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ABSTRACT Remote monitoring of patients in the intensive care unit (ICU) is a crucial observation and
assessment task that is necessary for precision medicine. We have recently built a cloud-based intelligent
remote patient monitoring (IRPM) framework in which we follow the state-of-the-art in risk stratification
through machine learning-based prediction, but with minimal features that rely on vital signs, the most
commonly used physiological variables obtained inside and outside hospitals. In this work, we significantly
improve the functionality of the initial IRPM framework by building three machine learning models for
readmission, abnormality, and next-day vital sign measurements. We provide a formal representation of
a feature engineering algorithm and report the development and validation of three reproducible machine
learning predictionmodels: ICU patient readmission, abnormality, and next-day vital signmeasurements. For
the readmission model, we proposed two solutions for data with imbalanced classes and applied five binary
classification algorithms to each solution. For the abnormality model, we applied the same five algorithms to
predict whether a patient will show abnormal health conditions. Our findings indicate that we can still achieve
a reasonable performance using these machine learning models by focusing on low and high quantile ranges
of vital signs. The best accuracy achieved in the readmission model was around 67.53%, with an area under
the receiver operating characteristic (AUROC) of 0.7376. The highest accuracy achieved in the abnormality
model was around 67.40%, with an AUROC of 0.7379. For the next-day vital sign measurements model,
we provide three approaches for selecting model predictors and apply the eXtreme Gradient Boosting (XGB)
and Random Forest Regression (RFR) algorithms to each solution. We found that, in general, the use of the
most recent vital sign measurements achieves the least prediction error. Considering the large investment
from the medical industry in patient monitoring devices, the developed models will be incorporated into
an Intelligent ICU Patient Monitoring (IICUPM) module that can potentially facilitate the delivery of high
quality care by implementing cost-efficient policies for handling the patients who utilize ICU resources the
most.

INDEX TERMS Precision medicine, artificial intelligence, ICU patient monitoring, prediction models,
biomedical informatics.

I. INTRODUCTION
Precision health and medicine [1] is a relatively new initiative
that aims to improve equitable care and overall individual and
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population health through targeted observation and assess-
ment, early detection, prevention, and treatment, as well as
precision health promotion and engagement. Intensive care
units (ICUs) often collect and use a high volume of patients’
data to enable physicians and ICU nurses to make timely
decisions in delivering high-quality critical care. The use

52418 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8394-9566
https://orcid.org/0000-0002-5363-2541
https://orcid.org/0000-0003-2047-4759
https://orcid.org/0000-0002-3202-1127


K. Alghatani et al.: Precision Clinical Medicine Through Machine Learning

of artificial intelligence (AI) and machine learning (ML)
methods to improve the care and treatment of critically ill
patients has grown substantially in recent years [2], [3].
ML approaches for analysis of clinical datasets offer great
promise for the delivery of personalized medicine and tar-
geted treatment, but these approaches must be customized
and optimized [4], [5] for each specific application.

We have recently developed a cloud-based intelligent
remote patient monitoring (IRPM) framework [6]. In this
work, we significantly improve the functionality of the initial
IRPM system by building three machine learning models
for three clinical outcomes: readmission, abnormality, and
next-day vital sign measurements. Our motivation for build-
ing those three machine learning models is two-fold: 1) to
achieve the goal of studying the three clinical outcomes (read-
mission, abnormality, and next-day vital sign); 2) to test if
more powerful machine learning models can be deployed in
the IRPM framework.

A. INTELLIGENT REMOTE PATIENT MONITORING
(IRPM) FRAMEWORK
Our IRPM framework consists of the following modules
(Figure 1):

1) Intelligent ICU patient monitoring (IICUPM) module:
through the IICUPM module’s interface, the hospital
system can load clinical and demographic characteris-
tics for either an individual patient or a patient popula-
tion. The module provides five predictive ML models
to process the data and return risk scoring results.

2) Out-of-hospital module: unlike the IICUPM module,
this module targets individual patients. Through the
module’s interface, a patient’s readings from wearable
devices (e.g., heart rate and SPO2) are uploaded into
an abnormality ML prediction model, which returns an
overall assessment or risk scoring result.

3) IRPM core system and database: the IICUPM and
out of hospital interfaces interact with the core IRPM
system, which sends the data to the ML model devel-
opment modules. After processing the data, the ML
models send the results back to the IRPM framework
to record them in the database.

