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ABSTRACT HTTP-based video streaming technology is widely used in today’s video delivery services. The
streaming solution uses the adaptive bitrate (ABR) algorithm for better video quality and user experience.
Despite many efforts to improve the quality of experience (QoE), it is very challenging for ABR algorithms
to guarantee high QoE to all users in various environments. The video streaming circumstances in the real
world have become even more complicated by the proliferation of mobile devices, high-quality content, and
heterogeneous configurations of video players. Many ABR algorithms aim to find monotonous strategies
that generally perform well without focusing on the complexity of the environments, which can degrade
performance. In this paper, we propose ABRaider that guarantees high QoE to all users in a variety of
environments in the real world while being generalizedwith multiple strategies and specialized in each user’s
environment. In ABRaider, we propose multi-phase RL consisting of offline and online phases. In the offline
phase, ABRaider integrates the strengths of the ABR algorithms and develops policies suitable for various
environments. In the online phase, ABRaider focuses on specializing in the environments of individual users
by leveraging the computational power of the clients. Experiment results show that ABRaider outperforms
existing solutions in various environments, achieving 19.9% and 42.2% QoE improvement in VoD and live
streaming, respectively.

INDEX TERMS Adaptive bitrate algorithm, federated learning, quality of experience, reinforcement
learning, video streaming.

I. INTRODUCTION
With the increase of network bandwidth and the spread of
high-quality videos, users tend to prefer video-based informa-
tion over text-based one. The video data becomes themajority
(65%) of worldwide mobile downstream and is expected to
continue to increase [1], [2]. Unfortunately, the current net-
work infrastructures are unable to handle this massive growth
seamlessly and meet the user’s demands. Users want high-
quality video streaming, and service providers are constantly
striving to improve the quality. Nevertheless, providing users
with high QoE (quality of experience) is an underlying chal-
lenge because network bandwidth is limited, shared, and
unpredictable.

Many video streaming solutions utilize ABR (adaptive
bitrate) approaches to provide satisfactory services [3]. The
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ABR algorithm adjusts the video bitrate in order to optimize
video quality on the client-side. Despite these efforts, the
proliferation of mobile devices, the demand for high-quality
content, and the heterogeneous configurations of video play-
ers make the environment even complicated. Specifically,
mobile devices induce various mobility trajectories, resulting
in unpredictable bandwidth estimation. Most videos have
different/wide range of bitrate sets and segment lengths
(e.g., 1–15 seconds [4]) depending on the encoder. ABR algo-
rithm has to carefully consider the configurations of video
player to provide high QoE. For example, Youtube mobile
app or Youtube Live requires a conservative and sensitive
strategy due to the small buffer, otherwise it is vulnerable to
stall events and low-quality. Given all these circumstances,
it is very difficult for the ABR algorithm to provide high QoE
to all users in the real world.

Recently, ABR algorithms using various approaches, such
as rule-based and machine learning (ML)-based, have been
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proposed to deliver users with highQoE. The rule-basedABR
algorithms use heuristics that reduce rebuffering, improve the
utility, and select bitrate by maximizing QoE metric [5]–[8].
However, we have confirmed that each rule-based algorithm
has a preferred environment with a monotonous strategy
(details in Section III-A). They are fine-tuned in specific
configurations and do not guarantee high QoE in vari-
ous environments. ML-based approaches are classified into
reinforcement learning (RL)-based and supervised learning
(SL)-based. The RL-based ABR algorithms use neural net-
works to train bitrate adaptation policy [9] and they achieve
significant performance gains in terms of QoE, but their
improvements are limited in certain environments. Their
performance is tightly coupled with the training environ-
ment [10]. SL-based ABR algorithms [11], [12] predict band-
width more accurately by learning network traces instead of
harmonic mean or moving average of past segment download
times. However, since they still work with MPC [7], which is
a rule-based algorithm, they naturally do not adapt to a variety
of environments.

We set two keys to unlock the ABR algorithm to provide
high QoE to the users; generalization and specialization. The
ABR algorithm should be generalizedwithmultiple strategies
for enhanced performance and specialized in consideration of
the individual user’s environment. In this paper, we introduce
ABRadier, a generalized and individually specialized ABR
algorithm for the users in various environments. ABRaider
addresses two key challenges: (i) how do we generate an
ABR algorithm that has multiple strategies for the different
configurations? (ii) how does the ABR algorithm guarantee
high QoE for all users in the real world? To answer the
above questions, we propose multi-phase RL that consists of
the offline and the online phases to overcome the shortcom-
ings of traditional RL. The multi-phase RL brings several
advantages. It serves as a key component in generalizing
the ABR algorithm to users under various circumstances and
specializing in each user’s specific environment. In particular,
the offline phase allows ABRaider to explore the strengths of
existing ABR algorithms and develop different strategies for
each environment. At the end of the offline phase, ABRaider
achieves generalized performance in various environments
by retaining multiple strategies of the algorithms. Leveraging
the ever-increasing clients’ computational power, we enable
ABRaider to continuously train under clients’ unique/specific
environments in a distributedmanner during the online phase.
ABRaider aims to be specialized in each user’s environment
by fine-tuning the generalized model of the offline phase.
To this end, we have developed a publicly accessible online
training website. Whenever users access it, ABRaider is
distributed individually and evolves into a model tailored
to the user-specific environment through a video streaming
experience.

We implement ABRaider in dash.js [13], a standard
MPEG-DASH player, and use publicly available network
traces to create a variety of training/test environments. These
datasets are collected from Wi-Fi, LTE, and 5G networks.

ABRaider’s performance is compared with the state-of-the-
art ABR algorithms in various configurations. Experiment
results show that ABRaider improves the average QoE by
19.9% and 42.2% compared to the best ABR algorithm in
VoD and live streaming, respectively.

The rest of this paper is organized as follows. In Section II,
we discuss the related work. We introduce several challenges
of the ABR algorithms and motivate the necessity of a
new approach in Section III. Prior to designing our system,
Section IV describes key design choices. Then, we propose
ABRaider and explain both the training scheme and themulti-
phase RL in Section V. Section VI evaluates the performance
of ABRaider compared with other ABR algorithms. Finally,
we conclude the paper in Section VIII.

II. RELATED WORK
The recently proposed ABR algorithms can be categorized
into two classes according to the approach.

A. RULE-BASED
The rule-based ABR algorithm aims to high quality and
low rebuffering in order to provide satisfaction to users.
Festive [5] uses the harmonic mean of the throughput over
the past 20 segments to predict the future bandwidth and
then determines the maximum bitrate it can sustain. BBA [6]
only uses the playback buffer occupancy to determine the
bitrate. The larger the buffer size, the higher the bitrate. BBA
reduces the rebuffering rate by 10-20% compared to Net-
flix’s ABR algorithm. To overcome the shortcomings of the
above heuristic-based ABR algorithms, several approaches
define QoE/utility metrics and design ABR algorithms that
theoretically maximize the metrics. Specifically, MPC [7]
defines a QoE metric (quantifying the QoE value delivered
to users), and uses a model predictive control algorithm to
select a bitrate at which QoE can be maximized. BOLA [8],
[14] uses Lyapunov optimization to maximize two metrics;
bitrate utility (i.e., quality) and a fraction of time spent not
rebuffering. The above-mentioned approaches made signifi-
cant performance improvements by maximizing the metrics
directly.

