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ABSTRACT In the process of project implementation, the deviation usually exists between the actual
scheduling process and the predefined schedule. A typical situation is that the project cannot be executed
according to the generated schedule due to the uncertainty of resource supply. In this case, it is necessary
to adjust the schedule to achieve the lowest possible cost and the shortest possible duration. This paper
studies the reactive scheduling problem under the condition of resource uncertainty. Under the constraints
of precedence relationship and resources, a novel bi-objective reactive project scheduling problem with
the objectives of minimizing project duration and minimizing adjustment cost is proposed. Besides, the
regret-based biased random sampling heuristic algorithm (RBRSA), a heuristic algorithm based on multiple
priority rules, is presented to solve the presented bi-objective reactive scheduling problem. In addition,
the advantages and disadvantages of the priority rules thus retained are compared. Moreover, we further
investigate the combinations of different parameter values of RBRSA and schedule generating schemes
(SGS). When the parameter value is set at an appropriate value, the priority rules LST and LFT are the
best two in RBRSA if the serial scheduling generation scheme (SSGS) is adopted. When the priority rules
of LST or LFT are adopted in RBRSA, the parameter values of RBRSA should be set at other values if
the parallel scheduling generation scheme (PSGS) is adopted. Computational experiments show that the
presented bi-objective reactive project scheduling method is efficient and practical.

INDEX TERMS Project scheduling, reactive scheduling, heuristic algorithm, multi-objective optimization.

I. INTRODUCTION

In the process of project execution, the actual implemen-
tation is hardly consistent with the baseline schedule gen-
erated before the project starts. Due to the interference
of various external uncertain factors, deviations frequently
occur between the actual execution processes and the base-
line schedule. With the development of project manage-
ment, we have found that the proposed method can be more
practical and closer to the actual situation of project exe-
cution when considering deviations. In recent years, there-
fore, the uncertain resource-constrained project scheduling
problem has attracted widespread attention [1], which usu-
ally includes two types: 1) the resource-constrained project
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proactive scheduling problem and 2) the resource-constrained
project reactive scheduling problem (RCPRSP). To address
the former, a robust baseline schedule is generated prior to the
start of the project, taking into account the numerous uncer-
tain factors that may arise. Therefore, the baseline schedule
does not need to be modified or amended as little as possible
when a disturbance occurs. But for the latter, the baseline
schedule that has been generated by the project managers
must be adjusted in the implementation with some nonneg-
ligible interference factors [2]. Consequently, proactive and
reactive scheduling occur at different stages of the project.
Proactive scheduling occurs before the project starts to obtain
a more stable baseline schedule. Reactive scheduling occurs
in the process of project implementation because of its quick
response to interference. However, in the practice of project
management, even if the proactive scheduling generates a
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highly robust baseline schedule considering various possible
uncertainties in advance, project leaders may still be unable
to implement the baseline schedule as expected due to various
disturbances. In this paper, the above dilemma can be solved
by reactive scheduling because of its quick response ability.
Therefore, as an important control tool in project implemen-
tation, reactive scheduling has broad application prospects.

At present, the reactive scheduling can be divided into
two categories. One is the repair scheduling, which refers
to the method that can quickly restore scheduling in the
case of external interference. Although the right shift method
is the simplest repair scheduling method for its intuition,
disadvantages still can be found to some extent, and thus the
right shift method cannot meet the expectations. The other is
the pure rescheduling, that is, when the external disturbance
factors make the baseline schedule infeasible, the remaining
unfinished activities after the disturbance time will be entirely
rescheduled. Compared to proactive scheduling, there are
relatively few studies on reactive scheduling. Nevertheless,
in recent years, a host of pure rescheduling strategies or
methods have been proposed, such as the minimum inter-
ference strategy, the scheduling method based on priority
rules, and the minimum delay costs [3]. Furthermore, reactive
scheduling can be noticed in many scheduling territories,
such as manufacturing [4], machine scheduling [5], and vir-
tual cloud scheduling [6]. With the increasing development of
management, a variety of fundamental methods for RCPRSP
have been put forward by researchers. From the available
literature, the studies of RCPRSP concentrate on constructing
models for different application scenarios and developing
an efficient solution. In the existing studies on RCPRSP,
many algorithms have been designed by researchers to solve
the reactive scheduling models which have been constructed
to reach a maximum or minimum objective function under
the condition of satisfying the constraints of resources and
precedence relationship, including accurate algorithms [7],
heuristic algorithms [8], and intelligent optimization algo-
rithms [9], [10].