B. CLINICAL CONSIDERATIONS
The use of prognostic models is a common practice in
precision clinical medicine to formally combine predictors
from which risks of a specific endpoint can be calculated
for individual patients. The clinical goal is to ensure that
patients are placed on the appropriate care pathway, including
proper ICU type and level of care. The proposed frame-
work provides not only healthcare provider-focused services
but also patient-facing digital health services through the
out-of-hospital module. This article sheds light on a por-
tion of the ongoing development of the IRPM framework.
We developed a prototype for a dashboard that can be used
for triaging patients and navigating care to support clinical

FIGURE 1. The intelligent remote patient monitoring (IRPM) framework is
comprised of intelligent ICU patient monitoring (IICUPM) and
out-of-hospital modules. MIMIC stands for the medical information mart
for intensive care.

decision-making by using predicted risk to preemptively
triage patients across different levels of the healthcare system.
The results of applying the feature engineering algorithm and
prognostic ML models will help determine the proper level
of care based on the predicted risk level. Therefore, high-risk
patients can be managed at higher level care facilities while
lower-risk patients can be managed at lower levels of care.

C. SUMMARY OF CONTRIBUTIONS
The contributions of this article are three-fold:
• Building on our recent development of the IRPM frame-
work, we provide three moreMLmodels in the IICUPM
module for risk stratification of ICU patients, includ-
ing readmission, abnormality, and next-day vital sign
measurements.

• In addition to providing three transparent and repro-
ducible ML models, we also present details of a feature
engineering algorithm that can be deployed in different
critical care settings.

• We provide two different solutions for data with imbal-
anced classes and three different variations for pre-
dicting next day vital sign measures to show that our
solutions can predict health outcomes with reasonable
performance. We evaluated all proposed solutions and
applied them to ICU patient data from a publicly avail-
able database to determine the best use on our IICUPM
module.

II. RELATED WORK
We discuss research efforts on building ML models to pre-
dict ICU-related outcomes. Some researchers have studied
patient readmission to the ICU as an outcome. For example,
Rajkomar et al. [7] developed a deep learning (DL) model
to predict 30-day unplanned hospital readmission. In our
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study, we predict readmission to the ICU during the same
hospitalization rather than readmission after discharge from
the hospital. Some research has involved the development
and deployment of ML models to predict health status using
the Medical Information Mart for Intensive Care (MIMIC)
database [8]–[10]. However, most of these investigators have
used an exhaustive list of features to achieve higher accuracy
in their models. We discuss some of them below.

According to the MIMIC website, only a few studies
describe the development and deployment of prediction mod-
els for ICU readmission using the MIMIC database. To the
best of our knowledge, predicting ICU patient readmis-
sion and abnormality based on balanced classification using
only vital signs and demographic attributes from MIMIC
has not been studied previously. Nor are we aware of any
research performed on the prediction of ICU patients’ next-
day vital sign measurements. Lin et al. [11] developed mod-
els to predict ICU patient readmission within 30 days of
discharge using recurrent neural network (RNN) with long
short-termmemory (LSTM). They used several features from
the MIMIC III database, including 17 chart events, 4 demo-
graphic features, and the International Classification of Dis-
eases, 9th Revision (ICD-9) code. In our study, we predict
patient readmission without prior knowledge of their medical
conditions or diagnoses.

Fialho et al. [12] developed a model for predicting ICU
readmission using patient data before ICU discharge. Their
dataset included data from 893 non-readmitted patients and
135 readmitted patients. They used several features from
MIMIC-II, including 6 monitoring signals, the results of
15 laboratory tests, and urine output. In our research, we used
data from only the first day of each patient’s ICU stay and
only 11 input features. We include imbalanced techniques to
produce a balanced classification with the same total number
of samples in both the readmitted and non-readmitted patient
classes.

Shin et al. [13] built three prediction models using two
ML algorithms to predict hospital readmission in pediatric
asthma patients from a regional hospital in Memphis, TN.
They also used 12 features, including demographic attributes,
biomarkers, and socioeconomic factors. The goal was to pre-
dict readmission within one year of the initial hospitalization.
They compared a model based solely on socioeconomic fea-
tures derived from the patients’ residential neighborhood to
a model that is based on clinical features derived from the
patient record. They found that the model based on socioeco-
nomic factors achieved accuracy that is as good as that of the
biomarker-based model.

Golmaei and Luo [14] examined a novel DL framework
based on a deep patient representation. They assessed the
framework on 30-day hospital readmission using patient data
extracted from the MIMIC-III database. Their results show
that the novel framework achieves a better predictive power
than do the baseline models.

Pakbin et al. [15] developed risk-of-ICU-readmission
models for predicting readmission to the ICU at different

target times. They studied patient ICU readmission after a
hospital discharge and during single hospital admission and
extracted several features from the MIMIC III database.

