
Received April 14, 2022, accepted May 9, 2022, date of publication May 16, 2022, date of current version June 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3175322

Optimal Mismatched Filter Design by Combining
Convex Optimization With Circular Algorithm
LING JIN , JU WANG , YI ZHONG , AND DUO WANG
School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Corresponding author: Ju Wang (wangju@bit.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61971043.

ABSTRACT Mismatched filters (MMF) have been intensively explored for linear-frequency modula-
tion (LFM)waveform sidelobe reduction. Unlike other design strategies, the use of convex optimization (CO)
techniques is able to find the optimal design. However, existing studies for CO-based MMF design have
focused on minimizing peak sidelobe level (PSL), which might not take the mainlobe widening sacrifice
into account. To address this issue, this paper proposes a weighted CO model targeting a flexible tradeoff
between sidelobe suppression and mainlobe widening. Moreover, to better control the optimization problem
via the presented CO model, the cyclic algorithm (CA) is employed to determine upper limits on mainlobe
width. Consequently, the proposed tradeoff MMF design by combining CA with CO would be feasible to
meet the requirements of different target detection scenarios. Comprehensive simulations have been carried
out to demonstrate the effectiveness of our presented MMF design.

INDEX TERMS Mismatched filter, convex optimization, cyclic algorithm, sidelobe suppression.

I. INTRODUCTION
Linear frequency modulation (LFM) signal is widely used in
the modern radar system. Since target detection performance
is often adversely affected by the uncertainty of the noise
power [1], matched filters (MF) are typically leveraged to
improve the signal-to-noise ratio (SNR) without increasing
the radar’s peak transmitted power [2]. However, high peak
sidelobe level (PSL) of MF output tends to cause masking
problems between strong and weak targets that come close.
Therefore, it is necessary to find a filter design method with
better sidelobe suppression performance. If a certain SNR
loss is allowed, a filter with better performance of sidelobe
suppression can be a candidate [3]. Since this filter has a
SNR loss comparedwith theMF, it is calledmismatched filter
(MMF). MMF has been extensively investigated in recent
studies.

Traditional design methods for MMF can be catego-
rized into two groups: window functions-based and least
squares (LS) estimation-based approaches. For the former
method, [4]–[6] apply classical weighting window func-
tions to the kernel of the MMF, such as Hamming, Kaiser,
or Taylor window functions. Although such methods can
suppress range sidelobes to a lower level compared with
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MF, the sidelobe level is still too high to meet the require-
ments in some applications [7]. To overcome the problem,
the combined window functions have been further pro-
posed [8]–[11]. Nevertheless, they may not be available to
control the mainlobe broadening and the SNR loss with
only few manually tunable parameters. For the latter method,
many studies have intensively investigated to suppress range
sidelobes, including least-squares MMF (LS-MMF) [12],
iteratively reweighted LS-MMF (IRLS-MMF) [13], diag-
onally weighted LS-MMF (DWLS-MMF) [14] and itera-
tive weighted LS-MMF (IWLS-MMF) [15]. In spite of the
ultra-low sidelobe level, these methods may lead to uncon-
trollable SNR loss.

Over the past few years, there has been considerable inter-
est in the use of optimization techniques, which has been used
in signal processing [16], machine learning [17], [18], wire-
less communication [19], etc. Since optimization technology
can effectively solve the problems mentioned above suffered
by traditional design methods, more recent research have
exploited optimization techniques to design MMF [20]–[32].
References [20] and [21] apply cyclic algorithm (CA) for
MMF design. By terminating the iterative process of CA,
the SNR loss and mainlobe broadening of MMF outputs can
be effectively controlled. However, CA may not guarantee a
globally optimal solution that cannot suppress the sidelobe
level to a minimumn [33]. In contrast to CA, CO has the
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advantage of obtaining the best result for the optimization
problem. Reference [24] prove that the problem of computing
the MMF in regard to the PSL can be formulated as a convex
optimization second-order cone programming (SOCP) prob-
lem. Based on SOCP, [23], [25] further solve the PSL problem
via a convex quadratically constrained quadratic program
(QCQP). References [29] and [30] use SOCP and QCQP
to jointly design the transmit waveform and MMF, respec-
tively. Reference [31] reduce the power of the interference
by using MMF based on SOCP. However, both QCQP and
SOCP for MMF design sacrifice the mainlobe widening to
minimize PSL, which would likely to deteriorate the range
resolution in target detection. Unfortunately, very few articles
take mainlobe width into account for CO-basedMMF design.
Although [32] applies CO with a specific constraint on main-
lobe width, this method may not achieve a flexible tradeoff
MMF performance between PSL and mainlobe widening.
Since the requirement for mainlobe widening varies on the
target detection scene, it is unreasonable to impose a fixed
value of the mainlobe width.

