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ABSTRACT In this paper, a general optimization formulation is proposed for the subspace segmentation
by low rank representation via the sparse-prompting quasi-rank function. We prove that, with the clean data
from independent linear subspaces, the optimal solution to our optimization formulation not only is the lowest
rank but also forms a block-diagonal matrix, which implies that it is reasonable to use any sparse-prompting
quasi-rank function as the measure of the low rank in subspace clustering. With the data contaminated by
Gaussian noise and/or gross errors, the alternating direction method of multipliers is applied to solving it and
every sub-optimization problem has a closed-form optimal solution when the band restricted thresholding
operator induced by its corresponding sparse-prompting function has an analytic expression, in which the
gross errors part is replaced with the sparse-prompting matrix function. Finally, taking a specific sparse-
prompting function, the fraction function, we conduct a series of simulations on different databases to get
the performance of our algorithm tested, and experimental results show that our algorithm can obtain lower
clustering error rate and higher value of evaluation indicators ACC, NMI and ARI than other state-of-the-art
subspace clustering algorithms on different databases.

INDEX TERMS Band restricted thresholding operator, face clustering, low rank representation, motion
segmentation, sparse-prompting quasi-rank function, subspace segmentation.

I. INTRODUCTION
In the past few decades, there has been an explosion of
high dimensional databases in many fields, such as machine
learning, computer vision and signal processing. With the
number of dimensions in a database increasing, distance
measures become increasingly meaningless. In fact, in very
high dimensions, the distances between data points are almost
equidistant [12], which leads to the performance damage
of many traditional clustering algorithms. While the high
dimensional databases, which are not uniformly distributed
across the circumambient space and their essential dimen-
sions are much lower than that of the circumambient space,
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often lie in the union of some low dimensional subspaces [2],
[29], [45]. To cluster such data into clusters, in which every
cluster corresponds to a underlying subspace, the methods of
high-dimensional data clustering, subspace clustering meth-
ods [41], [48], are proposed.

In general, the subspace clustering methods roughly con-
sist of four kinds: iterative methods [3], [24], statistical meth-
ods [19], [35], [44], algebraic methods [36], [43], [49] and
spectral clustering-based methods [8], [28], [34], of which
the first three are sensitive to noise, outliers, and initial-
ization [16]. The spectral clustering-based methods, which
firstly build an affinity matrix that can accurately describe
the similarity of each pair of data points and then apply this
affinity matrix to the framework of spectral clustering [39],
have performed superiorly in many fields such as computer
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vision, signal and image processing andmachine learning [1],
[25], [33], [54]. We can see that the key to spectral clustering-
based methods is to build a good affinity matrix.

Recently, some methods for constructing a good affin-
ity matrix have been proposed based on sparse and low-
rank representation, such as the sparse subspace clustering
(SSC) [16], the low rank representation (LRR) [31], [32]
and the low rank subspace clustering (LRSC) [26], [50].
In SSC schemes, the sparse representation and the `1-norm
minimization are employed for a desired affinitymatrix. If the
clean data are drawn from independent linear subspaces, it
is proved that the points which have nonzero coefficients in
the sparse representation of a point are in the same subspace.
Different from SSC, the low rank representation and the
nuclear norm minimization are employed for a desired low-
rank affinity matrix in the LRR and LRSC schemes. If the
clean data are from independent linear subspaces, both LRR
and LRSC also show that the optimal solution matrix to
the nuclear norm minimization not only coincides with the
optimal solution to the rank minimization but also forms a
block-diagonal matrix, i.e., its (i, j)th entry is nonzero only
if the ith and the jth points are from the same subspaces,
which implies that the optimal solution is a good affinity
matrix. However, if the data are corrupted by noise, espe-
cially by the gross errors, it is not clear whether the obtained
affinity matrix is the lowest rank or whether the obtained
sparse noise matrix is the sparest from theoretical viewpoint,
which are extremely important for a good affinity matrix.
To obtain a better affinity matrix, many non-convex low rank
approximation functions, such as `0-norm [4], the Schatten
p-norm [9], [52], [58], the weighted Schatten p-norm [53],
log-determinant rank function [27] and multivariate GMC
penalty function [4] are employed. Extensive experiments
demonstrate that these approximation functions have a better
performance. However, are these non-convex functions used
as the measure of the low rank in subspace clustering reason-
able in theory and is there any other function that can replace
them?