Momenzadeh et al. [16] applied cluster centroids as the
undersampling method aimed to reduce the majority class
samples. The k-means clustering technique was used to
divide the majority class and generate k clusters. Their strat-
egy is to use different numbers of clusters. The number of
clusters is equal to the minority class and two and three times
greater than the minority class. Their strategy has an impact
on accuracy and avoids model over-fitting. Akter et al. [17]
applied several unsuperivsed approaches to cluster breast
cancer patients, including K-Means and several Hierarchical
Clustering techniques. The highest accuracy achieved in their
case was 70.91% using Hierarchical Clustering with average
linkage.

III. THE QUANTILES APPROACH
In this section, we introduce the quantiles approach that not
only focuses on patient’s characteristics in the baseline, but
also performs feature engineering steps to add richer features
to the data.

A. PATIENT BASELINE VITAL SIGN FEATURES
In general, a patient will have a set of vital sign readings in the
baseline that are often normally distributed [18]. Vital signs
include body temperature (BT), heart rate (HR), respiration
rate (RR), arterial systolic blood pressure (SBP), arterial
diastolic blood pressure (DBP), peripheral oxygen saturation
(SpO2), and blood glucose level (GL). These vital signs are
readily obtainable from the electronic health record (EHR)
because they are measured frequently.

B. PATIENT DETERIORATING CONDITIONS
Vital signs are recorded in a sequential manner and research
studies often process these features using either time series
analyses or by aggregating them for each patient using some
measure (e.g., mean or median). Thus, when dealing with
sequential vital sign readings, some researchers [12] use the
mean value of the vital sign observations rather than using
observations that may deviate far from the median. In our
approach, we argue that a patient’s deteriorating condition
often happens at a high or low level of measurement. Thus,
we believe that these observations are essential, as they cap-
ture dramatic changes in a patient’s health status.

C. FEATURE ENGINEERING ALGORITHM IN THE
QUANTILES APPROACH
We have previously proposed the notion of the quantiles
approach [6], in which we perform feature engineering by
emphasizing high and low quantiles of a patient’s vital sign
observations. Our previous work showed that the quantiles
approach provides a richer dataset by engineering a list of new
features. Algorithm 1 shows the steps performed by the fea-
ture engineering algorithm. The algorithm has three inputs:
a list of patient samples P, and two desired probabilities
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Algorithm 1 Feature Engineering Algorithm
1: INPUT:P, PPFH , PPFL
2: OUTPUT:VQuantiles
3: for pi ∈ P do
4: S ← ICUStays(pi)
5: for sj ∈ S do
6: Vbaseline← Vitals(sj, day1)
7: for vk ∈ Vbaseline do
8: vk ← Normalize(vk )
9: vk ← SortAscending(vk )
10: Meank ← mean(vk )
11: Means← Means+Meank
12: ObsinQ1toQ4← count(vk )
13: DiscreteValueL ← PPF(vk ,PPFL)
14: DiscreteValueH ← PPF(vk ,PPFH )
15: for obsi ∈ vk do
16: if obsi ≤ DiscreteValueL then
17: QObsk ← QObsk + obsi
18: ObsinQ1← ObsinQ1 + 1
19: end if
20: if obsi ≥ DiscreteValueH then
21: QObsk ← QObsk + obsi
22: ObsinQ4← ObsinQ4 + 1
23: end if
24: end for
25: ModMeank ← mean(QObsk )
26: ModMeans← ModMeans+ModMeank
27: ModSDk ← standardDev(QObsk )
28: ModSDs← ModSDs+ModSDk
29: QPercentk ←

QuantilePercentage(ObsinQ1toQ4,ObsinQ1,ObsinQ4)
30: QPercents← QPercents+ QPercentk
31: end for
32: end for
33: end for
34: VQuantiles← Means+ModMeans+ModSDs+QPercents
35: return VQuantiles

for the percent point function (PPF), PPFH and PPFL . The
algorithm iterates through all patients in P and for each
ICU stay S, extracts the baseline vital sign features Vbaseline
from the first day only, normalizes the observations in those
features using the probability density function (PDF), and
sorts them in ascending order. The algorithm next extracts
two discrete values using the PPF function, DiscreteValueL
and DiscreteValueH and uses these values as thresholds to
extract observations that fall in low and high quantile ranges.
For each vital sign in Vbaseline, it calculates the following new
features: the list of modified means ModMeans, the list of
modified standard deviationsModSDs, and the list of quantile
percentages QPercents of each baseline vital sign feature.
Adding the new features to the baseline features VBaseline
produces a new list VQuantiles that achieves a better predic-
tive power than would be obtained from only baseline vital

sign features. The quantiles percentage,Qpercent , is calculated
according to equation (1). ObsinQ1 and ObsinQ4 represent
the vital sign observations that occur in the first and fourth
quantiles, respectively.