To tackle the above issue, this paper proposes an MMF
design method by combining circular algorithm and convex
optimization (CA-CO). Throughout the paper, we aim to
construct a CO model targeting a flexible trade-off between
PSL and mainlobe widening. First, we construct two CO
models that can minimize the PSL and mainlobe width,
respectively. Based on the two models, we then construct
a multicriterion CO model by means of linear weighting
to realize a flexible trade-off MMF performance between
PSL and mainlobe widening. Specifically, to better control
the optimization problem given in the proposed CO model,
a maximum allowable mainlobe width is obtained by CA.
Based on numerical simulation, we demonstrate that CA-CO
method can control the mainlobe width flexibly and have
good performance in the cases of multi-targets. For clarity,
we summarize our contributions as follows:

• An Optimal mismatched filter design method by com-
bining CO with CA is proposed. The performance of
coherent integration on the CA-CO MMF output is val-
idated by simulations.

• We construct a weighted CO model targeting a flexi-
ble tradeoff between sidelobe suppression and mainlobe
widening.

• To better control the maximal mainlobe widening sac-
rifice, CA is employed to determine upper limits on
mainlobe width.

The rest of this paper is organized as follows. In section II,
we introduce the signal model ofMMF. In section III, the pro-
posed CA-CO method are briefly introduced. The simulation
results and discussions are given in section IV. The conclusion
is presented in section V.

II. SIGNAL MODEL
The LFM signal is a widely used type of large time and band
product signal in radar systems [34]. Here, we give a general

model of MMF based on the LFM signal. The signal model
of the LFM transmitting signal is given as

s(t) = rect
(
t − Tp,Tp

)
· exp

[
jπK

(
t −

Tp
2

)2
]
(1)

rect
(
t,Tp

)
=


1, |t| ≤ Tp

2

0, |t| > Tp
2

(2)

where Tp is the pulsewidth,K = B/Tp is the rate of frequency
change, and B is the bandwidth.
Assuming that the pulse repetition interval (PRI) of the

transmitting signal is T and the sampling frequency is fs, the
number of samples for each pulse can be expressed as

N = T · fs. (3)

According to (1) and (3), the transmitting signal can be
expressed as follows:

s(n) = s(t)|t= n
fs
, n = 0, 1, . . . ,N − 1. (4)

Suppose that there is a point target p at a distance Rp from
the radar, its discrete baseband echo sr (n) with no noise and
interference can be represented as

sr (n) = σps
(
n− np

)
· exp

(
−j2π fcτp

)
n = 0, 1, . . . ,N − 1 (5)

where σp is the backscattering coefficient of the target, fc is
the carrier frequency, τp = Rp/c is the propagation delay
between the point target and the radar, and c is the speed of
light. np = τp · fs represents the number of samples sampled
at fs for τp. Then, the fast Fourier transform (FFT) of (5) is
computed, and we obtain

Sr (k) = σpS(k) · exp
(
−j

2πknp
N

)
· exp

(
−j2π fcτp

)
k = 0, 1, . . . ,N − 1 (6)

where S(k) denotes the FFT of s(n).
The received echos need to be processed by a filter. The

filter coefficients w are presented as follows:

w = [w(0),w(1), . . . ,w(N − 1)]T (7)

where [·]T denotes the transposition.
The FFT operation on w, the filter coefficients expression

W in the frequency domain, as below:

W = FFT{w}

= [W (0),W (1), . . . ,W (N − 1)]T . (8)

If W (k) = S∗(k), this filter is MF, where S∗(k) represents
the conjugate of S(k). The output of the filter can be written
as:

sw(n) = IFFT {Sr (k)W (k)}

= σpIFFT
{
S(k)W (k) · exp

(
−j

2πknp
N

)}
(9)
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· exp
(
−j2π fcτp

)
= σppsfw

(
n− np

)
· exp

(
−j2π fcτp

)
psfw(n) = IFFT{S(k)W (k)} (10)

where IFFT{} denotes the inverse FFT. We can infer from (9)
and (10) that the PSL and mainlobe width of MMF output
depend on psfw(n) merely. Therefore, we can design a MMF
based on psfw(n).