In this paper, the two questions above aremainly discussed.
First, we show that the sparse-prompting penalty function
can produce a sparse solution for the noiseless signals in
sparse signal recovery and based on this result, we demon-
strate that the optimal solution to the sparse-prompting quasi-
rank function minimization is the lowest rank and forms a
block-diagonal matrix if the uncorrupted data are drawn from
independent linear subspaces. This conclusion that coincides
with the nuclear norm minimization used in LRR and LRSC
implies that any sparse-prompting quasi-rank function used
as the measure of the low rank in subspace clustering is
reasonable. Second, if the data are corrupted by Gaussian
noise and/or gross errors, we replace the low rank and gross
errors parts with the sparse-prompting quasi-rank function
and the sparse-prompting matrix function, respectively. The
optimization solution to this problem is different from LRR
and LRSC. Subsequently, we apply the alternating direction
method ofmultipliers to solving it and every sub-optimization

problem has a closed-form optimal solution when the band
restricted thresholding operator induced by its correspond-
ing sparse-prompting function has an analytic expression.
Finally, taking a specific sparse-prompting function, the frac-
tion function, we conduct a series of simulations on different
databases including Extended Yale B face database, ORL
face database, AR face database and Hopkins 155 motion
segmentation database to demonstrate the performance of our
algorithm. The results show that our algorithm can obtain
lower clustering error rate and higher value of evaluation
indicators ACC, NMI and ARI than other state-of-the-art
subspace clustering algorithms on different databases.

The paper is organized as follows. In section II, we mainly
review some existing approaches on subspace clustering by
sparse and low rank representation, including sparse subspace
clustering(SSC), low rank representation(LRR) and low rank
subspace clustering(LRSC). In section III, we review some
existing results on sparse signal recovery and show that the
sparse-prompting penalty function can lead to the sparse
solution to the constrained minimization problem, which is
useful in discussing the subspace segmentation by low rank
representation with the clean data. In section IV, we discuss
the regularized rank minimization via the sparse-promoting
quasi-rank function and show that the optimal solution can
be acquired by a matrix band restricted thresholding operator.
The subspace segmentation by low rank representation via the
sparse-prompting quasi-rank function with the clean data is
discussed in section V. We show that any sparse-prompting
quasi-rank function used as the measure of the low rank
in subspace clustering is reasonable. The subspace segmen-
tation by low rank representation via the sparse-prompting
quasi-rank function with the corrupted data is discussed in
section VI. A series of simulations are conducted to test the
performance of our algorithm by taking the fraction func-
tion as a specific sparse-promoting function in section VII,
Finally, section VIII gives the conclusions.

II. RELATED WORK
In this section, some classic methods on subspace clustering
by sparse and low rank representation, including sparse sub-
space clustering(SSC) [16], subspace segmentation by low
rank representation(LRR) [31], [32] and low rank subspace
clustering(LRSC) [26], [50], is reviewed.

Let X = (x1, x2, · · · , xN ) ∈ Rd×N be a set of d-dimension
data points drawn from an unknown union of k linear sub-
spaces Sj(j = 1, 2, · · · , k) with corresponding dimension dj.
Subspace clustering aims to to find out the number k of
subspaces and cluster data into clusters, in which every cluster
corresponds to an underlying subspace. As is described in
Section I, the key to spectral clustering-based methods is to
construct a good affinity matrix that can accurately depict the
similarity of each pair of points. If the set of data points has
the self-expressive property, i.e., each data point in a union
of subspace can be efficiently represented as a linear com-
bination of other data points, the representation coefficients,
considered as a similarity measure, can be regarded as a good
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affinity matrix. SSC, LRR and LRSC all construct an affinity
matrix based on representation coefficients, which is widely
used at present. The major difference between them is that
SSC is based on a sparse representation and LRR and LRSC
are based on a low rank representation.

A. SPARSE SUBSPACE CLUSTERING (SSC)
The goal of SSC is to find out a sparse representation of
the data points set X by minimizing the number of nonzero
coefficients. If the data are clean, the following model is
employed

min
C
‖C‖0 s.t. X = XC and diag(C) = 0, (II.1)

whereC is a sparse representationmatrix and ‖C‖0 means the
number of non-zero elements in the matrix C . Because this
minimization problem in general is NP-hard, `1 minimiza-
tion, as the tightest convex relaxation of `0 minimization,
is considered. That is

min
C
‖C‖1 s.t. X = XC and diag(C) = 0, (II.2)

where ‖C‖1 =
∑

ij |cij|, i.e., the sum of absolute value of
elements in the matrix. It is shown in [16] that under some
conditions, the solutions to (II.1) and (II.2) coincide and that
cij 6= 0 only if points i and j are in the same subspace.