QPercent =
#ObsinQ1 + #Obs.in Q4

#ObsinQ1toQ4
(1)

IV. METHOD
A. POPULATION SELECTION AND DATA EXTRACTION
We extracted hospital admission data from the publicly avail-
able ICU adult patient database, MIMIC-III (v1.4) [9]. The
database is structured such that each hospital admission may
contain one or more ICU stays and each ICU stay may
span several days. On each day, a patient may have several
recorded observations. We started with a total of 61,532 ICU
stays (Figure 2) and extracted data recorded on only the
first day of a patient’s ICU stay, which resulted in a total
of 45,254 unique ICU stays with demographic features (age,
sex, height, and weight). We combined that with 59,241 ICU
stay encounters that contained data pertaining to seven vital
sign features (BT, HR, RR, SBP, DBP, SpO2, and GL). The
total after merging was 44,626.

FIGURE 2. Population selection chart.

B. MODEL CONCEPTUALIZATION AND
VARIABLE SELECTION
Table 1 summarizes the rationale behind each model. The
goal of the readmission model is to predict readmission risk,
which might be an indicator that the current ICU type is not
the best choice for the patient. The hospital system might
decide to delay a patient discharge and increase the care level
or move a patient from one ICU type to another. The out-
come variable for the readmission model is a binary feature
indicating whether a patient has been readmitted to the ICU
(readmission = 1) or not (readmission = 0) within a single
hospital admission. We define readmission as an incident in
which a patient had been admitted to the ICU, discharged to
the appropriate hospital population, and readmitted again to
the ICU during a single hospital admission. If a patient had
been admitted to the ICU and discharged once during a single
hospital admission, that patient is not considered readmitted.
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TABLE 1. Model conceptualization and variable selection.

The goal of the abnormality model is to predict the pool of
patients who risk showing undesired health conditions. For
the abnormality model, the outcome is the abnormality of a
patient, which is a binary feature indicating whether a patient
is normal (normality = 0) or abnormal (normality = 1).
We define abnormality as the presence of one or more of
the following undesired health conditions in a patient record:
death, readmission to the ICU, or prolonged ICU stay.

Readmission and abnormality are different clinical goals.
To measure abnormality, we use 3 metrics, one of which is
the readmission flag. To measure readmission, we use only
the readmission flag as ametric. The ‘‘within a single hospital
admission’’ criterion applies to the readmission flag in both
models.

The goal of the next-day vital sign measurements model
is to predict ICU patients’ physiological variables daily, thus
providing early warnings about potential deterioration in a
patient’s condition based on prior physiological measure-
ments in the baseline. We predict the mean of the vital sign
readings for each vital sign on the next day.

We used the six main vital sign measurements (BT, HR,
RR, SBP, DBP, and SpO2) along with GL and the five demo-
graphic attributes (age, sex, weight, and height) as predictor
variables. Table 2 summarizes the cohort characteristics for
the different variables used in these models. The vital sign
measurements are calculated based on the first day of the
patient’s ICU stay.

C. READMISSION MODEL
The readmission prediction reduces to a binary classification
problemwith two classes: non-readmitted (N= 41,597 stays)
and readmitted (N = 3,029 stays). This results in data with
imbalanced classes [19] with 93.21% of the patients in the
non-readmitted class and only 6.79% in the readmitted class.

TABLE 2. Patient baseline characteristics.

1) SAMPLING APPROACHES
Several re-sampling approaches support the data with imbal-
anced classes. Two of the most popular ones are the
under-sampling of the majority class and the over-sampling
of the minority class. The readmitted patients in our case
represent the minority class (3,029 samples), while the
non-readmitted patients represent the majority class (41,597
samples). Under-sampling may result in discarding patient
data that could causemodel under-fitting, while oversampling
generates new samples by duplicating samples in theminority
class. The later may require more computational power to
process the extra samples (83,194 samples compared to only
6,058). Thus, we elected to use the under-sampling approach.
To overcome the limitation in this approach, we apply another
approach that involves clustering patients in themajority class
into equally sized groups before merging them back together.
This mitigates the lack of variation limitation introduced by
under-sampling (e.g., selecting patients that belong to a single
ICU type or to a single hospital).
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• Under-sampling of majority class re-sampling: in this
approach, we kept the 3,029 patients in the minority
class and randomly removed patients from the majority
class to retain only 3,029 of the total 41,597 patients in
that class.