B. ML-BASED
ABR algorithms using a machine learning approach have
been proposed to address the challenge of bandwidth predic-
tion in variable networks [9], [11], [12], [15]. ML-based algo-
rithms are classified into reinforcement learning-based [9],
[15] and supervised learning-based approaches [11], [12].
Pensieve [9] used reinforcement learning to directly train the
policy of the neural network to design ABR algorithm using a
video streaming simulator, which improved QoE by 15-25%
compared to MPC. Zhang et al. [15] have proposed OnRL,
online reinforcement learning framework. Like ABRaider,
they employ federated learning in which the clients train the
policy in a distributed manner. However, the target system of
OnRL is limited to the live video telephony service such as
FaceTime, Zoom and Skype.
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FIGURE 1. ABRaider employs an RL-based approach while retaining the
advantages of traditional rule-bases algorithms.

There are several studies that explicitly predict future band-
width using supervised learning instead of directly training
the policy (i.e., RL). The authors in [11] analyzed throughput
characteristics using datasets with more than 20 Million ses-
sions. They developed CS2P, a throughput prediction system
using Hidden-Markov-Model. The combination of CS2P and
MPC achieved 3.2% QoE improvement over MPC in prac-
tice. Similarly, the authors in [12] used supervised learning
to train a transmission time predictor (TTP) for the future
segments on a public video streaming website. As a result,
Fugu, an ABR algorithm that is a combination of TTP and
MPC, outperforms existing schemes in their system in terms
of average SSIM and stall rates.

C. POSITION OF OUR WORK
As mentioned above, ABR algorithms to improve user expe-
rience have been proposed along with various approaches.
Figure 1 illustrates the existing algorithms’ approaches and
the position of our work. Recently, ML-based solutions are
emerged to cope with dynamic networks because rule-based
algorithms are difficult to have different strategies due to the
limited number of rules. The SL-based approach improves
the performance of one of the rule-based algorithm’s mod-
ules (e.g., bandwidth predictor), which struggles to handle a
variety of real-world environments (details in Section III-A).
RL-based schemes learn the policy directly to improve QoE
metrics in a trial-and-error manner, but are vulnerable if
training methods or environments (e.g., simulator and net-
work traces) are not carefully managed [10], [12]. In this
paper, we adopt RL with the potential for various strategies in
the real world environment and leverage existing rule-based
algorithms to overcome the limitations of traditional RL. Our
RL training scheme learns policies from scratch, something
new and undiscovered, while retaining all the strengths of
existing rule-based algorithms.

III. CHALLENGE AND MOTIVATION
We discuss the motivations for designing a better ABR algo-
rithm, then describe goals of ABRaider.

A. CHALLENGES OF THE ABR ALGORITHMS
Several challenges arise when operating the ABR algorithm
in various real-world environments. We explain in detail the

FIGURE 2. Performance comparison between MPC and AccurateMPC in
various environments. The average QoE of MPC and AccurateMPC are
3.8 and 4.1, respectively.

challenges associated with the strategy and generalization of
ABR algorithm.

1) LIMITATIONS OF A MONOTONOUS STRATEGY
Rule-based algorithms such as rate-based and buffer-based
are usually limited to have a single strategy. This is because
they use only one-dimensional information to determine the
bitrate, ignoring other observations/circumstances. Hybrid
approaches such as MPC, which are more sophisticated algo-
rithms, have relatively diverse strategies. For example, they
can make aggressive decisions when the bandwidth is stable
and sufficient even if the buffer occupancy is low. However,
these are still insufficient to handle the diverse environments
in the real world, despite perfect bandwidth predictions.

To investigate this, we conducted a performance
comparison using MPC, which the SL-based schemes
(e.g., Fugu [12]) relies. We configured 135 environments
with respect to the network bandwidth range, degree of
variation, video bitrate range, and the segment length (details
in Section VI). In each environment, QoE is calculated using
Equations (3) and (4) in Section V-A. For comparison with
MPC, we introduce AccurateMPC, a variant of MPC, which
uses the actual throughputs of the network traces instead of
the bandwidth prediction module. Intuitively, it is the upper
bound of SL-based algorithm. Figure 2 shows the CDF of
QoE for MPC and AccurateMPC. We clearly see that even
if the future bandwidth can be predicted perfectly, Accu-
rateMPC is not the best in all circumstances. Specifically,
its average QoE is about 0.3 higher than the MPC, and is
somewhat lower in the 46% of environments despite perfect
bandwidth estimates. In AccurateMPC, unnecessary bitrate
switching occurs when the network fluctuates greatly or when
video segments are long, whereas in MPC, the bandwidth
prediction module has the effect of mitigating the bandwidth
fluctuations. In other words, SL-based ABR algorithms aim
to provide high QoE on average with a monotonous strategy.
Based on these results, we argue that multiple strategies

are necessary for the ABR algorithm to yield robust perfor-
mance in various environments.

2) GENERALIZATION IN THE REAL WORLD
Although machine learning approaches (e.g., RL-based and
SL-based) have been adopted to address the above-mentioned
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TABLE 1. The rank frequency for ABR algorithms in 135 environments.

complexity, there are still unresolved problems. They require
a large-size model (e.g., deep neural networks) with a lot of
data in order to generalize it in the real world. The larger
the model, the more strategies it can contain, allowing it to
cover a wide variety of environments. This not only imposes
a burden on the client or server managing the model, but also
requires sophisticated techniques for training and incurs high
computational costs [16], [17]. With a limited model size,
it only converges to a model that performs well on average.
In summary, it is very difficult to generalize rule-based

and machine learning-based ABR algorithms to cover a wide
range of different environments in the real world. We envi-
sion an ABR algorithm that can provide high-quality ser-
vices to all users in various environments by training it
in user-level environments with only a small-sized neural
network.

B. MOTIVATIONS OF ABRaider
1) FRAGMENTATION OF THE STRENGTHS OF ALGORITHMS
As mentioned above, many ABR algorithms have limi-
tations due to a monotonous strategy, however each one
has enough strengths to take advantage of. To this end,
we examined the performance of various algorithms in the
same environments as in the previous experiment. Table 1
shows the rank frequency for each ABR algorithm. We can
confirm that ABR algorithm has its own preferred envi-
ronment where it provides the best performance comparing
to others. We refer to this phenomenon as strength frag-
mentation of ABR algorithm. For example, BBA is ranked
1st in 42 environments and has the lowest performance in
40 environments (ranked 7th). BBA prefers a shorter segment
(e.g., 2 seconds) and a relatively high bandwidth in the bitrate
set. Furthermore, it is robust on the fluctuation of bandwidth.
The rate-based algorithms, such as ThroughputRule and
Festive, can quickly select an appropriate bitrate regardless
of the buffer (e.g., startup phase). MPC or MPC-variant
(e.g., Oboe+MPC) combines the strengths of both
approaches to provide good QoE on average (e.g., steady
phase).
In summary, the existing algorithms have the strength of

being able to perform better in certain situations, this moti-
vates us designing a better ABR algorithm utilizing multiple
strategies. Toward this, ABRaider leverages the strengths of
existing algorithms to maximize generalization in variety of
environments.

FIGURE 3. Growth of mobile GPUs [20], [21].