For convenience, (4) can be rewritten in matrix form as

s = [s0, s1, . . . , sN−1]T . (11)

The product of two signals in the frequency domain is
equivalent to their circular convolution in the time domain,
thus psfw is given as

psfw = 3(s) · w (12)

3(s) =



sN
2

sN
2 +1
· · · sN−1 s0 · · · sN

2 −1

sN
2 +1

sN
2 +2

. . . s0 s1
. . . sN

2
...

. . .
. . .

...
...

. . .
...

sN−1 s0
. . . sN

2 −2
sN
2 −1

. . . sN−2
s0 s1 · · · sN

2 −1
sN
2
· · · sN−1

s1 s2
. . . sN

2
sN
2 +1

. . . s0
...

. . .
. . .

...
...

. . .
...

sN
2 −1

sN
2

. . . sN−2 sN−1 · · · sN
2 −2



(13)

where3(s) is the circular convolution matrix of s. Whenw =
s∗, the output of psfw is the MF output, denoted by psfMF.
Therefore, the MF output can be written as:

psfMF = 3(s) · s
∗. (14)

When theMMF coefficient is defined aswMMF, the expres-
sion of MMF output is given by

psfMMF = 3(s) · wMMF. (15)

Compared to MF, the MMF may result in SNR loss.
However, the MMF obtain lower sidelobes at the price of
mainlobe widening under the fixed SNR loss condition. In the
following, we use the above signal model to design the MMF.

III. CA-CO FOR THE MMF DESIGN
In this section, we first consider the output of CA, which is
used as the input and mainlobe width constraint of this CO
model. After that, we consider a multicriterion CO model
to flexibly control the trade-off between PSL and mainlobe
widening.

A. CIRCULAR ALGORITHM
Without considering the SNR loss of the MMF, the ideal
MMF output psfideal can be written as [20]:

psfideal = m� psfMF (16)

where� is the Hadamard product.m is a group of weighting
coefficients, which are expressed as follows:

m = [m(0),m(1), . . . ,m(k), . . . ,m(N − 1)]T

m(k) =

{
1, k ∈ mainlobe
0, k ∈ others .

(17)

According to (15), the ideal MMF output can be obtained:

psfideal = 3(s) · wMMF. (18)

Thus, wMMF can be solved from the psfideal and 3(s).
Considering that 3(s) is not necessarily non-singular, only
the least square solution of equation (18) can be found. The
least square solution of equation (18) can be written as:

wLS =

[
3(s)H3(s)+ σ IN

]−1
3(s)Hpsfideal (19)

where [·]H denotes theHermitian transpose and σ IN is a diag-
onal loading term that is needed to prevent ill-conditioning.
Since 3(s) is a Hankel matrix, many fast algorithms can be
used to accelerate matrix multiplication and inverse opera-
tions, such as divide-and-conquer (DC) algorithm and par-
allel structured matrix multiplication algorithm (PSMMA)
when the dimension of3(s) is large. Because the least square
method may result in a large SNR loss, it is necessary to
add a constraint to wLS. The constraint of wLS in CA is that
the MMF coefficients wLS outside the transmitting signal
bandwidth are set to s∗. Thus, we can obtain the expression
of the MMF coefficients after adding a constraint:

wr = F−1(dNinFwLS + dNoutFs
∗) (20)

where F is the N-point DFT matrix:

F =


1 1 · · · 1
1 W 1

N · · · WN−1
N

...
...

. . .
...

1 WN−1
N · · · W (N−1)(N−1)

N


W k
N = exp(−j 2πN k).

(21)

F−1 is the N-point IDFTmatrix. dNin and d
N
out are two diago-

nal matrices with dimensionN×N , respectively. In the diago-
nal position of dNin, we set 1 for the corresponding positions of
the points within the transmitting signal bandwidth and 0 for
others. Conversely, we set 1 for the corresponding positions
of the points outside the transmitting signal bandwidth and
0 for others on the diagonal of dNout.
In terms of wr, current MMF output is given as

ȳMMF = 3(s)wr. (22)

Then, we get the output of the new ideal MMF based on
ȳMMF, which can be expressed as

yopt = m� yMMF. (23)

After that, we can replace psfideal with yopt and a new
wLS can be obtained. Finally the desired coefficients of the
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MMF can be achieved by repeat the aforementioned process
iteratively. TheMMF coefficientswi+1

r after i-th iteration can
be written as below:

wi+1
r = F−1

[
dNinF

(
3(s)H3(s)+ σ IN

)−1
3(s)Hdim3(s)w

i
r + dNout Fs

∗

]
(24)