• Clustering of majority class re-sampling: in this
approach, we applied the k-means clustering algorithm
to cluster the 41,597 patients in the majority class into
equally sized groups (in this case, 5 clusters of 606 sam-
ples each) before merging them back together to obtain
3,029 patients (Figure 3). The reason for selecting 5 clus-
ters is that after applying the elbowmethod, we observed
that the WCSS value reduces significantly at 5 clusters.

FIGURE 3. Clustering re-sampling.

2) CLASSIFICATION MODEL DEVELOPMENT
We built two variations of the readmission model, one
using the baseline approach and one using the quantiles
approach. We ran each model variation on both the imbal-
anced patient population before applying any re-sampling
approaches and the balanced population after applying the
re-sampling approaches described above.

We used supervised learning techniques because the model
outcomes are labeled. In particular, we applied five common
ML binary classification algorithms: 1) logistic regression
(LR); 2) linear discriminant analysis (LDA); 3) random forest
(RF); 4) k-nearest neighbors (KNN); and 5) support vector
machine (SVM).

3) MODEL EVALUATION
For the imbalanced dataset, we randomly split the dataset
into 75% training (N = 33,469) and 25% test set
(N = 11,157). We then trained the readmission models
using the training set and 10-fold cross-validation to avoid
over-fitting and validated their performance using unseen
data as a test set.

For the datasets resulting from the under-sampling and
clustering approaches, we randomly split the datasets into
training (N = 4,543) and test (N = 1,515) sets. We then
trained the readmission models using the training sets and
10-fold cross-validation and measured the performance on
an unseen test set from the same population. We used the

accuracy along with 95% confidence interval (CI), sensitiv-
ity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) as performance metrics.

4) HYPER-PARAMETER TUNING
We performed hyper-parameter tuning by running a grid
search to select the best parameters in the different
algorithms.

• For the under-sampling approach, we set the maximum
number of features to consider for finding a good split in
RF to four for models in both the baseline and quantiles
approaches. We set the estimated number of trees in an
RF to 300 for models in both the baseline and quantiles
approaches. We used the radial basis function as a kernel
type for SVM and set the penalty parameter of error,
C, to 0.20 for models in the baseline approach and to
0.60 for models in the quantiles approach.

• For the clustering re-sampling approach, we set the esti-
mated number of trees in an RF to 200 for models in
both the baseline and the quantiles approaches and the
number of features was selected automatically. We used
the radial basis function as a kernel type for SVM, and
set C to 0.10 in the baseline approach and to 0.50 in the
quantiles approach.

D. ABNORMALITY MODEL
The abnormality prediction reduces to a binary classification
problem with two classes: normal (N = 19,620 stays) and
abnormal (N = 25,006 stays). This results in a data with
imbalanced classes, with 43.97% of ICU stays in the normal
class compared to 56.04% of patients in the abnormal class.
We randomly removed 5,386 samples from the abnormal
patients’ class to obtain a balanced classification with a total
number of 39,240 ICU stays in both classes.

1) CLASSIFICATION MODEL DEVELOPMENT
We built two variations of the abnormality model, one
using the baseline approach and the other using the quan-
tiles approach. Since the model outcome is labeled, we ran
supervised learning algorithms on each model variation.
We applied the same five ML algorithms used in the read-
mission model: LR, LDA, RF, KNN, and SVM.

2) MODEL EVALUATION
To assess the goodness of fit in our classification models and
validate them on an unseen test set from the same popula-
tion, we compared the accuracy of the test set and the mean
accuracy of the trainedmodels alongwith corresponding 95%
CI. We compared the sensitivity, specificity, PPV, and NPV
on the test set. We also examined the difference in AUROC
scores between the test and training sets.

3) HYPER-PARAMETER TUNING
For RF, we set the maximum number of features to consider
for finding a good split in RF to four for the baseline and

VOLUME 10, 2022 52423



K. Alghatani et al.: Precision Clinical Medicine Through Machine Learning

quantiles approaches. We set the estimated number of trees in
a random forest to 600 for both and the maximum number of
features is four. For SVM, we used the radial basis function
as a kernel type, and set the penalty parameter of error, C,
to 0.20 in the baseline and to 0.60 in the quantiles approach.

E. NEXT-DAY VITAL SIGN MODEL
Since the outcome variable for the next-day vital sign mea-
surements prediction is numeric, the classification problem
can be solved using a regression model. We built predictive
models to predict the mean of the readings for each vital
sign for the next day for each patient using only the baseline
approach.

1) SUB-POPULATION SELECTION
In this model, we considered vital signs for more than just
the first day of the ICU stay. Here we extracted every day’s
vital signs after taking the mean of the readings for each sign.
Also, since the goal is to predict the mean of each vital sign
readings over several days, we included only patients who
stayed in the ICU for more than one week. The total number
of ICU stays corresponding to those patients was N = 7,438
(of the total N = 44,626 in Figure 2).