The minimum interference strategy indicates that the key
of RCPRSP is how to achieve ‘“‘ex-post stability” of the
scheduling. That is, the total deviation between the regen-
erated schedule and the baseline schedule is the lowest [3].
Most existing literature employs the adjustment cost of sched-
ule start time (}_;cy @;ls? — s?]) to represent this total devi-
ation, for an activity i € N, w; is the weight, sf’ is the
start time in the baseline schedule, s? is the start time in
the schedule regenerated after time g when the availability
of resources varies. Van de Vonder et al. [10], [11] stud-
ied the single-mode proactive-reactive scheduling problem
with the objective of minimizing the total weighted deviation
of the activity start time between the baseline schedule and
the regenerated schedule when activities were interrupted.
Besides, the robust parallel and serial scheduling generation
schemes were proposed to repair or re-optimize the baseline
scheduling. In order to maximize the stability of baseline
scheduling under the continuous change of activity duration,
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Deblaere et al. [12] proposed an effective schedule repair
procedure to minimize the cost of schedule stability (defined
as the adjustment cost of schedule start time), which saves
various types of cost produced by the delay in the start
time of each activity. Lambrechts et al. [2] focused on the
reactive scheduling problem in the case of resource inter-
ruption interference with the objective of minimizing the
adjustment cost, and they argued that the combination of the
protection of the baseline scheduling and intelligent repair
scheduling can effectively improve the scheduling perfor-
mance. Delgoshaei et al. [13] concentrated on multi-mode
resource constraint project scheduling problems (MRCPSPs)
with preemptive resources to maximize the net present value
of the MRCPSPs, and they presented a new forward pro-
gramming heuristic for modifying an over-allocated sched-
ule. Although most objectives of RCPRSP are to minimize
the adjustment cost of the activity times, there are some
objectives of RCPRSP that consider both the adjustment
cost of the activity times and other costs. Kuster et al. [14]
put forward a new local rescheduling method for scheduling
suspended in actual management by considering the weighted
sum of project delay cost, activity execution cost, and adjust-
ment cost of the activity times. Considering the project dura-
tion in scheduling targets, Chakrabortty et al. [15] restored
interrupted schedules by exploring the RCPRSP in two
utility scenarios: ‘“‘preemption-repetition” and *“‘preemption-
recovery”’. Wang et al. [9] constructed a reactive scheduling
sub-model for the reactive scheduling problem of resource
disruption that included the additional cost and decreased cost
caused by the variation of activity duration in the scheduling
objective. Considering the activity modes, time buffers, and
activity start times, Ning et al. [16] aimed to minimize the
contractor’s maximal cumulative gap between cash outflows
and cash inflows to generate a robust baseline schedule.
In addition, Elloumi et al. [17] addressed the multi-objective
reactive project scheduling problem under different resource
requirements and activity durations and took the minimum
project duration and the lowest adjustment cost as the two
scheduling objectives. Tirkolaee er al. [18] developed a
non-linear programming model to address the multi-objective
multi-mode resource-constrained project scheduling prob-
lem in payment planning. Also, it adopted NPV maximiza-
tion and project duration minimization as the scheduling
aims, considering renewable resources and non-renewable
resources.From the above mentioned, the current studies of
RCPRSP mainly focus on the single-objective problem when
considering the change in activity duration, while studies
on the multi-objective RCPRSP considering resource uncer-
tainty is still relatively scarce.

To solve RCPRSP, many algorithms have been proposed
in the existing literature, considering the above uncertainties
and deficiencies. These algorithms include exact algorithms,
heuristic algorithms, intelligent optimization algorithms, and
so on. Besides, extensive studies on the algorithms has been
conducted for solving the single-objective RCPRSP with
uncertainty of activity duration in the process of project
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execution. Deblaere et al. [12] proposed three heuristic algo-
rithms based on integer programming which can be used
to obtain the lower bound of scheduling stability cost
and provide an effective progress recovery schedule. Later,
Deblaere et al. [7] introduced the branch and bound algo-
rithm and the iterative deepening algorithm (IDA). The IDA is
a tree-based optimal search technology related to optimal pri-
ority search. These two algorithms improved the stability of
the baseline schedule by creating a new reactive schedule for
which the authors combined the advantages of IDA and other
algorithms. Elloumi et al. [8] designed level heuristic (LH),
hurried slipping window method (HSWM) and lexicographic
regret based on heuristic (LRBH) algorithms to provide a
feasible schedule. It is proved that the LRBH algorithm is
the best than the LH and HSWM in the aspects of generating
feasible solutions and reducing deviations. In an effort to
select and determine the optimal scheduling strategy, God-
inho and Branco [19] developed an electromagnetic heuristic
algorithm by putting forward a self-adaptive model. Further-
more, Rahman et al. [20] presented a real-time reactive meta-
heuristic algorithm equipped with IGFBI (defined as IGFBI
for this algorithm uses a forward-backward improvement
strategy to improve the computing ability of an intelligent
genetic algorithm), which can be conducive to conducting the
posterior evaluation of the project progress. And it has been
verified that this method is superior to the right-shift method.
In order to solve the RCPRSP under resource uncertainty
in project progress, Lambrechts et al. [2] constructed the
model by transforming the uncertainty into the resource avail-
ability affected by unforeseen faults. And they put forward
a tabu search heuristic algorithm based on priority rules to
minimize the instability cost and generate a stable schedule.
Chakrabortty et al. [21] suggested two algorithms in the sce-
narios of ‘““preemption-recovery” and “‘preemption-repeat”
for dealing with the mixed integer programming models of
RCPRSP. Chakrabortty et al. [22] proposed an enhanced iter-
ative greedy algorithm that can effectively solve benchmark
instances with more activities, and they developed an event
based reactive approach (EBRA), which has proved effective
in reducing computational complexity. In response to other
uncertainties, Suwa et al. [23] presented a “degree of project
progress” reactive project scheduling method. And it is
shown that the generation and implementation of the revision
schedule are more effective than both the event-driven deci-
sion method and the periodic rescheduling method from the
perspectives of performance measurement and revision cost.
In multi-objective scheduling, Zhang et al. [24] concentrated
on the uncertainty of scheduling plan adjustment caused by
the failure of renewable resources, duration delay, and ran-
dom insertion of new projects. Furthermore, to address the
bi-objective reactive scheduling problem, the multi-objective
particle swarm optimization algorithm was presented with
two objectives, namely, minimizing the total loss caused by
the start time delay and minimizing the sum of the weighted
project duration. Elloumi et al. [17] proposed the careful slip-
ping window method (CSWM) and the multi-objective evolu-
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tionary algorithm (MOEA) to solve the bi-objective RCPRSP
for minimizing both the project duration and the interrup-
tion measure in the situation of mode modification or inter-
ruption. Delgoshaei er al. [25] developed a multi-objective
non-linear mixed integer programming model and designed
a multi-objective weighting genetic algorithm with scarce
resources to maximize the profit, minimize scheduling costs,
and minimize the project duration. From the existing studies
on RCPRSP, it can be concluded that all the meta-heuristic
algorithms have been employed to solve RCPRSPs since they
belong to the NP-Hard problem.