ȳiMMF = 3(s)w
i
r (25)

where dim is a diagonal matrix defined by m, i denotes the
result of the i-th iteration, ȳiMMF is CA output of ith iteration.
When i = 1, w1

r = wr.
As the number of iterations increases, CA will cause the

mainlobe to widen gradually. Thus, we can flexibly control
the mainlobe width of CA result through iterations number.
In different target detection scenarios, we can control the
mainlobewidth of CA output to satisfy different requirements
of the upper limit of mainlobe widening by changing itera-
tions number. Because of this feature, it is suitable for CA
to be used as the upper limit of mainlobe widening in the
CO model. After calculating the number of sampling points
within the 3dB mainlobe width (the width of the mainlobe at
3 dB below the mainlobe peak) based on the desired range
resolution and sampling rate, we give a stopping criterion
as [20]:

ML3dB(ȳiMMF) ≤ ε (26)

where ML3dB(ȳiMMF) represents the 3dB mainlobe width
of the i-th iterated MMF output, and ε is the number
of sampling points within the 3dB mainlobe width. When
ML3dB(ȳiMMF) > ε, the iteration stops. Suppose that the
iteration stopping criterion is satisfied when i = λ, the initial
CA-CO MMF coefficients designed by CA is wCA = wλr .
Thus, the initial MMF output designed by CA can be given
as:

yCA = 3(s)wCA (27)

where yCA is the output of CA. Thus, the output of CA is
suitable to be the mainlobe constraint of the CO model.

B. CONVEX OPTIMIZATION
Since the mainlobe width of the CA output can be affected
by the stop criterion, CA can control the sacrifice of the
mainlobe to a certain extent. However, CAmay not guarantee
a globally optimal solution under the iteration stop condition.
Hence, in this subsection, we propose a modified CO method
to design MMF, which can control the trade-off between PSL
and mainlobe widening in the following. CA output is used as
the mainlobe width constraint of this CO model. Meanwhile,
based on the position of the sidelobe and mainlobe of the CA
output yCA, the optimized mismatched filter output is divided
into the sidelobe optimization region and the mainlobe opti-
mization region. Next, we formulate the convex optimization
model of the PSL and mainlobe width for the MMF and
add some specific constraints to improve the properties of
the MMF.

1) PSL CONVEX OPTIMIZATION MODEL
The sidelobe suppression ability of the MMF can be reflected
by the PSL. The lower PSL, the stronger the sidelobe suppres-
sion ability of theMMF. Therefore, the problem of improving
the sidelobe suppression ability of theMMF can be converted
to the problem ofminimizing the PSL of theMMF. Therefore,
an optimization model can be obtained:

min
w

∥∥dCA_SL3(s)w∥∥∞ (28)

s.t. sTw = sT s∗.

The optimized vectorw is theMMF coefficients. dCA_SL is
a diagonal matrix of ones except for some zero values which
correspond to the yCA mainlobe position. ‖x‖∞ represents
the the infinity norm of vector x. The constraint condition
is the peak constraint of the MMF output and prevents the
optimization vector w from being zero.

Because the matched filter maximizes the SNR at the peak
response, any other filter will result in a loss in process
gain (LPG) at the peak response. Compared with matched
filters, LPG will bring SNR loss. LPG is defined as the ratio
of the SNR gain of the MMF to the SNR gain of the MF, the
expression is as follows [27]:

LPG = 10 log10

(
SNRMM

SNRM

)
= 10 log10

((
sTw

) (
sTw

)H
/σ 2

n
(
wHw

)(
sT s∗

) (
sT s∗

)
/σ 2

n
(
sT s∗

) )

= 10 log10

( ∣∣sTw∣∣2(
wHw

) (
sT s∗

)) (29)

where SNRMM is the SNR gain of the MMF, SNRM is the
SNR gain of theMF, and σn is the variance of the noise. Incor-
porating the constraints in equation (28) into equation (29),
we can get:

LPG = 10 log10

(
sT s∗

wHw

)
. (30)

According to the definition of LPG, the larger LPG is, the
larger the SNR gain of the MMF is. Since the SNR gain of
the MF must be greater than that of the MMF, the LPG is
always negative. Let LPG ≥ −10 log10(η) = 10 log10

(
1
η

)
,

here η > 1. Then we can get an LPG constraint for MMF:

LPG ≥ 10 log10

(
1
η

)
⇔ wHw ≤ η

(
sT s∗

)
. (31)

In order to prevent excessive SNR loss of the optimized
MMF, we need to limit the LPG of the MMF. The LPG
constraints are added into (28). The equivalent optimization
model (32) can be obtain:

min
w

∥∥dCA_SL 3(s)w∥∥∞
s.t. sTw = sT s∗
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wHw ≤ η
(
sT s∗

)
. (32)

The COmodel (32) minimizes the PSL ofMMF output and
limited the peak value and the LPG of MMF.