2) UNDER-UTILIZATION OF CLIENT’s COMPUTING POWER
Mobile devices such as smartphones are themain platform for
streaming video services on the client side [22]. They have
the powerful computing power of CPUs and GPUs, which is
expected to continue to grow. Figure 3 shows the increasing
computing power of mobile GPUs over time. Most recent
mobile devices have hardware engines (i.e., neural engine)
dedicated to neural processing, but their performance is not
even exploited. For instance, many ABR algorithms use fixed
control rules (CPUs). ML-based algorithms such as Pensieve
and Fugu determines bitrates on the server side.
In summary, existing bitrate adaptation schemes under-

utilize the powerful computing power of mobile devices.
ABRaider leverages high-performance GPUs to train on
the client side, and hence, specializes in individual user
environments.

C. GOAL OF ABRAIDER
The challenges of the ABR algorithm mentioned above moti-
vate us to design and implement an ABR algorithm that
can provide satisfactory streaming quality to users in var-
ious environments. We set ABRaider’s goals as follows:
(i) ABR algorithm should be generalized in a variety of
environments with multiple strategies, (ii) ABR strategies
should be specialized for each user, not providing general-
ized performance after deployment. Toward this, we utilize
reinforcement learning technique and introduce multi-phase
RL to overcome the limitations of traditional RL. It combines
the advantages of existing schemes and adapts ABRaider
with multiple strategies suitable for various environments
(i.e., generalization). Furthermore, it allows ABRaider to be
specialized in real-world users through client-level federated
learning in practice.
We aim to generalize and specialize the ABR algorithm

for users in a variety of environments. In ABRaider’s design,
we employ multi-phase RL to overcome the limitations of
traditional RL and achieve the goals mentioned above.

IV. KEY DESIGN CHOICES
This section describes key design choices for ABRaider.
In particular, an in-depth exploration of when and how to
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train is necessary because we consider a data-driven learning
framework for the ABR algorithm.

A. SL VS. RL
Existing ML-based approaches are divided into SL-based
[11], [12] and RL-based [9], [12]. SL-based algorithms
typically predict the download times of future segments,
which are then used by rule-based algorithms (e.g., MPC)
to determine the bitrate. Although more accurate predic-
tions can improve the performance of rule-based algorithms
almost to the upper bound, there are obvious limitations
(Section III-A). The RL approach, on the other hand, updates
the policy that determines the bitrate directly for better QoE.
It has more potential than SL-based algorithms. Therefore,
we utilize RL to envision a robust ABR algorithm that adapts
to various environments.

B. OFFLINE VS. ONLINE
Most existing solutions use only offline or online training.
Schemes using offline training [9], [11] may be tightly cou-
pled with the training environment and suffer in various
environments. In contrast, solutions that only consider online
training [12], [15] may provide a poor user experience at
the beginning of training. We address the shortcomings of
both approaches by integrating the entire training process
into offline and online phases. The offline phase makes the
ABR algorithm robust regardless of the environment, while
the online phase aims to further improve the model trained in
the offline phase.

C. SERVER-SIDE VS. CLIENT-SIDE
Several ML-based ABR algorithms that determine the bitrate
on the server-side have some limitations [9], [12]. In an
ABR streaming system running on server-side, the client
must query the ABR server to determine the bitrate of
the next video segment, which incurs additional round trip
overhead. This overhead is small, typically 1-100 msec,
but cannot be ignored when the network is poor and the
client has to constantly download small segments to fill the
buffer. Such server-side design cannot guarantee scalability
on limited hardware resources. Considering all, we employ
a client-side architecture with minimal changes to under-
lying HTTP-based video streaming. Moreover, we leverage
the client’s GPUs to ensure scalability without additional
overhead.

D. POLICY INITIALIZATION
A starting point is very important in reinforcement learning.
The more complex tasks such as real-world problems, the
lower the performance of RL using only explicit reward.
To address this issue, several studies suggest imitation learn-
ing using expert policy [23]–[25]. In bitrate adaptation task,
complex environments like the real world are burdensome to
train using RL. Moreover, it can provide users a bad experi-
ence at the beginning of training (i.e., anomaly in RL policy).
The authors in [15] proposed a hybrid learning framework

FIGURE 4. The workflow of ABRaider.

that also uses a rule-based algorithm to avoid the anomaly.
Taking into account the complexity of the task, we combine
the strengths of existing algorithms (i.e., experts), and adopt
them as a baseline. Then, we improve the model through
multi-phase RL.

V. DESIGN
A. OVERVIEW
In this section, we introduce an overview of multi-phase RL
in ABRaider followed by a detailed exposition of both the
offline and online phases. The goal of the multi-phase RL
is to develop a robust algorithm that can be applied to a
variety of environments. Figure 4 demonstrates the work-
flow of ABRaider. In the offline phase, ABRaider takes the
strengths of other ABR algorithms and trains the algorithm
with various traces in order to incorporate multiple strate-
gies into a single policy. Unlike traditional RL approach
that uses only offline training, ABRaider includes the online
phase. In the online phase, ABRaider continues the training
process with the trajectories that cannot be handled in the
offline phase, and hence is specialized in each environment.
In this sense, ABRaider is continuously evolving tailored
to individual users. We deploy ABRaider’s neural network
model on a CDN server (publicly available) to facilitate the
online phase using crowdsourcing. Specifically, the infor-
mation (e.g., selected bitrate, buffer occupancy and etc.)
generated by streaming video using our model is reflected
in the model’s updates of clients (i.e., local model). The
local models updated in a distributed manner are periodically
aggregated into the global model. Over time, the global model
generalizes to all users, while the local model specializes in
user specifics.

B. OFFLINE PHASE
Existing rule-based and conventional RL-based ABR algo-
rithms provide only local solutions (cannot handle a variety of
environments). We found that the ABR algorithm’s strengths
can be maximized in certain circumstances in Section III-B.
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FIGURE 5. The core engine of step 1.

Based on this, we now describe the core engine of the offline
phase in multi-phase RL, which alleviates the limitations
mentioned above. The offline phase consists of three steps:
(i) combining the strengths of existing algorithms, (ii) con-
verting the output space, and (iii) enhancing the algorithm
through deep exploration. The offline phase leverages the
existing ABR algorithms to generate a robust algorithm that
is suitable for various environments.

1) STEP 1: COMBINING THE STRENGTH
In step 1, we aim to design a general solution that can deliver
high performance regardless of the environment. Toward
this, we first gather the advantages of traditional ABR algo-
rithms, given the fact that each rule-based algorithm performs
best in one or more environments. We adopt reinforcement
learning to our neural network. The output can be repre-
sented as the probability of the existing ABR algorithm
πθ1 (et |st ) = P[et |st ], where θ1 is the parameters of the neural
network, st is the observations of the environment (described
in Section V-A) and et is the expert (i.e., ABR algorithm).
The goal of step 1 is to learn the policy πθ1 (et |st ) of selecting
the optimal ABR algorithm given the state st .
During offline training, we use a simulator instead of con-

figuring a real video streaming player to speed up the training
process. We implement a simulator that is similar to the video
player used in practice (dash.js). When the simulator receives
the bitrates from the agent, it first calculates the download
time by obtaining the bandwidth from the network traces.
The simulator then consumes the playback buffer occupancy
during the segment’s download time to mimic the video
playback. It also adds the segment length to the playback
buffer. While repeating this process, the simulator carefully
manages the depletion and overflow of the playback buffer.
Figure 5 illustrates an overview of step 1.