Extensive studies on RCPRSP have been conducted by
researchers. The traditional scheduling objective of mini-
mizing project duration has been changed to minimize the
adjustment cost of the schedule, and the adjustment cost
gradually includes several aspects. Additionally, in order to
meet managerial expectations, the multi-objective RCPRSPs
have attracted great interest. In terms of algorithms, for
solving RCPRSP, a variety of intelligent optimization algo-
rithms have been effectively applied. In the current studies
on RCPRSPs, however, there are the following problems:
1) The existing studies mainly consider the uncertainty of
project duration while the studies on resource uncertainty are
still relatively scarce; 2) Although the existing studies have
transformed to the single objective of the scheduling adjust-
ment cost, the original objectives of baseline scheduling,
i.e., minimizing project duration, are often ignored. Besides,
the research on bi-objective RCPRSP that minimizes project
duration and adjustment cost has not been reported; 3) In the
available algorithm research, meta-heuristic algorithms play
a dominant role, but the research on more practical heuristic
algorithms based on priority rules is relatively deficient.

In summary, resource uncertainty is one of the main risks
in the process of project execution. Uncertainties in core staff,
tool damage, equipment failure, and other factors may make it
impossible to implement the baseline schedule in accordance
with expectations. In this case, it is a key issue to improve
project scheduling performance to maintain the optimal or
near optimal project scheduling objective with the lowest
adjustment cost. In this paper, a novel bi-objective reactive
project scheduling problem considering resource uncertainty
is proposed to address the resource uncertainty. It aims to
achieve the goals of the minimum adjustment cost and the
minimum project duration under the constraints of the prece-
dence relationships and resources. A regret-based biased ran-
dom sampling heuristic algorithm, which employs 19 priority
rules, is adopted to solve the problem proposed in this paper.

Il. PROBLEM DESCRIPTION AND MODEL CONSTRUCTION
A. PROBLEM DESCRIPTION

The single-mode resource constrained project scheduling
provides the baseline schedule for RCPRSP. The project
is represented by Activity-on-Notes (AON), namely G =
(N,A), where N = {0,1,2,3,...,n,n + 1} is a set of
activities. The dummy activities are 0 and n+1 in N, which do
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not have duration or resources, representing the start and end
of the project. A is a set of arcs that indicate the finish-start
(FS) constraint relations between activities. (i, j) € A denotes
that j can only be started after an activity i is finished. The
preceding activity set, belonging to the activity i, is indicated
by P;. In terms of resources, this paper exclusively considers
the constraints of renewable resources, with K denoting the
set of different types of renewable resources. After that,
k=12,...,1K| — 1, |K|, k € K. Furthermore, Ry, is the
amount of renewable resource k. In the traditional RCPSP, the
availability of any resource does not vary during the project
execution. While in RCPRSP, each resource amount (Ry)
will change. Besides, the activity i, with d; as the duration,
requires rj; for renewable resource k. In this paper, the base-
line schedule IT? = (S?, F?) is based on the assumption that
all project parameters are constant and that all activities are
subject to the constraints of resources and precedence rela-
tionship. In addition, in the baseline schedule, the set of start
times for all activities is S? (so, sl R + 1)» and the set of
finish times for all activities is F” (fo f1 R Jrl) The
upper bound of the project duration is D. Chen et al. [26] have
verified that the LFT is one of the best priority rules to solve
resource-constrained random project scheduling problems.
Therefore, LFT is selected to generate the baseline schedule
by the authors.