2) MAINLOBE CONVEX OPTIMIZATION MODEL
The MMF causes the mainlobe widening of the output while
reducing the sidelobe level of the output. However, the main-
lobe width of the MMF output affects the range resolution
of the radar. Therefore, it is expected that the mainlobe of the
mismatch filter output is as close as possible to theMF output.
Therefore, optimization model (33) can be obtained:

min
w

∥∥dCA_ML3(s)w− dMFpsfMF
∥∥
p

s.t. sTw = sT s∗

wHw ≤ η
(
sTs∗

)
. (33)

Here, dCA_ML is the identity matrix minus dCA_SL . The
diagonal value of dCA_ML is 1 in the position of the yCA
mainlobe, and 0 in the rest positions. dMF is a diagonal
matrix with the value of the diagonal elements is 1 or 0.
The diagonal value of dMF is 1 in the position of the psfMF
mainlobe, and 0 in the rest positions. ‖x‖p is the p-norm of
the vector x. The p-norm value of the difference between
the mainlobe of the MMF and MF output is used to indicate
similar degree. Minimize the value of p norm to achieve the
effect of optimizing the mainlobe of the MMF output. The
PSL and the LPG of MMF are constrained to the desired
values.

3) MULTICRITERION CONVEX OPTIMIZATION MODEL
The optimization problem (32) can be optimized to obtain a
lower PSL at the price of mainlobe widening. In the same
way, the optimization problem (33) can be optimized to
obtain a narrow mainlobe width at the price of high PSL.
Therefore, it is necessary to formulate a convex optimization
model to control the trade-off between PSL and mainlobe
widening. We formulate a multicriterion convex optimiza-
tionmodel utilizing non-negative linear weighted summation.
fSL(w) and fML(w) are used to represent the sidelobe convex
optimization function and the mainlobe convex optimization
function respectively, where the function expression is:

fSL(w) =
∥∥dCA_SL3(s)w∥∥∞ (34)

fML(w) =
∥∥dCA_ML3(s)w− dMFpsfMF

∥∥
p . (35)

Through linear weighting, we get a new optimization
model (36):

min
w

αfSL (w)+ βfML (w)

s.t. sTw = sTs∗

wHw ≤ η(sT s∗) (36)

where α and β are weighting factors that determine the PSL
and mainlobe width of MMF output. It is worth noting that
the trade-off design is in fact a Pareto optimization [35].

By solving the problem (36), we can bring our solution to
the Pareto optimal point. where α and β need to satisfy:

α + β = 1α ≥ 0, β ≥ 0. (37)

When the value of α is too high, it will cause the large
sacrifice of the mainlobe widening. To solve this problem,
it is necessary to limit the mainlobe width of the optimization
result. To facilitate the construction of the mainlobe width
constraint, we use the time-delay resolution constant of
the mainlobe to reflect the mainlobe width [36]. Aopt_main
and ACA_main denote the time-delay resolution constant of
CA-CO MMF mainlobe and that of CA result respectively.
Aopt_main and ACA_main are written as:

Aopt_main =

∥∥dCA_ML 3(s)w
∥∥
2

abs
(
sTs∗

) (38)

ACA_main =

∥∥dCA_ML 3(s)wCA
∥∥
2

abs
(
sTwCA

) (39)

where abs(·) represents the absolute value, abs
(
sTs∗

)
repre-

sents the peak value of the MMF output after optimization,
abs

(
sTwCA

)
represents the peak value of the MMF output

designed by the CA method.
The mainlobe width can be limited by Aopt_main ≤

ACA_main. Therefore, the optimization model can be
obtained (40):

min
w

αfSL (w)+ βfML (w)

s.t. sTw = sTs∗

wHw ≤ η
(
sTs∗

)
∥∥dCA_ML 3(s)w

∥∥
2

abs
(
sTs∗

) ≤

∥∥dCA_ML 3(s)wCA
∥∥
2

abs
(
sTwCA

) .