2) REFERENCE TIME (BASELINE) SELECTION APPROACHES
We explored three variations of the next-day vital sign mea-
surement prediction (the values considered for evaluating the
model on the test set):

• Day-by-day approach: we considered readings from the
most recent day to predict the readings for the following
day. More formally, given patientj, who stayed in the
ICU for k days, to predict vital sign measurements on
dayk+1, we use vital sign measurements from dayk as
model inputs.

• Average measured approach: we considered long-term
readings from all days in the most recent week to predict
readings on the following day. More formally, given
patientj, who stayed in the ICU for k days, to predict the
vital sign measurements on dayk+1, we use the average
of the measurements from dayk to day1 as model inputs.
In our case, we considered measurements for 1 week.

• Error adjustment approach: we ignored readings from
the distant past and focus on short-term readings from
the most recent day along with any error introduced
in predicting the readings for that day. More formally,
given patientj, who stayed in the ICU for k days, to pre-
dict the vital sign measurements of dayk+1, we use the
measurements of daykand the error between the actual
and predicted values of dayk .

3) CLASSIFICATION MODEL DEVELOPMENT
We used supervised ML algorithms since we rely on previ-
ously known vital sign measures. In particular, we used the
extreme gradient boosting (XGB) and RF regression (RFR)
algorithms to develop six next-day vital sign measure

prediction models: three models that apply XGB on the three
approaches discussed above and three models that apply RFR
on those three approaches.

4) MODEL EVALUATION
We split the ICU stay dataset (N = 7,438) into training (N =
5,578) and test (N= 1,860) sets, trained the models using the
training set, and measured the performance on the test set.

We report the error between the predicted and actual values
in the test set using the coefficient of variation of root mean
squared error (CV-RMSE). We use the mean of dependent
variable value to normalize the RMSE (CV = RMSE/ the
mean of the real observations on the test set)

V. RESULTS
A. READMISSION MODEL
We present the results of the two patient population selection
approaches in the readmission model.

1) UNDER-SAMPLING OF MAJORITY CLASS
The accuracy of predicting readmission on the test set was
55.45% using RF and the quantiles approach and 55.25%
using SVM and the quantiles approach. The highest improve-
ment in accuracy of the readmission model using RF and
the quantiles approach on the test set was 2.57%. RF also
achieved the highest specificity (0.59), which indicates that
the model using the RF algorithm and the quantiles approach
can identify which patients will not be readmitted to the ICU
better than the other algorithms. SVM achieved the high-
est sensitivity (0.56), which indicates that the model using
the SVM algorithm and the quantiles approach can identify
patients at risk of ICU readmission better than the other
algorithms. The SVM algorithm using the quantiles approach
also produced the highest AUROC (0.59) in predicting the
ICU patients’ readmission on the test set.

2) CLUSTERING RE-SAMPLING APPROACH
The highest readmission model accuracy using the clustering
re-sampling approach on the test set was 67.53% using the
RF algorithm and the quantiles approach, while SVM and
the quantiles approach achieved 64.10% accuracy (Table 3).
When comparing the baseline and quantiles approaches, the
improvement in accuracy on the test set was 6.03% using
RF and 2.00% using SVM. This suggests that the clustering
re-sampling approach achieved better improvement in model
accuracy than did the under-sampling approach.

SVM achieved the highest sensitivity (0.758), which indi-
cates that the model using SVM and the quantiles approach
can identify patients at risk of readmission better than the
other algorithms. RF, on the other hand, achieved the highest
specificity (0.606), which indicates that the model using RF
and the quantiles approach can identify patients who will not
have ICU readmission risk better than the other algorithms.

We ran Cohen’s kappa score function to express the level of
agreement between the predicted and real outcome of interest
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TABLE 3. Readmission model results using the clustering re-sampling approach and different performance metrics.

FIGURE 4. Comparison between the ROC curves for the different ML algorithms in the readmission model (with clustering re-sampling) using the
baseline (left) and quantiles (right) approaches.

TABLE 4. Readmission model results using the clustering re-sampling
approach and AUROC metric.

on the data set (observed and predicted for cases in the test
set). We found that the highest score was 0.353 using the
quantiles approach and the RF algorithm.

Table 4 shows the AUROC results of the readmission
model on the training and test sets using the baseline and
quantiles approaches and the five ML algorithms.

TABLE 5. Summary of the AUROC and accuracy metrics in the
readmission model.

Figure 4 depicts a comparison between the ROC curves
for the five ML algorithms using the baseline (left) and
quantiles (right) approaches. The figures show that RF had
the best AUROC with both approaches, but it improved from
0.67 for the baseline approach to 0.74 using the quantiles
approach.