If the data are corrupted by Gaussian noise G and gross
errors E , i.e., only a small percentage of the entries of X are
corrupted [7], the affinitymatrixC can be acquired by solving
the following convex optimization model

min
C
‖C‖1 +

λ

2
‖G‖2F + δ‖E‖1

s.t. X = XC + G+ E and diag(C) = 0. (II.3)

B. SUBSPACE CLUSTERING BY LOW RANK
REPRESENTATION (LRR)
Different from SSC, the goal of LRR is to find out a low rank
representation. If the data are clean, the following model is
considered

min
C

rank(C) s.t. X = XC . (II.4)

Because of the discrete nature of the rank function, this
problem is difficult to solve in general. Hence, the following
convex optimization model is considered:

min
C
‖C‖∗ s.t. X = XC, (II.5)

in which ‖C‖∗ is the nuclear norm of C , i.e., the sum of the
singular values of C . It is shown that in [31], [32] the solution
to model (II.5) is the Costeria and Kanade affinity matrix
C = V1V>1 , where X = U16V>1 is the rank d singular value
decomposition of X . In fact, V1V>1 is a block-diagonal matrix
if linear subspaces are independent [11], which implies that
C = V1V>1 is a good affinity matrix.

With the data corrupted by Gaussian noise and/or gross
errors, the following convex optimization problem is consid-
ered,

min
C
‖C‖∗ + λ‖E‖2,1 s.t. X = XC + E, (II.6)

in which ‖E‖2,1 =
N∑
i=1

√
N∑
j=1
|eij|2 is the `2,1 norm of E .

C. LOW RANK REPRESENTATION SUBSPACE
CLUSTERING (LRSC)
Although the low rank representation is used in LRR and
LRSC, LRSC finds a symmetric, low rank affinity matrix C .
Thus, the LRSC solves the following non-convex optimiza-
tion problems

min
C
‖C‖∗ s.t. X = XC, C = C>, (II.7)

if X is clean, and

min
Y ,C,G,E

‖C‖∗ +
λ

2
‖Y − YC‖22 +

α

2
‖G‖22 + γ ‖E‖1

s.t. X = Y + G+ E, Y = YC and C = C>, (II.8)

if X is corrupted by the Gaussian noiseG and the gross errors
E . It is shown that, if the dataX are clean, the optimal solution
to problem (II.7) is also the Costeria and Kanade affinity
matrix C = V1V>1 which is similar to LRR, and hence C
can be used as an affinity matrix. Moreover, if X is corrupted
only by the Gaussian noiseG (i.e., γ = ∞), then Y andC can
be acquired with the singular values of X and Y thresholded,
respectively.

III. SPARSE SIGNAL RECOVERY VIA THE
SPARSE-PROMPTING PENALTY FUNCTION
We briefly review some definitions and results on sparse
signal recovery in this section, especially the optimal solution
to the regularized minimization via the sparse-prompting
penalty function is the band restricted thresholding opera-
tor. In addition, for the constrained minimization problem,
we show that the sparse-prompting penalty function can lead
to the sparse solution, which will be used in discussing the
subspace segmentation by low rank representation if the data
are clean.

Sparse signal recovery, solving a high dimension under-
determined system for sparse solutions, has attracted much
attention in recent years and there is no doubt that it is
definitely beneficial and favorable in different fields, such as
compressed sensing [13], [15], [21], subspace clustering [16],
[31], [32]. To model this problem, the following constrained
minimization problem is commonly considered,

(P0) min
x∈RN
‖x‖0 subject to Ax = b, (III.1)

which is also known as `0 minimization problem [38], in
which A is an m × N real matrix with rank(A) � N ,
x ∈ RN and b ∈ Rm, and ‖x‖0 named `0 norm is the
number of nonzero entries in it. If A is a full row rank matrix,
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rank(A) � N becomes m � N . However, the `0 opti-
mization problem is actually NP-hard and sensitive to noise
because of the discontinuous nature of the `0 norm.
An important method to solve `0 minimization problem

is to replace `0-norm with a continuous relaxation function,
which is called sparsity-promoting penalty function in this
paper.
Definition 1: A continuous function p : R → R is called

a (strict) sparse-promoting function if p(t) = p(−t) (∀t ∈
R), p(0) = 0 and p(t) is a nondecreasing (strict) concave
function on t ∈ (0,+∞).
Definition 2: Let p(·) be the (strict) sparse-promoting

function. Then
(1) For a signal x ∈ RN , the function P : Rn

→

R,P(x) =
N∑
i=1

p(xi) is called the (strict) sparse-promoting

penalty function.
(2) Given a matrix X ∈ Rm×N , the function P∗ :

Rm×N
→ R,P∗(X ) =

m∑
i=1

N∑
j=1

p(xij) is called the (strict)

sparse-promoting matrix function.
(3) Assume that X = U6V> is the singular value decom-

position (SVD) of the matrix X ∈ Rm×N , in which U and V
arem×m andN×N unitary matrices and6 = diag(σi)1≤i≤m
is the diagonal matrix with the singular values σi of X . Then

the function P : Rm×N
→ R,P(X ) =

m∑
i=1

p(σi) is called

the (strict) sparse-promoting quasi-rank function.
There are many different sparse-promoting functions used

in literature; some relevant examples are given in Table 1.