(40)

When the value of β is too high, it will cause the large
sacrifice of a high sidelobe level. To solve this problem,
it is necessary to limit the sidelobe level of the optimization
result. So the sidelobe level constraint may be added that the
sidelobe level of the MMF output is lower than the sidelobe
level of the CA result. Therefore, the optimization model can
be obtained (41):

min
w

αfSL (w)+ βfML (w)

s.t. sTw = sT s∗

wHw ≤ η
(
sTs∗

)
∥∥dCA_ML 3(s)w

∥∥
2

abs
(
sTs∗

) ≤

∥∥dCA_ML 3(s)wCA
∥∥
2

abs
(
sTwCA

)
abs

(
dCA_SL 3(s)w

)
[i]

abs
(
sTs∗

) ≤
abs

(
dCA_SL 3(s)wCA

)
[i]

abs
(
sTwCA

)
(41)

where [i] represents the i-th element of the vector.
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The CVX toolbox of Matlab was used to solve the opti-
mization problem (41), andMMF coefficientwwas obtained.
Thus, the CA-CO can be summarized as follows:

Algorithm 1 CA-CO for MMF Design
Input: Weighting coefficient:α,β

Mainlobe width limitation of CA method:ε
MF output:psfMF
Ideal MF output:psfideal
Allowable LPG:η

Output: MMF coefficient:wMMF
Processing:

Step1:
get CA result based on ε:
Initialize:psfnew← psfideal

ȳMMF← psfideal
WhileML3dB(ȳMMF) ≤ ε do

wLS← psfnew depended on (19)
Limit wLS to get wr
ȳMMF = 3(s)wr
According to ȳMMF to get m
psfnew = m� ȳMMF

end
wCA← wr
CA result: yCA← 3(s)wCA

Step2:
formulate CO model combined with CA :
based on yCA sidelobe and mainlobe positions:
{dCA_SL,dCA_ML} ← yCA

based on psfMF mainloe position:
dMF← yCA

formulate multicriterion CO function :
αfSL(w)+ βfML(w)
fSL(w) =

∥∥dCA_SL3(s)w∥∥∞
fML(w) =

∥∥dCA_ML3(s)w− dMFpsfMF
∥∥
p

add constraints :
• peak level constraint;
• LPG constraint based on η;
• mainlobe constraint based on yCA;
• sidelobe constraint based on yCA;

Step3:
use CVX toolbox gets:

MMF coefficient: wMMF
return wMMF;

Based on the above description, it is clear that a CO model
which has a flexible trade-off between mainlobe widening
and PSL is formulated. Meanwhile, we take advantage of the
feature that CA can limit the mainlobe width and take the
results of CA as the constraint condition of the model to con-
trol themaximum allowablemainlobewidening sacrifice.The
MMF coefficients can be achieved by solving this the CO
model.

TABLE 1. Signal parameters.

IV. SIMULATION AND ANALYSIS
A. MMF PERFORMANCE INDICATORS
In order to evaluate the performance of the MMF, this paper
evaluates the performance of the filter from three aspects:
mainlobe widening ratio(MWR), PSLR, and LPG. LPG is
defined by (29). Definitions ofMWR, PSLR are given below:

MWR of the MMF is defined as the ratio of the null-
to-null mainlobe width of MMF output and the null-to-null
mainlobe width of MF width [21]. The expression for MWR
is as follows:

MWR =
MLMMF

MLMF
(42)

where MLMMF is the null-to-null mainlobe width of the
MMF, and MLMF is the null-to-null mainlobe width of
the MF.

PSLR of the MMF is defined as the ratio of the maximum
absolute value of the sidelobe to the peak value of the main-
lobe, and the expression is

PSLR =
max

∣∣yMMF · dN
∣∣

max |yMMF|
(43)

where yMMF denotes the output of theMMF and dN is aN×N
diagonal matrix with the position of the mainlobe being 0 and
the position of the sidelobe being 1.

B. THE PERFORMANCE OF CA-CO MMF
LFM signal is used for simulation, signal parameters are
listed in Table 1.

The linear weighting factors are set as α = 0.95 and β =
0.05, LPG is set as η = −1. Assume that themaximum allow-
able range resolution is 18 m, the value of ε is 12. Under the
condition of (26), the number of iterations of the CA method
is 4. Fig. 1 shows the MF output, CA result, and CA-CO
MMF output. It can be inferred from Fig. 1 that CA-CO
MMF has a good sidelobe suppression ability. Compared to
the CA result which is use as maximum allowable mainlobe
widening constraint, it can be easily found that CA-COMMF
output has lower PSL and narrower mainlobe width. To better
understand the CA-CO MMF on a fundamental level, Fig. 2
shows the time domain diagram and the frequency domain
diagram of the CA-CO MMF.