The training process in step 1 is as follows. At time
step t , the RL agent with the neural network interacts
with the environment (simulator) and obtains the trajectory
{s0, e0, a0, r1, · · · , sT−1, eT−1, aT−1, rT , sT }, where T is the
terminal time step, et is one of the ABR algorithms selected
by the neural network at time t , and at is the bitrate deter-
mined by et . Then we update the neural network using
the state-of-the-art policy gradient method PPO [26]. The

FIGURE 6. Example of offline phase results.

objective function to update the neural network can be written

LCLIP(θ1)= Ê
[
min(rt (θ1)Ât , clip(rt (θ1), 1− ε, 1+ ε)Ât )

]
(1)

where rt (θ ) is the ratio between the probability of action et
used in the experience (old) and the new policy ( πθ (et |st )

πθold (et |st )
).

Ât is the advantage calculated by [27], and ε is one of the
hyper-parameters, usually set to 0.1 or 0.2, that has the effect
of discarding samples that cause excessively large updates.
Equations (3) and (4) are used for the reward signal. Note that
different QoE metrics can be used as a reward in ABRaider’s
neural network. By repeating this, the policy πθ1 (at |st ) learns
to choose themost suitableABR algorithm for a given state st .
However, step 1 has a drawback that the outcome ofπθ1 (at |st )
is tightly coupled with the ABR algorithm’s performance.
To mitigate this, we consider the augmentation of the ABR
algorithms by varying the parameters. Table 2 shows the ABR
algorithms considered and the variants we used for training.

At the end of step 1, ABRaider determines the bitrate
while adapts algorithms at the segment level (not the video
level) according to changes in the environment. As a result,
ABRaider outperforms rule-based algorithms in most envi-
ronments. Figure 6 shows that the algorithm is adapted in
terms of bandwidth among various elements constituting
the environment. In the startup stage, ABRaider determines
the bitrate using ThroughputRule, a rate-based algorithm,
because the observations are not enough (e.g., buffer occu-
pancy is 0). In the normal stage, it uses MPC and switches
to another algorithm when it detects anomalies such as vari-
able or very low bandwidth. When an extreme change in
bandwidth is detected, it switches to BBA instead of MPC
relying on bandwidth estimation, and when bandwidth is
suddenly lowered, it switches to BOLA, which is robust to
rebuffering events. Note that this is a typical example of an
adaptation based solely on bandwidth observations, where the
algorithm and its parameters (Table 2) can be switched by
various combinations of observations (e.g., buffer occupancy,
segment length, bandwidth and etc).

2) STEP 2: CONVERTING THE OUTPUT SPACE
We design ABRaider’s algorithm in step 1, but there is still
room for improvement; (i) the policy itself cannot determine
the bitrate because the output is one of the ABR algorithms,
and (ii) it is impossible to enhance its policy without adjusting
the ABR algorithm or adding new ones. To alleviate these
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TABLE 2. Parameters configurations for augmentation. Symbol *
indicates the default value.

limitations, we convert the output space of πθ1 (et |st ) to a
probability of bitrate πθ2 (at |st ). We consider imitation learn-
ing (behavior cloning) to clone the policy πθ1 (et |st ) of step 1
into this neural network. Similar to step 1, the agent obtains
the following trajectory by interacting with the environment:
{s0, e0, a0, r1, · · · , sT−1, eT−1, aT−1, rT , sT }. Here we only
use the observations from the environment and the bitrate
determined by the ABR algorithm (pairs of st and at ). Then
we train the neural network to output the bitrate at when
the state st is given (supervised learning). Specifically, given
input st to the neural network, the KL divergence between
the output probability πθ2 (st ) and the trajectory’s action at is
computed, and gradient descent is applied to the parameters
of the neural network with L2 regularization.

3) STEP 3: ENHANCING THE ALGORITHM
Here we improve the algorithm for environments that cannot
be handled by the existing ABR algorithms. We use rein-
forcement learning to enhance the policy. Once we initialize
the neural network πθ3 (at |st ) in step 3 based on that of
step 2, we train it as follows. The agent collects trajectory
by interacting with the environment, then updates the pol-
icy πθ3 (at |st ) using Equation (1), while the KD divergence
with the policy of phase 2 is added DKL(πθ2 (st ), πθ3 (st )) as
follows:

LCLIP(θ3) = Ê
[
min(rt (θ3)Ât , clip(rt (θ3), 1− ε, 1+ ε)Ât )

]
+DKL(πθ2 (st ), πθ3 (st )) (2)

DKL(πθ2 (st ), πθ3 (st )) intuitively leads to deep exploration
and expects higher rewards in the future rather than immedi-
ate rewards.
Existing RL-based ABR algorithms have environmental

dependence, therefore different strategies are required to
cope with various environments. The offline phase of multi-
phase RL allows ABRaider to have multiple strategies suit-
able for different environments (i.e., generalization). It paves
the way to provide generalized performance to users in the
early stages of the online phase.

C. ONLINE PHASE
We have a generalized ABR algorithm that reinforces the
strengths of the existing algorithms generated in the offline
phase. Although significant QoE gains have been achieved
in the offline phase with multiple strategies (details in
Section VI-B), there is still room for improvement. The simu-
lator and datasets used in the offline phase cannot completely

FIGURE 7. Online training process.

cover the real-world diversity. ABR algorithm needs to be
specialized in each client’s environment, otherwise, it gives
some users poor QoE (i.e., starvation effect). In particular,
we have explained in Section III-A that a single model with
limited capacity is difficult to generalize in various environ-
ments.We nowdescribe the online phase leveraging federated
learning, which allows ABRaider to be trained for a specific
client. It consists of local model updates on the client-side
and global model updates on the server-side. In addition,
we propose the RobustFedAvg algorithm to enhance data
efficiency and prevent data poisoning attacks in federated
learning.

1) CLIENT
We explain each component in the online phase and how they
operate. An overview of the online training is depicted in
Figure 7. When the online phase starts, the client downloads
ABRaider’s global model πθG (at |st ) (at this point, the model
version number and client ID are tagged). The client plays
the videos with the bitrate determined by ABRaider, and
obtains the trajectories {s0, a0, r1, · · · , sT−1, aT−1, rT , sT }.
When the number of time steps in the trajectories exceeds the
threshold 2t (empirically set to 128), the clients update the
model using Equation (1). Finally, the updated local model
πθL (at |st ) is sent to the server with the client ID. By repeating
this process, the client contributes to the improvement of
ABRaider while specializing it to specific environments in a
crowdsourcing manner. Note that to ensure specialization of
the user’s environment, the client downloads the global model
when it does not have a local model or when it is first played.
Otherwise, the local model trained for the user’s environment
will be replaced by a global model generalized to all users,
making specialization difficult.

2) SERVER
Upon receiving the global model request, the server responds
with the latest global model along with the newly generated
client ID. When the server receives the local model from the
client, it stores themodel with the client ID.When the number
of local models reaches the threshold 2m (set to 64), the
global model is updated using the RobustFedAvg algorithm,
a variant of the FedAvg algorithm [28]. The model version
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number and client ID are used to control global model version
and to identify each client, respectively.