Because the project execution environment is believed
to be deterministic in the traditional RCPSP, most studies
aim to minimize the project duration under the constraints
of resources and precedence relationship. The research on
RCPRSP, on the other hand, considers that the project execu-
tion environment contains uncertain factors. For example, the
variety of activity durations and resource supply. Therefore,
this paper focuses on the reactive scheduling problem when
each resource amount changes after time g. That is, managers
need to reschedule the activities that have not started after
time ¢ according to the baseline schedule for each resource
amount that varies after time g. Furthermore, due to the
varying resource amounts after time ¢, the baseline schedule
must be adjusted to make it feasible, or even optimal. At the
same time, to avoid meaningless scheduling costs in reactive
scheduling, this paper assumes that the activities, finished
before time g or executed at time g, are implemented accord-
ing to the baseline schedule. While other activities that have
not started until time g are rescheduled in accordance with
the reactive scheduling method. Then, a new rescheduling
schedule is produced by adjusting the baseline scheduling.
At time g, we note that the new schedule is 17 = (89, F9),
the start time set is S9 = (sg, s(f, e SZ+1) and the finish
time setis F4 = (ff!. fi, ... f,l.,). the completed activity set
is denoted by C,, the ongoing activity set is denoted by Ay,
the eligible (candidate) activity set is denoted by D, and the
uncompleted activity set is denoted by Uj,;. If activity i € U,

st =s?and fP = f1.

Malntammg the stability of the baseline schedule is an
important goal for RCPRSP. Therefore, the regenerated
schedule must be as close to the baseline schedule as possible.
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The rescheduling cost (an adjustment cost) is established to
quantify the deviation between the regenerated schedules and
the baseline schedule. Besides, we take the sum deviation
of the activity start times between the IT” and the I17 as the
rescheduling cost. To avoid producing repetitive scheduling
cost, it is only the unscheduled activities after time ¢ that
can generate rescheduling cost. That is, when i € U, the
rescheduling cost is ZleU |s bl

In addition, although the study of RCPRSP is multifaceted,
minimizing project duration is still the popular objective in
most project scheduling. As a result, RCPRSP in this paper
refers to unscheduled activities until time ¢ is rescheduled
so as to minimize not only the project duration but also the
adjustment cost under the constraints of precedence relation-
ship and resource.

B. MODEL CONSTRUCTION
According to the description of the problem in the previous

section, we construct a bi-objective reactive scheduling prob-
lem model for RCPRSP as follows.

Minf! | ey
Min Z"+l |s? —sbl 2

s.t.
st=sh i =fb, ig¢ut 3)
S?Zq, ie U4 “)
fA=sl+d, i=01,...,n,n+1 (5)
s;-f+dj§s?, i=0,1,....,n,n+1, jeP; (6)
Sien ik <Re. k=1,2,... K|, t=1,2,....D
(7

(1) is to minimize the project duration, and (2) is to minimize
the adjustment cost, where |s? — sf-’ | indicates the deviation of
the start time of the activity i. (3) shows that the activity i is not
in the uncompleted activity set and is carried out according
to the baseline schedule. (4) indicates that the start time of
activity i in the uncompleted activity set should not be earlier
than q. (5) represents the finish time of activity i. (6) signifies
the constraints of precedence relationship, and (7) is the series
of resource constraints, in (7), A; denotes a set of activities
being executed at time ¢, and the total amount of resource k
occupied by the activities in A; should be less than the total
amount of the resource k.

In the above model, s?, s lq, and fib are positive integer
decision variables. Furthermore, the reactive scheduling time
q is a positive integer that must be pre-determined.

b

Ill. ALGORITHM DESIGN

The heuristic algorithm based on priority rules (Pr) is widely
used in RCPRSP due to its intuitive logic, easy understanding,
and fast calculation speed [26], [27]. It combines the SGS,
which mainly includes the PSGS and the SSGS, with prior-
ity rules to generate feasible project schedules. The differ-
ence between the above PSGS and SSGS lies in that PSGS
takes time as a stage variable, while SSGS takes activity
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as a stage variable [28], [29]. In addition, priority rules are
generally used to determine the priority values of activities.
Besides, the activity with the higher priority value will be
scheduled first when resource conflicts occur. The combi-
nation of SGS and Pr mainly constructs two algorithms:
a single-channel algorithm and a multi-channel algorithm.
The difference between these two algorithms is whether the
new schedule can be obtained by repeating the same algo-
rithm. Furthermore, the single-channel algorithm combines
one SGS that is equipped with one of the Pr, so as to generate
a deterministic project schedule. Even if repeated, no new
schedule will be generated. While the multi-channel algo-
rithms mainly include four types: 1) multiple priority rule
heuristic algorithm, 2) forward-backward scheduling heuris-
tic algorithm, 3) sampling heuristic algorithm, and 4) adaptive
heuristic algorithm [30]. Additionally, the sampling heuristic
algorithms will generate a new schedule and select activities
from the feasible activity set according to probability. What
is more, the RBRSA falls under the category of sampling
heuristic algorithms. To solve the RCPRSP proposed in this
paper, RBRSA is utilized to merge the two scheduling gen-
eration schemes with the Pr. The 19 priority rules in Pr are
shown in the Table 1 [28]-[31].