Based on the discussion in Section III, the number of
CA iterations determines the maximum allowable mainlobe
widening sacrifice in the CO model. Next, the effect of itera-
tions number on the CA-CO MMF output is analyzed below.
The results of the CA iterating 2, 3, and 4 times, respectively,
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FIGURE 1. MF output,CA result and CA-CO MMF output.

FIGURE 2. (a) The time domain of the CA-CO MMF, (b) the frequency
domain of the CA-CO MMF.

are used as the constraints of the CA-CO MMF. The results
are shown in Fig. 3. The MWR, PSLR of the CA-CO MMF
output are shown in Table 2 under different iterations num-
bers. We can conclude that the fewer the number of iterations,
the smaller the mainlobe width and the larger the PSLR of
CA-CO MMF output.

We can flexibly control the trade-off between the PSL and
mainlobe widening by selecting the values of α and β. In the
case of 4 iterations, α takes 10 values in [0, 1]. Fig. 4 shows
the PSLR and the mainlobe width of the CA-COMMF output
with respect to 10 sets of α and β. It can be seen that when
the value of α is larger, the ability of sidelobe suppression
is stronger, and the mainlobe widening is larger. In contrast,
when the value of β is larger, the ability of sidelobe suppres-
sion is weaker, and the mainlobe widening is smaller. When
α is smaller than 0.7, the PSLR of the CA-COMMF remains
at -32dB because of the sidelobe level constraint based on the
CA result in the CO model. The PSLR and MWR of CA-CO
MMF output are listed in Table 3 with 5 groups of α and β.
The CA-CO MMF output is shown in Fig. 4.
From the above analysis, we conclude that it is able to

control the mainlobe widening sacrifice by selecting both
CA iteration times and the value of α and β. Under the
condition that α and β are constant, the mainlobe width of the
CA-CO MMF output decreases with the decreasing iteration
times. Under the condition of the fixed maximum mainlobe
widening loss, the CA-COMMFmainlobewidening sacrifice
decreases as β increases.

TABLE 2. MWR and PSLR of CA-CO MMF output under different iterations.

FIGURE 3. MMF output in different iterations under condition
α = 0.95, β = 0.05.

FIGURE 4. PSLR and MWR of CA-CO MMF output for 10 sets of α and β
values.

In Fig. 6, the MMF performance comparisons are also per-
formed among CA-CO, CA, and CO. In the legend, it is noted
that CA4-CO indicates CA-CO MMF based on 4 CA itera-
tions; CA1-CO indicates CA-CO MMF based on 1 CA itera-
tion; CA10000 indicates CA based on ten thousand iterations;
CA1 indicates CA based on 1 iteration. From Table 4, we can
see that the LPG of MMF outputs designed by CA4-CO,
CA10000, and CO is the same. However, compared with
MMF outputs of CA10000 and CO, CA4-CO MMF output
has the lowest PSLR, while MWR of it is much smaller than
CA MMF output and slightly larger than MWR of CO MMF
output. Although the COMMFoutput has the smallestMWR,
CA-CO can adjust the number of CA iterations and weighting
coefficients to achieve the same WMR as CO MMF output,
such as CA1-CO MMF output. Similarly, CA can also adjust
the iterations number to control the WMR, such as CA1, but
its PSLR is much larger than CA1-CO MMF output because
of higher LPG. Unfortunately, for CA MMF output, we can-
not effectively control LPG to obtain lower PSLR without
changing WMR. In general, the CA-CO can flexibly control
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TABLE 3. PSLR and MWR of the CA-CO MMF output for different values
of α and β.

FIGURE 5. CA-CO MMF output designed by different groups of α and β
values.

a flexible trade-off between PSL and mainlobe widening and
obtain the global optimal solution.

C. TARGET DETECTION BY CA-CO MMF
In this subsection, the coherent integration results of the
CA-CO MMF output in the multi-target scenario are
discussed below. In this scenario, the number of moving
targets is five, and the target parameters are listed in Table 5.
The number of integrated pulses is 1024, and the Radon-
Fourier transform (RFT) algorithm is used for coherent
integration [37].