3) ROBUSTFEDAVG ALGORITHM
The FedAvg algorithm does not validate the locally updated
models, therefore it has the following shortcomings: (i) since
it simply averages the models obtained from clients, the
global model is not always updated with better performance
(i.e., high variance), (ii) it is vulnerable to the data poison-
ing attack. We propose a RobustFedAvg algorithm, which
extends the FedAvg algorithm in order to increase the data
efficiency and protect against the data poisoning attack. The
pseudo-code is presented in Algorithm 1. The round starts,
when the number of local models held by the server reaches
2m (line 2). The number of clients per group is determined
by the fraction of the clients C (set to 0.1) (line 3). In each
group, m number of clients are randomly selected (line 6).
The server obtains the local models of the selected clients
using a function LoadLocalModel (lines 7-8). The models are
averaged and appended to an array candidate (lines 9-10).
Each model in the candidate array is validated and the global
model from the previous round is replaced by the best model
using a function PickBestModel (lines 11-12). To validate the
candidate models in PickBestModel, we use the simulator in
Section V-B and calculate QoE with Equations (3) and (4).

4) DEPLOYMENT
To expedite the online phase through crowdsourcing,
we hosted ABRaider’s neural network model on a pub-
licly available server [29]. It gives anyone an opportunity
to improve ABRaider by accessing a web page and playing
videos. We prepared several example videos on the media
server and implemented a video player using dash.js [13] on
the webserver. An HTTP interface is configured for exchang-
ing both the trajectories and updated models with the clients.
It is almost impossible to make the ABR algorithm guar-

antee high QoE to all users with a single model in the real
world. Therefore, we train ABRaider online in a distributed
manner at the client level, specializing in users’ individual
environments. Furthermore, each local model is periodically
reflected in the global model, and the baseline of the online
phase is continuously developed.

D. NEURAL NETWORK AND QoE METRIC
Here, we describe the details of ABRaider’s neural network
andQoEmetric used for training and evaluation.We first enu-
merate the inputs of the neural network and then describe each
module and output of the neural network. Finally, we intro-
duce QoEABRaider , a variant of QoElin that consider video
segment length.

1) NEURAL NETWORK
We design a neural network dedicated to the ABR algo-
rithm. ABRaider’s neural network is based on the actor-
critic architecture [30] and consists of a representation layer,
an actor head, and a critic head as depicted in Figure 8. The

Algorithm 1 RobustFedAvg
1: K clients are indexed by k .
2: for each round t = 1, 2, . . . do
3: m = max(C · K , 1)
4: candidate = []
5: for each group l = 1, 2, . . . , dKm e do
6: St = (random set of m clients)
7: for each client k ∈ St in parallel do
8: wkt+1 = LoadLocalModel(k)
9: end for
10: wt+1 =

∑K
k=1

nk
n w

k
t+1

11: candidate.append(wt+1)
12: end for
13: best = PickBestModel(candidate)
14: GlobalUpdate(best)
15: end for

representation layer is a module that encodes the observations
received from a video streaming environment and consists
of a condition encoder and a property encoder. The output
of each encoder is concatenated and fed to the actor head
and the critic head, respectively. The actor head outputs a
probability for each bitrate πθ (at , st ), and the critic head
predicts the reward vπθ (st ) = rt (more precisely, a discounted
sum of rewards). The actor head and critic head consist of two
fully connected layers with residual connections [31] and a
single output layer. This segmentation of the representation
layer has the following advantages. (i) It is easy to visu-
alize inputs passing through the representation layer, there-
fore we can confirm the extracted features and abstractions.
(ii) Since transfer learning can be applied to each encoder in
the representation layer, it allows flexible domain expansion
and reuse in different domains.

We define the inputs of neural network st =

(Ect , Erj, bt , l, xt , ht , v), where Ect is the estimated throughputs
for the past 20 video segments, Erj is the available bitrates
at index j, bt is the buffer occupancy at time step t , l is the
segment length, xt is the number of segments left, ht is the
last selected bitrate, and v is streaming type (i.e., VoD or live
streaming). Note that we (i) separate the segment length from
the available bitrate, not the segment size, and (ii) consider
the streaming type as an input observation. (i) helps a neural
network learn various strategies depending on the segment
length and the available bitrates. (ii) allows a neural network
to have a different strategy according to the streaming type.
For example, the ABR algorithm must be more conservative
in live streaming than VoD because the maximum playback
buffer is limited.

2) QOE METRIC
The authors of MPC have well defined QoEmpc to quantify
the QoE perceived by the users. Despite the author’s intent,
QoEmpc tends to be calculated differently with respect to envi-
ronment configuration (e.g., segment length). They assumed
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TABLE 3. The public datasets we used.

FIGURE 8. ABRaider’s neural network architecture.

a segment length of 4 seconds, however this assumption leads
to the problem of having a different penalty ratio for video
with a segment length other than 4 seconds. To mitigate this
discrepancy, we introduce QoEABRaider (a variant of QoEmpc)
taking into account the segment length,

QoEABRaider =
N∑
n=1

ρLq(Rn)− µ
N∑
n=1

Tn

−

N−1∑
n=1

|q(Rn+1)− q(Rn)| (3)

where Rn is the quality (i.e., bitrate) of a video segment, L and
ρ is segment length and quality weight, respectively. The first
term in Equation (3) is the aggregation of the video bitrate
which corresponds to the quality. In the second term Tn is the
rebuffering time, thus it corresponds to a rebuffering penalty
that negatively affects QoE. We set ρ to 0.25 in order to make
the scale of QoEmpc and QoEABRaider the same. Furthermore,
we consider the following q(·) which has a marginal improve-
ment for higher bitrates and sensitive to rebuffering

q(Rn) = log(Rn/Rmin) (4)

The third term penalizes the quality changes. The weight µ
for rebuffering in Equation (3) is set to 2.66 as used in [7].
We use each QoE component in Section VI-B.

VI. EVALUATION
We evaluate the performance of ABRaider by answering the
following questions.

• How does ABRaider’s offline phase perform compared
to the baseline algorithms?

• Does ABRaider effectively absorb the strengths of rule-
based algorithms? As a result, how does generalization
ability compare to traditional RL approaches?

• How does ABRaider’s online phase effectively special-
ize in a given environment?

A. EXPERIMENTAL SETUP
1) NETWORK TRACES
We use 6 public datasets collected from real networks (details
in Table 3) for training and evaluation.We divide each dataset
by a ratio of 9:1 for training and test sets, respectively.
In addition, synthetic traces are generated using two network
characteristics, bandwidth and variations. For this, we use the
Markovian model; each state represents the average band-
width and the bandwidth variations trigger state transition.
We set the average bandwidth to 3, 6, and 15 Mbps, and the
bandwidth variation to stable, medium and extreme. There
are 9 categories (bandwidth and variation pairs) and each
category has 200 traces of 10,000 seconds long. The total
network trace is about 266 hours.

2) VIDEOS
Followings are used for training and evaluation; (i) Envivio-
dash3, bitrate set is {0.3, 0.8, 1.2, 1.6, 2.6, 4.3} Mbps, and
segment length is 4 seconds. (ii) Big Buck Bunny (BBB),
bitrate set is {0.2, 0.5, 0.8, 1.0, 1.3, 1.9, 3.1, 5.0, 9.9, 14.9}
Mbps, and segment length is 4 seconds. (iii) High Quality
Aerial (HQA) [37], bitrate set is {1.1, 2.3, 3.9, 5.8, 7.9,
12.5, 18.0, 24.0, 38.4, 65.6} Mbps, and segment length is
8 seconds. (iv) Synthetic, we use video segment length and
bitrate range to generate synthetic videos. Similarly, we set
3 levels for each and combine them to create 9 categories.
Uniform random noise is added to the bitrate to mimic vari-
able bitrate. Each category contains 100 videos. Note that
the aforementioned videos are set to a segment length of
0.5 seconds in live streaming, which is low-latency CMAF
configurations of Wowza [38].