A. REGRET-BASED BIASED RANDOM SAMPLING
ALGORITHM

The RBRSA is an effective method to solve RCPSP [32].
In RBRSA, an activity belonging to the eligible activity set
is equipped with a selected probability, which is calculated
according to the priority value computed by the priority rule.
In the traditional random scheduling solution, an activity is
selected from the eligible activity set according to the prior-
ity value when resource conflicts occur. While in RBRSA,
an activity j is selected from the eligible activity set by the
probability. To be more specific, RBRSA uses the follow-
ing probability assignment function to calculate the selected
probability of an activity j.

p() = 2 ®)
> V)
Jj€Dy
V'(j) is the amended to v (j).
VI(G) = V() + &) ©

Parameter ¢ ensures that each activity has a probability of
being selected, and parameter « is used to control the random-
ness of the scheduling process. V/(j) is the maximum distance
between the priority value of activity j and the maximal or
minimal priority value of an activity in the eligible activity
set of each scheduling stage (noted as Dy).

max V(D) — v(j),
v(j) — min V(Dy),

if extr = min;

V() = (10)

if extr = max.

v(j) is the priority value of the activity j, maxV (Dy) is the
maximal one of the priority values in Dg, and minV (Dy) is
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U=®7?
l No

Create D,

}

Select activity j from D, according to the probability of each activity
which is calculated by Equation(8)

!

Schedule activity ; as early as possible under precedence and resource
constraints

l

’ U—U\} ‘

v

e |

FIGURE 1. RBRSA based on SSGS.

the minimal one. If the adopted priority rule stipulates that
the activity with the lower priority value should be preferred,
V/(j) is valued by maxV (D) — v(j). Otherwise, V'(j) is valued
by v(j)—minV (Dy,). Furthermore, the activity j can be selected
from D, according to the selected probability of each activity
in Dg, which can be calculated by the above formula (8).

In the RBRSA, ¢ and o have an impact on the amended
value of v’(j), which can alter the probability of each activity
in D,. For parameter ¢, this paper follows previous studies,
and values ¢ by 1 [33]. For parameter «, Tiirkakin ez al. [30]
and Dek [33] found that « has a significant influence on
the performance of heuristic priority rules. Therefore, in the
following section of this paper, for parameter «, we will value
o by different values to investigate the influence of o on
the performance of RBRSA for the presented bi-objective
RCPRSP.

The process of RBRSA under SSGS is shown in Fig. 1.

Apart from adopting both SSGS and PSGS to generate
schedules, we also take SSGS as an example to illustrate
the flow of RBRSA. As is shown in Fig. 1, after setting
the priority rule, the number of iterations g is valued by
1 and Dy is determined based on the activities that have been
scheduled. The activity j is selected from D, according to
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TABLE 1. Priority rules.

No. Priority rule Formula Extreme value
0) EST(Earliest start time) ES; min
[€)) EST(Earliest start time) EF; min
2) LST(Latest start time) LS; min
3) LFT(Latest finish time) LFy min
) MSLK(Minimum slack) LS; — ES; min
5) MFF(Minimum free float) min{ESp} — EF;,he S; min
6) MSF(Minimum safety float) LS; — max{LF}}, he P; min
@) MIS(Maximum immediate tasks) |S;] max
®) SRD(Smallest total resource demand) dj - Zle Tk min
) GRD(Great total resource demand) dj - 25:1 Tik max
(10) GRU(Great resource utilization) 25:1 Tk max
D GRPW(Greatest rank positional weight) di+ 2 e s; dp, max
(12) LFS(Least average float time of successive tasks) (LS; — ESj)/ |S]T| min
(13)  WRUP(Weighted resource utilization and precedence) 0.7]S5] + 0.3 Eszl (rjr/Ri) max
(14) MTS(Most total successors) S;-‘ max
(15) TRS(Total resource scarcity) Zf:l (rjr/Ri) min
(16) SPT(Smallest project time) d; min
17) LPT(Longest project time) d; max
(18) WACRU(Amend WRUP) WG+ (1 —w) XK (rjn/Re) max
L' ES i, BEF;, LS, LF;—— Activity j earliest start time, earliest finish time, latest start time, latest finish time.
2|8 %_\—Number of all direct immediate activities of activity j.
3|S b |——Number of all follow-up activities for activity j.
the selected probability that is obtained by the priority rule. —l
After the activity j is scheduled, g = g + 1. The process is
repeated until all activities in the U, are scheduled. Finally, Call RBRSA <«
the project duration is obtained. If the PSGS is adopted in Set scheduling time ¢ v
the RBRSA, multiple activities are sequentially selected from and changed Ry
D, according to selected probability and scheduled by the ! Caleulate X(s;"-s,") as
. . . .. ; the scheduling cost
algorithm. In each iteration, the scheduled activity will be .
. . . At the scheduling time g, *
deleted from D, in turn until D, is empty. acquire C,, A, and U, :
Add scheduling schedule and
¢ (duration, cost) into
RS
B. BI-OBJECTIVE RBRSA Set sf=s1, fP=f for i & U, ¢
In this paper, we propose a bi-objective RBRSA for solving
the bi-objective RCPRSP. Fig. 2 illustrates the overall flow of v gerrgertl

the bi-objective RBRSA.

