agent
was defeated by A agent in 10 x 10 games because they used
almost the same model for the game board in all sizes. If the P
agent have a deeper model structure and can be trained from
the approximate results of the improved pretrained model,
it is expected to be able to win against the A agent, which
is a strong baseline.

3) RESULTS AGAINST BACKTRACKING AGENT

We also compare the performances of considered agents
against the backtracking agent which is trained with the
ground truth longest survival path only on 6 x 6 grid due to
its intrinsic complexity. The experimental results are shown
in Table 5. The winning percentage is calculated without
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FIGURE 7. Comparison of different algorithms in terms of the elapsed
time for each action.

taking draws into account. The proposed P agent showed
the highest winning percentage, and A agent showed higher
winning percentages compared to other agents except A
agent. G agent achieved slightly lower winning percentage
than A agent. On the other hand, the RP and the RG agents
showed the lowest winning percentage. This means that the
non-stationary agent certainly plays better when trained with
more accurate longest path approximation heuristic.

4) RUNTIME COMPLEXITY OF ALGORITHMS

Since Tron is a real-time game, the runtime complexity of
algorithms playing the game of Tron is a very important
factor. In order to analyze and compare the runtime com-
plexity of algorithms, we present the elapsed time of each
agent determines an action in Figure 7. It is readily verifiable
that the neural network agents and greedy approximation are
more time-efficient compared to the other algorithms. In non-
stationary states, agents using neural networks spent almost
the same amount of time to determine actions regardless of
grid size. In addition, the amount of elapsed time slightly
increases even when grid size increases to 10 x 10 thanks
to the parallel computation of GPU. On the other hand,
the elapsed time to determine an action of A agent and
M agent increases noticeably particularly in non-stationary
environments. Even in stationary environments, the elapsed
time of the wall-following heuristic increases much more
than the pretrained approximation. Obviously, the fastest
longest path approximation heuristic is greedy approximation
whose time complexity is linearly proportional to the number
of cells. Although the wall-following heuristic shows the
best approximation performance especially on larger grid,
the pretrained or greedy approximation can be competent
methods considering the time complexity of algorithms.
Considering the fact that Tron is normally implemented
on much larger grid sizes, the scalability of our algorithm
can be a huge advantage when deployed in real-time game
environment.

V. CONCLUSION
In this work, we propose a modular RL approach to solve
the game of Tron especially by decomposing a game into the
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first non-stationary phase and the second stationary phase.
We train two separate agents playing in the two phases to
reduce the training complexity of the game. We find that the
agent trained to play in a stationary state exhibits a competent
approximation performance for the longest path problem on
the grid graph, which is known to NP-complete, compared
to the other agents using various longest path approximation
heuristics. Especially, our approach demonstrates a better
performance against the alkOn algorithm, the Google Tron
Al Challenge winner, on 6 x 6 and 8 x 8 grids. On 10 x
10 grid, our approach does not reach the level of the alkOn
algorithm but shows potential in terms of computational
cost. We expect that the modular RL approach can be
effectively applied to many complicated real-life problems
or games, which can be seen as combinations of multiple
tasks to achieve the ultimate goals. We also believe that our
algorithm can be improved by training the agent playing
in stationary states by generating more realistic random
stationary states as we suspect that the main reason for
performance degradation is due to (observed) differences in
randomly generated stationary states and stationary states
encountered from real game plays. We leave the problem of
generating more realistic stationary states using generative
networks such as generative adversarial networks (GANs) or
variational autoencoders (VAESs) to train the stationary agent
better as a follow-up research idea.
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