3) BASELINE ALGORITHMS
We compare ABRaider to the following state-of-the-art
algorithms.
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FIGURE 9. On average, ABRaider provides higher QoE than others in both VoD and live streaming.

• Rate-based algorithms only use the throughput of past
segments. ThroughputRule and Festive apply moving
average and harmonic mean to past throughputs to pre-
dict the next bandwidth, respectively.

• Buffer-based algorithms determine the bitrate based on
playback buffer occupancy. BBA determines bitrate in
proportion to buffer occupancy, and BOLA uses Lya-
punov optimization.

• ML-based algorithms are data-driven approaches
instead of fixed rules. Pensive uses reinforcement
learning to directly improve QoE, and Fugu trains a
Transmission Time Predictor (TTP) module to predict
the transmission time of future segments, which works
with MPC. However, we use Fugu’s upper bound
performance, AccurateMPC, due to the implementation
issues (Since Fugu is a server-side algorithm and uses
additional internal TCP statistics, we compareABRaider
to AccurateMPC instead of directly comparing to Fugu).

4) IMPLEMENTATION AND TRAINING DETAILS
Our implementation consists of a media server and a client.
We use MPEG-DASH for ABRaider’s client. The server
includes an apache server for handling request and response.
For fair comparison, we use the FCC, Belgium and Norway
datasets in Table 3 to train ABRaider in the offline phase,
the same as in [9]. The video training set includes all videos
except HQA. We use the simulator for offline phase training
of ABRaider, and its implementation follows [9]. We train
ABRaider with Adam optimizer [39] for 300k steps with a
learning rate of 1e−4. We train in PyTorch during the offline
phase, convert the trained model to the TensorFlow model,
and then use TensorFlow.js for the online phase.

B. OVERALL PERFORMANCE
We configure 135 distinct environments using network traces
and videos. In each case, a total of 40 playbacks are per-
formed and the average QoE is calculated. The CDFs of
average QoE for ABRaider and ABR algorithms are pre-
sented in Figure 9. We confirm that ABRaider provides the

best performance in both VoD and live streaming. Specif-
ically, in VoD, ABRaider’s average QoE is 19.9% higher
than Oboe+MPC (2nd best) as shown in Figure 9a. More-
over, ABRaider is superior to AccurateMPC which takes
advantage of perfect bandwidth prediction. To quantify the
ABRaider’s QoE gains, we present detailed values of each
QoE component; quality, rebuffering and smoothness penal-
ties, in Figure 10. It can be seen that ABRaider is not the best
in each component, but it strikes a good balance. ABRaider
uses the most suitable strategy for the environment through
multi-phase RL, and hence achieves QoE improvement.

In live streaming Figure 9b, ABRaider achieves significant
QoE improvements, 42.2% higher than Festive (2nd best).
BBA, BOLA, MPC and Oboe, which use buffer occupancy
as an observation, suffer from the limitation of the playback
buffer in live streaming. Rather, rate-based algorithms Festive
and ThroughputRule show much better performance except
ABRaider. When training, ABRaider considers streaming
type as one of the observations and develops strategies
that fit the environment. Figure 10b shows that ABRaider’s
quality is significantly higher than others, but with similar
rebuffering and quality change penalties. ABRaider has a
slightly higher quality changes (i.e., smoothness penalty) in
live streaming compared to VoD. We assume that in case
of limited buffer occupancy, ABRaider responds quickly to
the estimated throughput to avoid rebuffering. Nevertheless,
the improvement in quality far outweighs the penalties and
eventually leads to high QoE.

A comparison of the ABR algorithm in live streaming
provides an opportunity to confirm several facts. First, live
streaming is one of the extreme cases among various environ-
ments, allowing us to demonstrate the environment-adaptive
ability of the ABR algorithm. Unlike VoD, the maximum
buffer size is very small and video segments are forced to
be less than 1 seconds. At this time, in order to guarantee
high QoE, the ABR algorithm adapts to these environments
and requires different strategies than in VoD. Second, the sen-
sitivity of the ABR algorithm strategy can be demonstrated.
Unlike in VoD, in live streaming, only slightly aggressive or
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FIGURE 10. ABRaider strikes a good balance, and hence it improves QoE.

FIGURE 11. ABRaider constantly provides high QoE in most configurations, except #2 and #7 in live streaming.

conservative decisions have a significant impact on QoE due
to the limited buffer size. For example, even if the current
buffer is full, even some aggressive decisions can lead to
buffer stall. Thus, the comparison of performance in live
streaming can show whether the ABR algorithm is capable
of sensitive adaptations.

C. MICROSCOPIC VIEW
We confirmed the ABRaider’s performance gains in various
environments. Now we look into detailed comparisons in
8 environments, consisting of 6 traces described in Table 3
and 2 synthetic traces (3 Mbps with medium variation
and 6 Mbps with extreme variation). For evaluation, in each
case we assign one of three videos: Envivio, BBB and HQA.
We use the normalized QoE (divided by max. QoE) because
the maximum QoE varies from the environment (depending
on bandwidth, streaming type, video and etc.).

1) SUBTLE ADAPTATION
Normalized QoEs for all schemes are presented in Figure 11.
ABRaider is superior to others in most cases, and especially

stands out in environments #1, #3, #6 and #8. In #1 and #3,
the network bandwidth is considerably lower than the video
bitrate range, and the bandwidth fluctuations are high in #6
and #8. In these environments, ABRaider’s QoE improve-
ment over the 2nd best algorithm is 32.9% on average. This
result reveals that ABRaider’s QoE gain is large in harsh
environments where it is difficult to ensure high QoE. Sen-
sitive adaptation is required in environments where the video
bitrate is relatively higher than the available bandwidth or the
bandwidth is highly variable.

2) ABRAIDER VS. RL-BASED
The performance of the RL-based algorithm is tightly
coupled with the training environment. We can see from
Figure 11a, Pensieve provides high QoE in #2, #4, and #7
which are similar to Pensieve’s training configurations, FCC
and Norway traces and Envivio video. It is no wonder Pen-
sieve outperforms ABRaider in #2 and #7. Unlike ABRaider,
Pensieve is fine-tuned in a given environment therefore it
has a limited policy that provides optimal performance in
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FIGURE 12. Average buffer occupancy.

such environment. ABRaider outperforms Pensieve in most
environments due to the variety of strategies gained through
multi-level RL.

3) ABRAIDER VS. SL-BASED
We compare ABRaider with AccurateMPC instead of
Fugu, a state-of-the-art SL-based ABR algorithm. SL-based
approaches generate data-driven bandwidth predictors and
work with rule-based algorithms such as MPC. As a result,
they provide more accurate observations in MPC, however
it is difficult to have multiple strategies because the rule-
based algorithm determines the bitrate. In Figure 11a, Accu-
rateMPC is slightly better than MPC in most environments
but does not provide good QoE for #8. This is becauseMPC’s
ABR policy determining the bitrate is not sufficient, although
it comes with completely accurate bandwidth predictions.