Before the scheduling starts, the critical path times of each
activity are acquired by the algorithm based on the critical
path method (CPM), such as the earliest start time, the latest
start time, the earliest finish time, and the latest finish time.
All of them are used to calculate the priority values. Then, the
baseline schedule is generated by SGS and LFT priority rules.
The time g will be set when each resource amount is changed,
and thereby the following C%, Ay, and U, are obtained. The
activity i is added to Cy if 57 < g; to Ay if sf < q < fib;
and to U, if ¢ < sf’ . Afterwards, the maximum number of
generation, denoted by Gen, is set. And the set of reactive
scheduling result, denoted by RS, is initiated as &. Then,
gen is valued by 1, and the RBRSA is called to schedule the
activities in Uy, with the SGS, «, and priority rule until all
the activities in U, are scheduled to acquire reactive schedule
and the project duration. Following the preceding steps, the
rescheduling cost Z?:ol ( |s? — sf’ |) is calculated in accordance
to the reactive schedule, and the baseline schedule. The reac-
tive schedule and the result (duration, cost) are added to RS.
Then, the gen = gen + 1 is executed, and the RBRSA is
repeated to be called to generate new schedules. Once gen is
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Set Gen, SGS, priority

rule, o, and Result set
} @ =

gen=1 Yes
Use fast nondominated sorting for
Result set, acquire pareto front
solutions

FIGURE 2. RBRSA based on SSGS.

greater than Gen, the new schedule is no longer generated.
Next, the fast nondominated sorting [31] is used to acquire
the pareto front solutions of RS.

IV. COMPUTATIONAL EXPERIMENT

A. EXPERIMENTAL DESIGN

In this study, all benchmark instances of J60.sm and J120.sm
from the project scheduling problem library (PSPLIB) [34]
are tested. Each instance includes 4 types of renewable
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resources. Besides this paper studies the RCPRSP, which is
under the assumption that each resource amount varies after
a random time ¢. In the experiment, the random scheduling
time g for each instance in J60.sm is arbitrarily set at 25.
For each instance in J120.sm, the reactive scheduling time
q is set at 45. To ensure that each resource amount can still
meet the minimal resource demand of each activity after the
initial resource amount decreases by 10%, the initial resource
amount of every instance increased by 20% will be regarded
as the new Rj. Therefore, each resource amount varies after
the time ¢ is based on the new Rj. Besides, the bi-objective
RBRSA is used to solve the bi-objective RCPRSP, in which
each renewable resource Ry decreases or increases by 10%
after the time g. Furthermore, 19 popular priority rules,
as described in the Table 1, are applied in the RBRSA with
SSGS/PSGS. In addition, the algorithm is written in Python.
The experiments are conducted on a PC with an Intel (R) Core
(TM)i5-10210U CPU @ 1.60GHz, 8.00 GB of RAM, and the
Windows 10 operating system.

Solving the bi-objective optimization problem is a process
that gradually approaches the pareto front, which consists of
a set of pareto optimal solutions. However, it is difficult to
acquire the Pareto front in real-life large-scale problems. As a
result, only the best solutions we found can be considered
pareto front solutions. Likewise, the performance of the algo-
rithm is further evaluated by judging the quality of these best
solutions (approximate solutions). And researchers proposed
various evaluation methods [31], [33], [35]-[37] to evaluate
the quality of these approximate solutions. The bi-objective
RBRSA with each priority rule generates a different pareto
front, and thereby, the 19 priority rules employed in RBRSA
separately will generate the 19 pareto fronts. The final pareto
front, which is also generated by the fast non-dominated
sorting procedure, is defined as the pareto front of the union
set of these 19 pareto fronts. Based on the final pareto front,
we select the first criterion, coverage of the final set (final
pareto front), referring to the coverage of two sets, denoted by
CS [38], to analyze and evaluate the performance of RBRSA,
which has a special priority rule, as follows:

CSpr _ (laePpr;Elbepfinal :b = al) (11)
[Pprl)

In the above formula, CS measures the convergence of the
algorithm, b = a represents that the solution « is dominated
by or equals to b, Py is the set of the final pareto front
which is obtained from all RS with 19 priority rules, Py, is
the set of pareto front obtained by RBRSA with a specified
priority rule, and |a € Py,; 3b € Pfipg : b %= a| the number of
solutions in Pp, that are dominated by the solutions in Pfg;.
The lower the CS,, value is, the better the convergence of
the algorithm is, and RBRSA with the specified priority rule
performs well. The second criterion is the diversity metric
(A) [35], which evaluates the diversity of solutions in the
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TABLE 2. Performance of algorithm with SSGS and different «.

SSGS CS A

Rk x 0.9 Rk x 1.1 Rk x 0.9 Rk x 1.1
a=1 0.21349 0.24511 0.95688 0.92839
a=2 0.17790 0.23616 0.94391 0.92963
a=3 0.16729 0.21114 0.93611 0.93691

TABLE 3. Performance of algorithm with PSGS and different «.