TABLE 1. Continuous sparse-promoting function.

Replacing the `0 norm with a sparse-promoting penalty
functions P(·), the minimization (III.1) is rewritten as

min
x∈RN

P(x) subject to Ax = b (III.2)

for the constrained problem and

min
x∈RN

1
2
‖Ax − b‖22 + λP(x) (III.3)

for the regularization problem, where λ > 0 is the regularized
parameter. It is noted that all the sparse-promoting functions
are strict except for `1 norm. `1 norm is typical and popular

and based on it, considerable excellent theoretical work has
been done [6], [14]. However, because `1-norm, as a convex
surrogate form of the `0-norm, often fails not only to produce
the sparest solution but also to select the position of non-zero
coefficient [17], [57], many strict sparse-promoting functions
are discussed [17], [20], [22], [30], [42], [57], [59].

In the following, we first demonstrate that any sparse-
promoting penalty function can reduce the sparse optimal
solution in sparse signal recovery.
Lemma 1: (1) Suppose that P(x) is any strict sparse-

promoting penalty function and x̂ is the optimal solution
to problem (III.2), then the columns of matrix Am×N corre-
sponding with the support of x̂ are linear independent, i.e.,
‖x̂‖0 = k ≤ rank(A).
(2) If P(x) = ‖x‖1, the problem (III.2) has at least one

optimal solution x∗ with at most rank(A) non-zeros.
Proof: (1) Assume that x̂ is the optimal solution to

problem (III.2) with ‖x̂‖0 = k > rank(A), then the k columns
of matrixAm×N corresponding with the support of x̂ are linear
dependent. Thus, a non-trivial vector h ∈ RN exists which has
the same support as x̂ such that Ah = 0 and

max
1≤j≤k

|hj| < min
1≤j≤k

|x̂j|.

Obviously, x̂ − h, x̂ + h are also solutions to Ax = b and for
arbitrary j, x̂j − hj, x̂j + hj and x̂j have the same sign.
Because p(t) is a strictly concave function on t ∈ (0,+∞),

we have

p(|x̂j − hj|)+ p(|x̂j + hj|) < 2 p(|x̂j|),

which implies that
n∑
j=1

p(|x̂j − hj|)+
n∑
j=1

p(|x̂j + hj|) < 2
n∑
j=1

p(|x̂j|).

Furthermore, we can get
n∑
j=1

p(|x̂j − hj|) <
n∑
j=1

p(|x̂j|)

or
n∑
j=1

p(|x̂j + hj|) <
n∑
j=1

p(|x̂j|),

which are in contradiction to the fact that x̂ is the optimal
solution to problem (III.2), so ‖x̂‖0 ≤ k .
(2) See [15]. �
Remark 1: It is necessary to point out that, when P(x) =
‖x‖1, the problem (III.2) may have more than one solution
and the number of non-zeros of other solutions may be larger
than rank(A), which is different from Lemma 1 (1).
Second, we introduce an important result that any

sparse-promoting function can induce a band restricted
thresholding operator.
Definition 3: A odd function hτ : R→ R with parameter

τ > 0 is called a band restricted thresholding operator if hτ
in R+ satisfies
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(1) for all u ≤ τ , hτ (u) = 0;
(2) if u ≤ v, hτ (u) ≤ hτ (v);
(3) there is a constant c ∈ [0, 1] such that u−cτ ≤ hτ (u) ≤

u for all τ < u, where τ is called a thresholding parameter
and c is called a band parameter.
Definition 4: Let hτ be a band restricted thresholding

operator. Then
(1) the vector band restricted thresholding operator Hτ :

RN
→ RN is defined as

Hτ (x) = (hτ (x1), hτ (x2), · · · , hτ (xN ))> (∀x ∈ RN ), (III.4)

and
(2) the matrix band restricted thresholding operator Hτ :

Rm×N
→ Rm×N is defined as

Hτ (X ) = UHτ (6)V>(∀X ∈ Rm×N ) (III.5)

whereHτ (6) = diag(hτ (σi)) and X = U6V> is the singular
value decomposition of the matrix X .
Lemma 2: Let u∗ be an optimal solution to the problem

min
u∈R

fλ(u) =
1
2
(u− t)2 + λp(u), (III.6)

where p(·) is a sparse-promoting function and t ∈ R, λ > 0
are two given numbers. Then there is a band restricted thresh-
olding operator hτ (t) such that u∗ = hτ (t), where τ and c are
defined as

τ = inf
t>0
{t |

t
2
+
λp(t)
t
}, c = lim

t→τ+

t − hτ (t)
t

.