Our two proposed population selection solutions show
that the clustering re-sampling approach achieved the high-
est AUROC score compared to the under-sampling solution,
indicating that the model using the clustering re-sampling
approach was better at distinguishing between the positive
and negative classes.
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TABLE 6. Abnormality model results using the different performance metrics.

Table 5 summarizes the AUROC and accuracy results in
each of the two solutions and the corresponding improvement
in AUROC for the clustering re-sampling approach over the
under-sampling approach.

B. ABNORMALITY MODEL
The accuracy of predicting abnormality on the test set with
the quantiles approach was 67.40% using the RF algorithm
and 66.86% using the SVM algorithm. Table 6 shows the
abnormality model performance on both the training and
test sets using the baseline and quantiles approaches and the
different ML algorithms.

The best improvement in model accuracy on the test set
was 3.30% using RF, while it was 2.73% using SVM. The RF
algorithm achieved the highest sensitivity (0.657) using the
quantiles approach, which indicates that the model using the
RF algorithm and the quantiles approach can identify abnor-
mal patients better than the other algorithms. SVM achieved
the highest specificity (0.723), which indicates that the model
using the SVM algorithm and the quantiles approach can
identify normal patients better than the other algorithms.

We found that the highest Cohen’s kappa score was
0.348 using the quantiles approach and the RF algorithm.

Table 7 shows the AUROC results of the abnormality
model on both the training and test sets using the baseline
and quantiles approaches for the different ML algorithms.
Figure 5 shows the ROC curves for the algorithms in the
baseline approach and the quantiles approach, respectively.
The RF algorithm using the quantiles approach produced the
highest AUROC (0.74).

C. NEXT DAY VITAL SIGN MODEL
We present the detailed results for the RFR algorithm since it
out-performed XGB across all three approaches. The bottom

TABLE 7. Abnormality model results using the AUROC metric.

rows of Tables 8, 9,and 10 show the mean error for each
vital sign using the CV-RMSE metric after applying the RF
Regression algorithm using the three approaches for next-day
vital sign measurements.

Figure 6 depicts a visual representation of the error com-
parison curves using the three approaches and the RF Regres-
sion algorithm for the seven vital signs.

Overall, the RFR algorithm produced less error, on aver-
age, in all three approaches compared to XGB. While the
average errors for the three approaches are very close,
the average measured approach produced the highest error
among all three. The error adjustment approach achieved
the lowest mean error in diastolic BP, respiration rate, body
temperature, SpO2, and glucose level, while the day-by-day
approach achieved the lowest mean error in heart rate and
systolic blood pressure.

These findings indicate that RFR performed better than
XGB, and that the error adjustment approach performed
best while the average measured approach performed worst
among all three approaches. This may indicate two things:
i) the distant past does not help much in predicting values
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FIGURE 5. Comparison of the ROC curves in the abnormality model using the baseline (left) and quantiles (right) approaches.

TABLE 8. CV-RMSE results using the day-by-day approach and the RFR algorithm.

TABLE 9. CV-RMSE results using the average measured approach and the RFR algorithm.

TABLE 10. CV-RMSE results using the error adjustment approach and the RFR algorithm.

for the next day vital sign measurements as much as the near
future does; ii) considering the error of the previous day helps
reduce the prediction error for the next day.

VI. DISCUSSION
There are other approaches for sampling, which we could
have applied in the readmission model to solve the data with
imbalanced classes. For instance, the synthetic minority over-
sampling technique (SMOTE) [20] is one method for solving
data with imbalanced classes. SMOTE will over-sample the
minority class by generating synthetic instances. However,
SMOTE suffers from the problem of over-generalization
because it propagates the minority class region and readmits

it to the ICU class without considering the majority class,
which is not-readmitted to the ICU class. However, we built
our solution (the clustering re-sampling approach) to solve
the data with imbalanced classes in the readmission model
using k-means to maintain a variety of the population with-
out duplication and without using under- or over-sampling
techniques.

In the abnormality model, we relied on three criteria
to define abnormality. It would be worthwhile to explore
the impact of adding other relevant abnormality indicators
such as cardiac problems and organ disorders. The patient
abnormality model might improve if we included more mod-
els in the IICUPM module.
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FIGURE 6. Comparison between the error produced by the three next-day vital sign measurement prediction approaches using the
RFR algorithm for the seven vital signs.