SSGS CS A

R x09 Rpx11l Rpx09 RpxI11
a=1 0.30903 0.25309 0.94118 0.83118
a=2 0.30934 0.27192 0.93442 0.84031
a=3 0.34121 0.33761 0.93730 0.85955

pareto front algorithms.

LR EDY = U]
hf-i-hz-l-(n—l)z

In the formula, A; is the distance between adjacent two
points, and h is the mean value of h;i. hy is the distance
between the right extreme point (rightmost solution) in the
Pfinai and the rightmost solution in the Py, h; is the distance
between the right extreme point (leftmost solution) in the
Pfinqi and the leftmost solution in the Pp,. In an ideal situation,
hy = hy = 0, b = h for each h; so as to A = 0. The
lower the value of A is, the wider the distribution of the
approximate solutions is. Specifically, the better the diversity
of approximate solutions is. A lower value of A indicates that
the specified priority rule adopted in the algorithm has better
performance.

(12)

B. ANALYSIS OF THE EFFECT OF A COMBINATION OF
DIFFERENT PARAMETERS o AND A SCHEDULING
GENERATION SCHEME
Section III-A has illustrated that the algorithm performance
is affected by the parameter « of the Pr used in the RBRSA.
In this paper, according to Tiirkakin et al. [30] and Dek [33],
the parameter « is valued by 1, 2 or 3, respectively. Also, the
performance of RBRSA with different schedule generation
schemes are explored. Besides, 480 benchmark instances in
J60.sm are tested to obtain the pareto front of every priority
rule and the final pareto front under different values of «.
Then, considering the different SGS and «, the average values
of CS and A can be calculated, respectively.

For the SSGS, the results with different « are shown in
Table 2.

For the PSGS, the results with different o are shown in
Table 3.

It is shown from Table 2 that for RBRSA with SSGS, o =
3 obtains the best value of CS when each R; decreases or
increases by 10%, and o = 2 acquires the second-best value.
For the diversity metric (A), when the Ry decreases by 10%
and the parameter o = 3, it is the lowest. However, the A
value is the lowest when o = 1, which is relatively close to
the A value when o = 3 with each Ry increasing by 10%. A
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FIGURE 3. Performance of RBRSA with SSGS and different priority rules.
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values are ranked second when « = 2 with each Ry increasing
or decreasing by 10%.

The results for PSGS are shown in Table 3. For the CS,
it can be seen that the CS values are the lowest when
o =1 with each Ry increasing or decreasing by 10%, and
the CS values are the second lowest when & = 2 in the same
resource case. With each Ry decreasing by 10%, the A value
is the lowest when o« = 2 which is close to the A value when
o = 1. In the case of each R; increasing by 10%, the A value
is lowest when o = 1, and the A value ranks second lowest
when o = 2.

Based on the above analysis, it can be concluded that
the RBRSA with both SSGS and @ = 3 achieves the best
performance, followed by o = 2. For RBRSA with PSGS,
o =1 is the best, and ¢ = 2 ranks second. Consequently,
in the following study, « is valued by 3 in the RBRSA with
SSGS, and « is valued by 1 in the RBRSA with PSGS.

C. COMPARISON OF PRIORITY RULES

In this section, the performance of priority rules are explored
for solving the presented bi-objective RCPRSP by RBRSA.
Based on the conclusions of section IV-B, the « is valued by
3 for RBRSA with SSGS, and « is valued by 1 for RBRSA
with PSGS. Consequently, the results of average values of CS
and A, denoted by (average value of CS, average value of A),
are calculated based on the pareto fronts which are obtained
by testing all benchmark instances in J60.sm and J120.sm.

1) RBRSA WITH SSGS

In this part, the performance RBRSA with SSGS with dif-
ferent priority rules are tested when each Ry increases or
decreases by 10% after the time ¢, and « is valued by 3.
In Fig. 3, the average values of both CS and A of all the
RBRSA with different priority rules are shown.

According to the definitions of CS and A, the lower the
values of these two criteria are, the better the performance
of the priority rules are. Fig. 3 (a) and Fig. 3 (c) shows that
the LST and LFT have the best performance because the
values of CS and A of these two points are relatively low,
with each Ry decreasing by 10%. In Fig. 3 (b) and Fig. 3 (d),
the (average value of CS, average value of A)s obtained by
LST, LFT, WACRU, and TRS are all close to the origin when
each Ry increases by 10%. This means that the LST, LFT,
WACRU, and TRS priority rules with SSGS have relatively
better performance.

We randomly employ a project instance, j605_7 in J60.sm,
to compare the performance of the mentioned priority rules.
The pareto fronts obtained by RBRSA with LST, LFT,
WACRU, and TRS are shown in Fig. 4, in which the solution
is denoted by (duration, cost) in RS. In Fig. 4, the solutions
acquired by LST and LFT have pareto fronts that are closer to
the origin, implying that the solutions obtained by LST and
LFT can dominate the majority of the solutions obtained by
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FIGURE 4. Pareto fronts of four priority rules under SSGS.

other priority rules. It can be concluded that the LFT/LST
employed in the RBRSAs with SSGS shows performs better
than the other two.