Proof: See [60]. �
Lemma 3: Let x∗ = (x∗1 , x

∗

2 , · · · , x
∗
N )
> be the opti-

mal solution to (III.3). Then there exists a vector band
restricted thresholding operator Hτ (x) such that x∗i =

sign(x∗i )hτ (Bµ(x
∗
i )), where Bµ(x) = x + µA>(b − Ax) and

0 < µ < ‖A‖−22 ).
Proof: See [60]. �

Remark 2: Lemma 3 shows that any sparse-promoting
penalty function can lead to a band restricted thresholding
operator Hτ , but we cannot make sure whether its analytic
expression exists. For example, only when p = 1

2 ,
2
3 and 1,

the band restricted thresholding operators induced by P(x) =
‖x‖p (0 < p ≤ 1) have analytic expressions.

At the end of this section, we introduce a specific sparse-
promoting function, the fraction function p(x) = a|x|

a|x|+1 (a >

0), in detail, since it will be taken in section VII. In fact,
the fraction function is widely used in image restoration
[23], [40] and sparse signal recovery [30]. In [30], the equiv-
alence between `0 minimization and fractional function min-
imization is discussed and the analytic expression of the
optimal solution to model (III.3) is given.
Lemma 4: If x∗ = (x∗1 , x

∗

2 , · · · x
∗
N )

T is an optimal solution
to (III.3), where P(x) is the fraction function, a and λ are
positive parameter and µ satisfies 0 < µ < ‖A‖−22 , then
the optimal solution x∗ is

x∗i =

{
gλµ((Bµ(x∗))i), |(Bµ(x∗))i| > t∗,
0, otherwise.

(III.7)

where

gλµ(t) = sign(t)(
1+at
3 (1+ 2 cos(φ(t)3 −

π
3 ))− 1

a
), (III.8)

φ(t) = arccos(
27λµa2

2(1+ a|t|)3
− 1), Bµ(x∗) = x∗

+µAT (b− Ax∗), (III.9)

and

t∗ =


λµa, if λ ≤

1
2µa2

,

√
2λµ− 1

2a , if λ >
1

2µa2
.

(III.10)

Proof: See [30]. �

IV. LOW RANK MINIMIZATION VIA THE
SPARSE-PROMOTING QUASI-RANK FUNCTION
In this section we mainly discuss the regularized rank min-
imization via the sparse-promoting quasi-rank function and
show that the optimal solution can be acquired by a matrix
band restricted thresholding operator.

Assume that the corrupted data matrix D = Z + G, where
G is the Gaussian noise and Z is an unknown clean low rank
matrix, then the following regularized rank minimization is
commonly employed to find a low rank approximation of Z ,

min
Z

1
2
‖D− Z‖2F + λrank(Z ), (IV.1)

where λ > 0 is a parameter. Because of the discrete nature of
the rank function, this problem is NP-hard in general. Hence,
the following convex optimization model is considered:

min
Z

1
2
‖D− Z‖2F + λ‖Z‖∗, (IV.2)

in which ‖Z‖∗ is the nuclear norm of Z . The optimal solu-
tion to this problem is Z = USλ(6)V> [5], where D =
U6V>, 6 = diag(σi)1≤i≤m is the singular value decompo-
sition of the matrix D, and Sλ(x) = diag(sλ(σi)) is the matrix
soft thresholding operator, i.e.,

sλ(σi) =

{
σi − λ, if λ ≤ σi,
0, else.

(IV.3)

Before giving the main conclusion of this section, we need
the following inequality.
Lemma 5: (Von Neumann’s Inequality) Let matrices

X ,Y ∈ Rm×N be given, and let σ1(X ) ≥ σ2(X ) ≥ · · · ≥
σN (X ) and σ1(Y ) ≥ σ2(Y ) ≥ · · · ≥ σN (Y ) denote the
singular values of X and Y , respectively. Then

tr(X>Y ) ≤
N∑
i=1

σi(X )σi(Y ), (IV.4)

The equality achieves if and only if there exist two unitary
matrices U and V such that

X = U6XV> and Y = U6YV>
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hold simultaneously, where 6X and 6Y are the diagonal
matrices and its diagonal elements are arranged in decreasing
singular values of X and Y , respectively.