1) QUALITATIVE COMPARISON WITH OTHER APPROACHES
We compared the performance of our models to those of other
researchers. For the readmission model, we achieved 67.53%
accuracy and an AUROC of 0.74 using only seven vital
sign features, four demographic attributes, and 21 features
engineered from those original features. Other researchers

used excessively more features to achieve similar or compa-
rable accuracy. For instance, Lin et al. [11] used 17 patient
EHR events, four demographic features, and the International
Classification of Diseases, Ninth Revision (ICD-9) code to
achieve an AUROC of 0.79. We predict patient readmis-
sion without prior knowledge about their medical conditions
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or diagnoses. Fialho et al. [12] used six monitoring signals,
15 laboratory tests, and urine output to build a model with
data with imbalanced classes and achieved an AUROC of
0.72. We used data from only 11 features from the first
day of patients’ ICU stay and we provide two solutions
to handle the class imbalance problem. We include imbal-
anced techniques to produce a balanced classification with
the same total number of samples in both the readmitted
and non-readmitted patients’ classes. Moreover, we achieved
an AUROC of 0.73757. Rajkomar et al. [7] developed a DL
model to predict 30-day unplanned hospital readmissions and
achieved an AUROC between 0.75 and 0.76. In our study,
we predict ICU readmission during the same hospitalization
rather than readmission after hospital discharge.

Pakbin et al. [15] developed different imbalanced models
for predicting ICU readmission at various time points using
patient data before ICU discharge. They used all data avail-
able from MIMIC-III, including ICD-9 admission diagnosis
codes. They achieved an AUROC of 0.76 for risk of ICU
readmission after discharge at 72 hours. They achieved an
AUROC of 0.84 for risk of ICU readmission within a single
hospital admission. In our study, we built a balanced ICU
readmission model with fewer features.

2) LIMITATIONS
Our approach, like other ML approaches, has a generalizabil-
ity limitation. In this study, we trained our models based on
only the MIMIC database, which represents a single hospital
in Boston, MA. Had we applied the models to various patient
data from different demographic backgrounds and locations,
we could have obtained different results. Also, all prognostic
models developed in clinical settings are prone to producing
false positives, and our approach is no exception. The method
often used to mitigate that in clinical settings is by involving a
human-in-the loop by usually having a critical care specialist
manually provide a qualitative review of the false positive
alerts.

3) CLINICAL IMPLICATIONS
The focus of this work is to extend the IICUPM module
functionalities by incorporating three more prediction mod-
els. After exploring the best available approach for achieving
our clinical goals (i.e., abnormality, readmission, and next
day vital sign risk stratification and prediction), we use our
findings as a way to choose the best approaches in our IRPM
framework. We incorporated our prediction models into a
cloud-based Intelligent Remote Patient Monitoring (IRPM)
framework. By integrating the predictive functionalities of
the IICUPM module into existing decision support systems
already used in clinical workflows we may provide signifi-
cant practical implications for cost reduction and quality of
care improvement.

4) TIME COMPLEXITY
Our feature engineering algorithm runs in θ (P.Vbase.S.vk )
time since it requires four nested loops: a loop through all

patients (P); a loop through the ICU Stays S of each patient; a
loop through each vital sign in Vbase; and a loop through each
observation Obsi of each vital sign vk . Thus, the algorithm
heavily depends on the population size and the number of
observations for each vital sign. However, our algorithm has
several assumptions. First, we always focus on only seven
vital signs, Vbase is always constant. Also, the number of ICU
stays in our case is always the same, on average. Therefore,
the time complexity can be minimized to θ(P.vk ). Finally,
we mitigate the overhead caused by the number of vital sign
observations by pre-processing observations within each vital
sign feature (Section III-C).

VII. CONCLUSION
Machine learning approaches applied to clinical datasets offer
great promise for the delivery of personalized medicine for
targeted treatment of human disease. Building on top of our
recent development of an intelligent ICU patient monitor-
ing (IICUPM) framework, we provide three reproducible risk
stratification ML models. Our findings indicate that we can
build balanced predictionmodels for ICU patient readmission
and abnormality with better accuracy using a combination
of ML and a quantiles approach that relied on only vital
signs. To avoid inaccurate results and poor accuracy in the
readmission model, we proposed two solutions for the data
with imbalanced classes: one that uses the under-sampling
method and one that uses the clustering re-sampling method.
We also provide three approaches for selecting predictors of
next-day vital sign measurements in reference to a baseline.
We built regression models using two different classification
algorithms to each approach. In general, we found that the
error adjustment approach performed best while the average
measured approach performed the worst. The result indicates
that, generally, using the most recent vital sign measure-
ments achieves the least error especially when we account
for previous errors. In addition to providing three transparent
and reproducible ML models, this work contributes a feature
engineering algorithm that can be deployed in different criti-
cal care settings.
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