Figs. 7a-7f show the results of coherent integration in
multi-targets scenario of the true scene, MF, CA-CO MMF,
COMMF, CAMMF, and the range dimension result with the
velocity of 120 m/s in the absence of noise. From Fig. 7a,
there are 5 targets are shown clearly. However, after matched
filtering, the small targets are masked by the high range
sidelobes of large targets, as shown in Fig. 7b. Fig. 7c shows
that CA-COMMF can suppress the range sidelobes, and five
targets can be detected. We can see from Fig. 7d that T3
cannot be detected from the CO MMF results, because of
the high PSLR. Fig. 7e shows the CA MMF result under
ten thousand iterations. It can be seen from Fig. 7e that T2
cannot be detected easily, which demonstrates that the range
resolution of the CAMMF result is lower than that of CA-CO
MMF result. It can be clearly seen from Fig. 7d that there
are five targets in the range dimension of CO-MMF coherent
integration result with the velocity of 120 m/s. Unfortunately,
five targets cannot all be detected in CA MMF output and
CO MMF output due to large mainlobe widening and high
PSLR, respectively. The target detection results are listed in
Table 6 by measuring the result of coherent integration for
CA-CO MMF output. The target detection results show that

FIGURE 6. MMF output designed by CA4-CO(α = 0.95, β = 0.05),
CA1-CO(α = 0.67,β = 0.33), CA10000, CA1 and CO.

TABLE 4. Performance of MMF output designed by CA-CO, CA and CO.

TABLE 5. Target parameters.

TABLE 6. Target detection results after coherent integration of CA-CO
MMF in the absence of noise.

CA-CO MMF can correctly detect target range and velocity
information and result in less peak loss.

Next, we consider the presence of noise in the received
signal. Figs. 8a-8d show the results of coherent integration in
multi-targets scenario of true scene, CA-CO MMF, MF and
the range dimension in velocity is 120 m/s in the presence of
noise with SNR = −2dB. After calculation, the SNR of the
CA-CO MMF output is 10log10(BTp) + η = 15.98dB. The
gain of coherent integration is 30.1dB. Therefore, the total
gain of echo signal after mismatched filtering and coherent
integration is 46.08dB. Therefore, the ideal normalized noise
base after coherent integration is -44.08dB. After calculation,

56770 VOLUME 10, 2022



L. Jin et al.: Optimal Mismatched Filter Design by Combining Convex Optimization With Circular Algorithm

FIGURE 7. Results of RFT coherent integration at 120m/s velocity in
multi-targets scenario.(a) true scene; (b) MF; (c) CA-CO MMF; (d) CO
MMF; (e) CA MMF; (f) v=120m/s, CA-CO, CO and CA MMF output in the
range dimension.

FIGURE 8. Results of RFT coherent integration at 120m/s velocity in
multi-targets scenario at SNR=-2dB.(a) true scene;(b) CA-CO MMF; (c) MF;
(d) v=120m/s, CA-CO MMF and MF output in the range dimension.

the actual normalized noise base after coherent integration
is -43.68dB. It is basically consistent with the theoretical
noise base. It can be seen from Fig. 8 that the CA-CO MMF
results in less SNR loss and detect the target position well.
The target detection results are listed in Table 7 by mea-
suring the result of coherent integration for CA-CO MMF
output. The target detection results are basically consistent
in the presence and absence of noise.

TABLE 7. Target detection results after coherent integration of CA-CO
MMF in the presence of noise.

V. CONCLUSION
In this paper, a CA-CO MMF design method for the LFM
signal was proposed. First of all, we proposed that the CA
result may be suitable to be the mainlobe widening constraint
because it has the feature that themainlobe of the result can be
controlled by iteration numbers. Then, two CO models were
formulated to respectively optimize the PSL and mainlobe
width. We further designed the MMF via a weighted CO
model under both LPG and the maximum allowable main-
lobe widening sacrifice constraints, which achieve a flexible
trade-off between PSL and mainlobe widening. Numeri-
cal results showed that the proposed CA-CO MMF design
method can control the mainlobe by weighted coefficients
and CA iteration times. Finally, the performance of coherent
integration on the CA-CO MMF output was validated by
simulations. Simulations showed that accurate information
about the velocity and range of the target can be obtained.

Although the proposed CA-CO MMF design method has
a good performance for LFM signal with a fixed carrier
frequency, it is not suitable for the LFM signal with carrier
frequency agility. The MMF design method for LFM signal
with carrier frequency agility will be considered in our future
work.
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