Proof: See [37]. �
Theorem 1: Let D ∈ Rm×N be a given matrix and P(Z )

the sparse-promoting quasi-rank function. Then the optimal
solution Z∗ to the following minimization

min
Z

1
2
‖D− Z‖2F + λP(Z ) (IV.5)

is the matrix band restricted thresholding operator Hτ (D)
defined in Definition 4, where the band restricted threshold-
ing operator hτ is induced by sparse-promoting function p(·).

Proof: Let D = UD6DV>D and Z = UZ6ZV>Z be the
SVD of D and Z , where 6D and 6Z are the m× N diagonal
matrices and its diagonal elements are arranged in decreasing
singular values of D and Z , respectively. We have
1
2
‖D− Z‖2F + λP(Z )

=
1
2
tr(D>D)− tr(D>Z )+

1
2
tr(Z>Z )+ λP(Z )

=
1
2

N∑
i=1

σi(D)− tr(D>Z )+
1
2

N∑
i=1

σi(Z )+ λ
N∑
i=1

p(σi(Z ))

≥
1
2

N∑
i=1

σi(D)−
N∑
i=1

σi(D)σi(Z )+
1
2

N∑
i=1

σi(Z )+λ
N∑
i=1

p(σi(Z ))

=
1
2

N∑
i=1

(σi(D)− σi(Z ))2 + λ
N∑
i=1

p(σi(Z )), (IV.6)

where the inequality holds by (IV.4). Since the optimal
problem

min
σ1(Z ),σ2(Z ),··· ,σN (Z )

N∑
i=1

1
2
(σi(D)− σi(Z ))2 + λ

N∑
i=1

p(σi(Z ))

(IV.7)

is separable, it can be converted to N sub-problems

min
σi(Z )

1
2
(σi(D)− σi(Z ))2 + λp(σi(Z )). (IV.8)

By Lemma 2, its optimal solution (σi(Z ))∗ is a band restricted
thresholding operator hτ (σi(D)).
From Lemma 5, we notice that the equality

tr(D>Z ) =
N∑
i=1

σi(D)σi(Z )

is achieved if and only if

Z∗ = UD6∗ZV
>
D ,

where 6∗Z denotes the m × N diagonal matrices and its
diagonal elements are arranged in decreasing singular values
of Z∗, i.e., the optimal solution Y ∗ to problem (IV.5) is

Z∗ = UD6∗ZV
>
D = UDdiag((σi(Z ))∗)V>D

= UDdiag(hτ (σi(D)))V>D = Hτ (D).

�

V. SUBSPACE SEGMENTATION BY LOW RANK
REPRESENTATION VIA THE SPARSE-PROMPTING
QUASI-RANK FUNCTION WITH UNCORRUPTED DATA
In this section, we show that the optimal solution to the
optimization model based on the sparse-prompting quasi-
rank function is the lowest rank and forms a block-diagonal
matrix if the uncorrupted data are drawn from independent
linear subspaces. This conclusion implies that any sparse-
prompting quasi-rank function used as the measure of the low
rank in subspace clustering is reasonable.

Given a clean data matrix Y ∈ Rm×N , whose columns
are drawn from a union of k low dimensional linear sub-
spaces of unknown dimensions {di}ki=1 satisfying di � m
and

∑k
i=1 di � N , we consider the following optimization

problem

min
C

P(C) subject to Y = YC, (V.1)

where P(C) is any sparse-prompting quasi-rank function.
The following theorem shows that the optimal solution to
problem (V.1) is also the Costeria and Kanade affinity matrix
C = V1V>1 , which is similar to the nuclear norm used in LRR
and LRSC. In fact, this matrix is called Shape Interaction
Matrix (SIM) in [11] and has been widely used for subspace
clustering.
Theorem 2: Let rank(Y ) = k and Y = U6V> be the

SVD of Y , where 6 = diag(σi) is a diagonal matrix and its
diagonal elements are arranged in decreasing singular values
of Y . Then the optimal solution to problem (V.1) is

C = V1V>1 , (V.2)

where V = [V1, V2] is partitioned according to the sets I1 =
{i : σi > 0} and I2 = {i : σi = 0}. Moreover, the optimal
value is

P(C) = rank(Y ) = k. (V.3)

Proof: Let C = P1Q> be the SVD of C , where 1 =
diag(δi) is the diagonal matrix and its diagonal elements are
arranged in decreasing singular values of C . Then Y = YC
can be rewritten as U6V> = U6V>P1Q>, which implies
that

6V>Q = 6V>P1. (V.4)

Let W = 6V>Q = (wij) and Z = 6V>P = (zij). Then,
rank(Z ) = k and the result

(
N∑
j=1

w1j,

N∑
j=1

w2j, · · · ,

N∑
j=1

wkj)> = Zδ

holds, where δ = (δ1, δ2, · · · , δN )>, which reduces to the
following optimization problem

min
δ
P(δ) s.t. Zδ = (

N∑
j=1

w1j,

N∑
j=1

w2j, · · · ,

N∑
j=1

wkj)>.