4) ABRAIDER VS. RULE-BASED
We verify the effectiveness of the offline phase compared
with the rule-based algorithms, ThroughputRule, Festive,
BBA, MPC and BOLA as shown in Figure 11. ABRaider
properly employs and enhances the strengths of these algo-
rithms in order to suit a variety of environments. In addition,
offline phase RL can easily merge new adaptation algorithm
into ABRaider and improves it. This is the core concept of the
offline phase.

5) WHY DOES ABRAIDER WORK WELL?
To analyze ABRaider’s behavior, we compare the buffer
occupancy. Figure 12 shows the buffer occupancy collected
from the entire test environments. As shown in Figure 12a,
ABRaider’s buffer occupancy is evenly distributed between
12 and 22 seconds.We can infer thatABRaider takes different
strategies depending on the environment. On the other hand,
other ABR algorithms tend to maintain a specific buffer level.
ThroughputRule, Festive, BOLA, and Pensieve maintain a
high buffer occupancy (over 20 seconds) regardless of the
environment. Since MPC, Oboe+MPC, and AccurateMPC
have two strategies, aggressive and conservative adaptation,

buffer occupancy can be clustered into two that eventually fail
to respond adequately to the environment.

Given that maximum buffer occupancy is limited in live
streaming, ABRaider maintains between 3 and 3.5 seconds
as shown in Figure 12b. This allows ABRaider to deliver
high QoE while avoiding sudden drops in bandwidth. On the
contrary, BOLA and Pensieve are both conservative, and
MPC and Oboe+MPC are too aggressive, because they do
not differentiate between live streaming and VoD.

D. EXPERIMENTS IN REAL-WORLD
We have seen ABRaider’s QoE gains in various trace-driven
environments. Now we turn our attention to experiments in
practice. Specifically, unlike previous experiments, we imple-
ment a DASH client on a web page and throttle its bandwidth
with network traces. For comparison, we use DYNAMIC
[18], [19], MPC and Oboe+MPC. DYNAMIC is the default
ABR algorithm implemented in dash.js, which is a combi-
nation of ThroughputRule and BOLA. For repeatable and
fair comparisons, we first collect 4 types of network traces,
campus Wi-Fi, public Wi-Fi in coffee shop, 5G-static and
5G-mobile (car), which are the most representative networks
in daily life. The campus Wi-Fi traces contain sharp drop in
bandwidth due to hand-off of meshWi-Fi (average bandwidth
∼20 Mbps). The average bandwidth of coffee shop trace
is about 15 Mbps, but due to the sharing nature of public
Wi-Fi, it varies significantly in the range of 1-30 Mbps.
For 5G traces, we randomly select each from the static and
car categories of the UCC5G dataset. Combining 4 network
traces, 2 videos (BBB and HQA) and streaming types (VoD
or live), 12 experimental environments are configured. Then,
we emulate 4 algorithms while throttling the client’s band-
width using network traces.

1) PERFORMANCE COMPARISON
In Figure 13, we present the experiment results of 4
algorithms in 12 environments. The y-axis represents the
normalized QoE. Again, ABRaider outperforms others
in most cases. Especially, ABRaider achieves significant

VOLUME 10, 2022 53119



W. Choi et al.: ABRaider: Multiphase Reinforcement Learning for Environment-Adaptive Video Streaming

FIGURE 13. Experiment results (#1: HQA in VoD, #2: BBB in VoD, #3: BBB in live streaming).

TABLE 4. Computation time (msec).

performance improvements in #1 and #3 of both campus and
coffee shopWi-Fi environments where sensitive adaptation is
required due to the characteristics of the networks. In a typical
configuration (i.e., #2 of all networks), the performance of the
comparing algorithms is close to ABRaider.
We highlight that ABRaider has almost no performance

discrepancy between real-world and trace-driven results,
although it is trained using simulator and the traces. Its real-
world experiment results are very similar to simulation results
in Figure 11. We can conclude that offline phase training
paves the way to the performance guarantee in the real world.

2) COMPUTING OVERHEAD
Once the ABR algorithm receives observations, the com-
putation time is a factor that determines the time until the
segment download starts. Thus, computation time affects user
engagement in practice, and eventually QoE [40]. In this
sense, it is necessary to consider the computation time in
ABR algorithm. The estimated throughput Ĉk considering
computation time can be written Ĉ = LR

te−ts+d
where, ts and

te are the download start time and end time, respectively.
L is the segment length and R is the bitrate of the segment.
d is the delay until the segment download begins, i.e., sum of
latency and computation time. Intuitively, if smaller segments
are downloaded in a short time, d attenuates the estimated
throughput.

Table 4 summarizes the computation time measured for
all algorithms. ABRaider’s 2.58 msec is considerably shorter
than those of MPC and Oboe+MPC. Despite having multiple
adaptation strategies, ABRaider maintains negligible infer-
ence time.MPCmaximizes the QoEmetric over a look-ahead
window of 5 future chunks [7], resulting in a longer computa-
tion time. When the computation time is long, the algorithm
tends to request low bitrates to fill the buffer quickly, which
in turn leads to low QoE. This phenomena has a negative

impact on live streaming. Considering live streaming (#3),
DYNAMIC yields QoE similar to Oboe+MPC on Campus
Wi-Fi and 5G static, however DYNAMIC excels on Coffee
shopWi-Fi and 5Gmobile with large bandwidth fluctuations.

E. ABRaider VS. SUPER-RESOLUTION
The super-resolution is a very useful technology for improv-
ing the user’s QoE when bandwidth is scarce because
it directly enhances low-quality segments to high quality
using DNN (deep neural network). Here, we compare the
performance of ABRaider and the super-resolution model,
NAS-MSDR [41]. In NAS-MSDR, the server stores both the
video segments and DNN chunks, and the client downloads
either segments or DNN chunks according to its adaptation
algorithm. The more DNN chunks are received, the higher
super-resolution gain can is achieved, therefore full DNN
provides the best performance. In our NAS implementation,
we use MPC for video adaptation and assume that the client
stores the entire DNN model before video playback to obtain
the best performance. We create 5 environments with dif-
ferent bandwidth ranges, FCC (2 and 6 Mbps, stable and
variable) and coffee shop Wi-Fi (used in Section VI-D), and
use News (bitrate set is {0.4, 0.8, 1.2, 2.4, 4.8 Mbps}) [42],
the same video used in NAS-MSDR.

Figure 14 shows the normalized QoE. Compared to MPC,
NAS+MPC yields higher QoE in case of low bandwidth,
FCC-2 Mbps (both stable and variable). On the contrary,
ABRaider is slightly better in network FCC-6 Mbps. The
reason is that as the segment quality increases, the gain of
super-resolution diminishes. In particular, NAS+MPC has
less gain in coffee shop Wi-Fi with the bandwidth configured
up to 20Mbps. AlthoughABRaider does not directly improve
video quality, it can compete with or exceed NAS+MPC in
environment where the bandwidth is not too low.