2) RBRSA WITH PSGS

In this section, the performance of RBRSA with PSGS and
different priority rules are investigated by a computational
experiment. Similarly, each resource amount will increase or
decrease by 10% after time g. The results, denoted by the
(average value of CS, average value of A)s and obtained by
RBRSAs with PSGS and different priority rules, are shown
in Fig. 5.

As shown in Fig. 5 (a) and Fig. 5 (d), when each Ry
decreases or increases by 10%, the (average value of CS,
average value of A)s, obtained by LST, LFT, MTS, MIS,
WRUP, and WACRU, are relatively close to the origin.
In Fig. 5 (b) and Fig. 5 (d), the values of CS and A at points
LST and LFT are the lowest ones with each Ry decreasing
or increasing by 10%. Overall, it can be deduced that the
RBRSAs with these 6 priority rules have better performance.

Randomly selected from J120.sm, a project instance
j12022_1, is solved by RBRSAs with LST, LFT, MTS,
MIS, WRUP, and WACRU, respectively, to compare the
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TABLE 4. Better priority rules under different scheduling generation
schemes.

SSGS(a=3)
PSGS(a=1)

LST, LFT
LST, LFT

performance of these 6 priority rules. The results in
Fig. 6 show that the pareto fronts of LST and LFT are closer
to the origin, which means the pareto fronts of LST and LFT
can donimate other pareto fronts. Therefore, compared to
other priority rules, the priority rules that include LST and
LFT have the best performance in the RBRSA.

Finally, the priority rules with better performance are
shown in the Table 4.

Based on the conclusions from Fig. 4, Fig. 6, and Table 4,
we further compare the performance of the excellent priority
rules in RBRSA with different SGS by test all instances
inJ60.sm. Meanwhile, the « is valued at 3 in the algo-
rithm with SSGS, while the « is valued at 1 in the algo-
rithm with PSGS. Then, the different o, SGS, and priority
rules in Table 4 are employed in RBRSAs to acquire the
(average value of CS, average value of A)s. Besides, as is
shown in Fig. 7, these points are denoted by S_priority rule
or P_priority rule, which indicate the combination of the
SSGS/PSGS and different priority rules. For example, S_LST
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FIGURE 7. Performance of RBRSA with different SGS and priority rules.

signifies that the SSGS and priority rule LST are adopted in
RBRSA, and P_LFT signifies that the PSGS and priority rule
LFT are employed in RBRSA.

As is shown in Fig. 7 (a), S_LST and S_LFT are close
to the origin, which means the average values of CS and A
are the lowest for these two points, with each Ry decreasing
by 10%. Furthermore, in Fig. 7 (b), when each Ry increases
by 10%, the CS values of S_LST and S_LFT are less than
others because the maximum deviation of the CS value of all
points is about 0.25 (by 0.475, subtracting 0.225). Whereas
the A values of all points have a little difference because
the maximum deviation of A values is about 0.045 (by 0.95,
subtracting 0.905). Therefore, the paper concluded that the
priority rules LST and LFT in RBRSA with SSGS and o =
3 have better performance than the other combinations.

V. CONCLUSION

During the execution processes of projects, there may be
some uncertain factors that lead to the predefined sched-
ules being unfeasible. Reactive project scheduling prob-
lem is one of the important project scheduling problems to
address the uncertainty of projects in progress. This paper
studies the RCPRSP under resource uncertainty. To better
balance the requirements of managers in terms of project
duration and adjustment cost under the constraints of new
resource amounts and precedence relations, we propose a
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new bi-objective reactive project scheduling model to min-
imize both project duration and schedule adjustment cost.
The RBRSA, which combines two scheduling generation
schemes with different priority rules, is designed to solve the
presented problem. It is explored how the key parameter of
RBRSA affects the performance of RBRSA with different
schedule generation schemes. Finally, computational exper-
iments are used to compare the performance of different
priority rules in two popular criteria: coverage of two sets and
diversity metric. Some excellent combinations of parameter
value, schedule generation scheme, and priority rules are
explored in RBRSA for the presented bi-objective RCPRSP.
The main contributions to this paper are as follows: (1) Con-
sidering the uncertainty of resource amounts, we propose a
new bi-objective RCPRSP. Other than the existing research,
which only minimizes the adjustment cost, the problem is a
bi-objective scheduling problem aiming to achieve a balance
between schedule adjustment cost and project duration. (2)
To solve the bi-objective RCPRSP, we design a new heuristic
algorithm based on priority rules. Although there is a lot
of studies on heuristics based on priority rules for single
objective project scheduling problems, to our best knowledge,
there has been no similar heuristic based on priority rules
for solving bi-objective project scheduling so far. The study
of the presented RCPRSP provides the project leader with
more decision-making ability to control the project since
it can balance the two core objectives, duration and cost.
The priority rule based on heuristic is an intuitive and effi-
cient solution for the bi-objective RCPRSP, and it is also a
promising alternative to solve other multi-objective project
scheduling problems. How to further improve the perfor-
mance of the RBRSA and compare it with other evolutionary
multi-objective algorithms may be a future research direction.
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