(V.5)
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Hence, the optimal solution δ∗ with ‖δ∗‖0 ≤ k is equal to
rank(Y ) by Lemma 1. On the other hand, Y = YC implies
that rank(Y ) ≤ rank(C) and hence rank(Y ) = rank(C) = k .

It follows from rank(Y ) = rank(C) = k that equa-
tion (V.4) can be rewritten as(

61 0
0 0

)(
V11 V21
V12 V22

)> (Q11 Q21
Q12 Q22

)
=

(
61 0
0 0

)(
V11 V21
V12 V22

)> (P11 P21
P12 P22

)(
11 0
0 0

)
,

where 61 = diag(σ1, σ2, · · · , σk ) and 11 =

diag(δ1, δ2, · · · , δk ), which implies that

V>1 Q2 = 0 (V.6)

and

V>1 Q1 = V>1 P111 (V.7)

Equation (V.6) means that the columns ofQ2 must be orthog-
onal to the columns of V1, and hence the columns of Q1 must
be in the range of V1. Thus,Q1 = V1R for a rotation matrix R,
which reduces to V>1 Q1 = V>1 V1R = R. Together with
Equation (V.7), we obtain that R = V>1 P1δ, which leads to
11 = Ik and P1 = V1R1. Hence,

C =
(
P1 P2

) (11 0
0 0

)(
Q>1
Q>2

)
= V1RR>V>1 = V1V>1 .

The proof is completed. �
By the properties of Shape Interaction Matrix (SIM) [11],

the following Corollary holds, which implies that any sparse-
promoting quasi-rank function as the measure of the low rank
in subspace clustering is reasonable.
Corollary 1: When linear subspaces are independent, the

optimal solution, V1V>1 , to problem (V.1) forms a block-
diagonal matrix: The (i, j)th entry of V1V>1 can be nonzero
only if the ith entry and jth entry samples are from the same
subspace.

VI. SUBSPACE SEGMENTATION BY LOW RANK
REPRESENTATION VIA THE SPARSE-PROMPTING
QUASI-RANK FUNCTION WITH CORRUPTED DATA
In this section, we discuss subspace segmentation by low rank
representation via the sparse-prompting quasi-rank func-
tion if the data are corrupted by Gaussian noise and/or
gross errors. We replace the low rank and gross errors
parts with the sparse-prompting quasi-rank function and
the sparse-prompting matrix function, respectively. Subse-
quently, we apply the alternating direction method of mul-
tipliers to solving it and every sub-optimization problem
has a closed-form optimal solution when the band restricted
thresholding operator induced by its corresponding sparse-
prompting function has an analytic expression.

Let a corrupted data matrix X = Y + G + E be given,
where Y is an unknown clean matrix, G is a Gaussian
noise and E is the gross errors, we consider the following

optimization problem

min
Y ,C,G,E

1
2
‖G‖2F + λ1P(C)+ λ2P∗(E)

s.t. Y = YC and X = Y + G+ E, (VI.1)

where P(C) and P∗(E) are the sparse-promoting quasi-rank
function and sparse-promoting matrix function, respectively.
Clearly, this problem is equivalent to the following problem

min
C,G,E

1
2
‖G‖2F + λ1P(C)+ λ2P∗(E)

s.t. X = (X − G− E)C + G+ E . (VI.2)

We introduce an auxiliary variable S, and the prob-
lem (VI.2) is rewritten as

min
C,G,E

1
2
‖G‖2F + λ1P(C)+ λ2P∗(E)

s.t. X = (X − G− E)S + G+ E, S = C . (VI.3)

This problem can be solved by the alternating direction
method of multipliers (ADMM), which minimizes the fol-
lowing augmented Lagrangian function

L =
1
2
‖G‖2F + λ1P(C)+ λ2P∗(E)

+ tr(3>1 (X− (X−G−E)S−G−E))+tr(3>2 (S − C))

+
ν

2
(‖X − (X − G− E)S − G− E‖2F + ‖S − C‖

2
F ),

(VI.4)

where31 and32 are Lagrange multipliers and ν is a penalty
parameter.