The super-resolution gain of NAS+MPC decreases when
the bandwidth fluctuates heavily. NAS+MPC can only
enhance the unplayed segments in the playback buffer, there-
fore the higher the buffer occupancy, the more opportunities
for super-resolution. However, bandwidth dynamics hinders
maintaining buffer level high, reducing the chance of super-
resolution. For instance, the QoE gap between NAS+MPC
and ABRaider in networks FCC-variable (2 and 6 Mbps) is
smaller than FCC-stable (2 and 6 Mbps).

53120 VOLUME 10, 2022



W. Choi et al.: ABRaider: Multiphase Reinforcement Learning for Environment-Adaptive Video Streaming

FIGURE 14. ABRaider provides higher QoE than NAS+MPC when the
network bandwidth ≥ 6 Mbps.

FIGURE 15. ABRaider’s variants have similar performance,
no dependence on network traces and videos.

F. DEPENDENCE ON TRACES AND VIDEOS
As we seen in Section VI-C, RL-based algorithm could be
highly dependent on the training environment. In particu-
lar, we can see in Figure 11, Pensieve provides high QoE
in FCC-Envivio (#2), whereas fairly low performance in
Norway-BBB (#3). This shows that trained with FCC and
Norway traces and Envivio video, Pensieve is highly reliant
on videos and bandwidth range. To evaluate the dependence
of ABRaider’s training scheme on network traces and videos,
we create several variants of ABRaider using different net-
work traces and videos. We generate 3 variants using real
network traces, synthetic traces and Pensieve’s video genera-
tor, respectively. Network traces collected in the real-world
have The network traces collected in the real-world have
an average bandwidth of 3.6 Mbps and are configured up
to 20 Mbps. Synthetic network traces consist of an average
of 3, 6, and 15 Mbps with different variations as described
in Section VI-A (maximum of 30 Mbps). Pensieve’s video
generator has a narrow range of bitrates (up to 6 Mbps) and
lacks of consideration for VBR.

Figure 15 presents a performance comparison between the
three variants tested in 135 environments. They show similar
QoE even though they are trained on different network traces
and videos. Here are some inferences from the results. First,
the offline phase is independent of the network bandwidth
range, and only needs various network characteristics such as
high fluctuations and sudden drops in bandwidth. Because of
thisABRaider trainedwith synthetic traces that do not contain
as diverse characteristics as real traces is slightly inferior

FIGURE 16. Online phase provides specialized performance in a specific
environment.

FIGURE 17. Bandwidth distribution of puffer and FCC traces.

to others. Second, ABRaider’s training scheme has almost
no dependence on videos. Although the maximum bitrate of
Pensieve’s generator is 6 Mbps, the offline phase of multi-
phase RL allow ABRaider to learn strategies regardless of the
specific video characteristics.

G. INDIVIDUAL SPECIALIZATION
We confirmed that ABRaider trained only in the offline
phase already achieved significant performance gains. Fur-
ther performance improvements are expected through the
online phase using crowdsourcing. Given the difficulties of
collecting many trajectories to obtain meaningful results in
the online phase, we validate the performance of the online
phase using public datasets (i.e., trace-driven approach). The
client performs local updates using trajectories generated
by playing videos with the traces provided by the video
streaming website, Puffer [12]. We extract network traces
from August 30 to October 16, 2019 from Puffer. The client
trains the global model in specific environments made up of
Puffer traces for about 15 days (360 hours), which allows
ABRaider to specialize in Puffer traces.We refer to thismodel
as ABRaider (Puffer). We evaluate the performance of the
online phase by comparing ABRaider (Puffer) with BBA,
AccurateMPC, and ABRaider.

Figure 16 shows the average QoE for each algorithm in
environments using Puffer and FCC traces. The distribution
of each trace is shown in Figure 17, indicating that the
two environments have different characteristics. ABRaider
(Puffer) outperforms in the environments with Puffer traces.
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TABLE 5. Average QoE for three ABRaiders with and without data
poisoning.

It is intensely trained in particular environments and has a
large improvement beyond the ABRaider (i.e., offline phase).
In FCC traces that have never experienced,ABRaider (Puffer)
is inferior to ABRaider and AccurateMPC. In summary, the
online phase allows ABRaider to evolve into an ABR algo-
rithm that takes individual users into account by intensive
training on specific environments.

H. VALIDATION OF ONLINE PHASE
In this section, we evaluate the data efficiency of the
RobustFedAvg algorithm and robustness against data poison-
ing attacks. We create 5 ABRaiders with different config-
urations: training phase (offline and online), global model
update algorithm (FedAvg and RobustFedAvg) and data poi-
soning attack. To mimic data poisoning attacks, we randomly
select 5% of clients per update (round) and damage their
trajectories.

Table 5 shows the average QoE obtained in 135 environ-
ments. In the absence of the data poisoning attack, all three
ABRaiders perform similarly, so it can be inferred there is
no difference between the offline phase and the online phase.
Note that the data efficient RobustFedAvg requires fewer
time steps (417k) to converge than the FedAvg algorithm
(580k). The RobustFedAvg algorithm ismore resistant to data
poisoning attacks than the FedAvg. In data poisoning attacks,
ABRaider with the RobustFedAvg providesmuch higher QoE
than the FedAvg.

VII. FUTURE WORK
For future work, we extend ABRaider beyond the current
experimental environments to target a public streaming appli-
cation service. Specifically, real services differ in two aspects:
(i) highly dynamic environments, and (ii) heterogeneous
computing power of mobile devices.

First, in fact, when users use a video streaming service,
they usually use a mobile device such as a smartphone.
In addition, since a smartphone has multiple network inter-
faces such as cellular or Wi-Fi, network characteristics fre-
quently change within a short period of time during video
playback by switching network interfaces as well as by
changes in RSSI. Our experimental environment includes
various environments, but does not reflect these characteris-
tics. To alleviate this problems, we need to make the horizon
(i.e., batch size) smaller, but this can lead to unstable learning.
Therefore, to address this limitation, we envision employ-
ing some training techniques such as few-shot learning or
meta-learning.

Second, as mentioned in Section III-B andVI-D,ABRaider
is a lightweightmodel and recentmobile devices are equipped
with neural engine GPUs. However, since existing mobile
devices have different computing powers, the same deci-
sion (i.e., bitrate) can lead to different results. For exam-
ple, on low-performance devices, it takes longer to observe
observations and start downloading segments (i.e., inference
time), resulting in rebuffering events or lowering buffer occu-
pancy. To alleviate this, we need techniques that can adjust
the network capacity according to the device’s performance
while minimizing the accuracy loss. We consider techniques
such as knowledge distillation and scalable neural networks.
At the end of this, by adjusting the complexity of the neural
network according to the computing power, it is possible
to minimize the policy discrepancy between devices with
various performances.

VIII. CONCLUSION
Video streaming is one of the killer applications these days.
Many ABR algorithms are proposed to provide users with
satisfactory video streaming, but it is difficult to guarantee
high QoE in various environments. In this work, we present
the design, implementation and evaluation of ABRaider – a
multi-phase RL-based ABR solution for video streaming.
ABRaider aims to provide high QoE to all users in various
environments in the real world. The offline phase leverages
the strengths of the ABR algorithms and develops multiple
strategies according to the environment (i.e., generalization),
as well as easily can merge new adaptation algorithms. The
online phase allows for specialization in individual client
environments by utilizing its computational power to con-
tinue training. We demonstrate its superiority over conven-
tional approaches through experimentation in broad set of
networks and videos.
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