Given variables Sk , Ck , Ek , Gk and 31,k , 32,k and νk ,
the updated rules are as follows:

Ck+1 = arg min
C∈RN×N

1
2
‖C − Sk −

32,k

νk
‖
2
F +

λ1

νk
P(C),

(VI.5)

Sk+1 = arg min
S∈RN×N

1
2
‖S − Ck+1 +

32,k

νk
‖
2
F

+
1
2
‖(X−Gk−Ek )−(X−Gk−Ek )S+

31,k

νk
‖
2
F ,

(VI.6)

Gk+1 = arg min
G∈Rm×N

1
2
‖G‖2F

+
νk

2
‖G(Sk+1−I )+(Ek − X )(Sk+1−I )+

31,k

νk
‖
2
F ,

(VI.7)

Ek+1 = arg min
E∈Rm×N

1
2
‖ESk+1 − (Ek+(X−Gk+1)(Sk+1−I )

−
31,k

νk
)‖2F +

λ2

νk
P∗(E). (VI.8)

Update the Lagrange multipliers as follows:

31,k+1 = 31,k + νk (X − (X − Gk+1 − Ek+1)Sk+1
−Gk+1 − Ek+1), (VI.9)

32,k+1 = 32,k + νk (Sk+1 − Ck+1). (VI.10)
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TABLE 2. Clustering error rate (%) on Extended Yale B face database.

Update parameter νk as follows:

νk+1 = min{ρνk , νmax}. (VI.11)

Termination condition:

‖X − (X − Gk − Ek )Sk − Ek − Gk‖∞ < ε

and ‖S − C‖∞ < ε. (VI.12)

The sub-optimization problems above are solved sepa-
rately, and the specific methods are as follows:

The sub-optimization problem (VI.5) can be solved by
Theorem 2 and the optimal solution is

Ck+1 = Hτ (Sk +
32,k

νk
) = Ukdiag(Hτ (6k ))V>k , (VI.13)

where Hτ (·) is the matrix band restricted thresholding oper-
ator and Uk6kV>k is the SVD of matrix Sk +

32,k
νk

.

The sub-optimization problem (VI.6) and (VI.7) have the
closed-form solutions, which can be obtained by the Frobe-
nius norm minimization operator:

Sk+1 = (I + D>k Dk )
−1(Ck+1 + D>k Dk +

D>k 31,k −32,k

νk
),

(VI.14)

where Dk = (X − Ek − Gk ), and

Gk+1
= (νk (X−Ek )Zk+1Z>k+1+31,kZ>k+1)(I+νkZk+1Z

>

k+1)
−1,

(VI.15)

where Zk+1 = (I − Sk+1).
Since the sub-optimization problem (VI.8) is separable, the

ith column vector e>i,k+1 of the optimal solution E>k+1 is

e>i,k+1 = arg min
e∈RN

1
2
‖S>k+1e− ((X − Gk+1)(Sk+1 − I )

+Ek −
31,k

νk
)>i ‖

2
2 +

λ2

νk
P(e), (VI.16)

LRRSP Algorithm Formulation
Input: The database X = (x1, x2, · · · , xN ), parameters λ1,
λ2 and ν.
Initialization: S1 = C1 = E1 = G1 = 0,31,1 = 32,1 =

0, ε = 10−8, ν1 = 10−6, ρ = 1.1 and νmax = 106.
(1) Solve the sub-optimization problem (VI.5), (VI.6),
(VI.7) and (VI.8), and update variables Ck , Sk ,Gk and Ek
in turn.
(2) Update the Lagrangemultiplier31,k and32,k by (VI.9)
and (VI.10).
(3) Update the parameter νk by (VI.11).
(4) Terminate by (VI.12).
(5) Calculate the similarity matrix byW = C + C>.
(6) Use the spectral clustering algorithm.
Output: The clustering result of each data point.

where P(·) is the corresponding sparse-promoting penalty
function of P∗(·). By Lemma 3, we have

ei,k+1 = (sign(ei1)hτ (Bµ(ei1)), · · · , sign(eiN )hτ (Bµ(eiN ))),

(VI.17)

where hτ is the induced band restricted thresholding opera-
tor by sparse-promoting function p(·). Hence, the algorithm
formulation, called LRRSP, for the subspace segmentation by
low rank representation via the sparse-prompting quasi-rank
function is as follows.

VII. EXPERIMENTS
We conduct a series of simulations to test the performance
of the algorithm formulation above in this section by tak-
ing the fraction function pa(x) =

a|x|
1+a|x| as a specific

sparse-promoting function. We evaluate the performance
of the LRRSP algorithm by subspace clustering error rate
and cluster evaluation indicators ACC, NMI and ARI. The
performance of LRRSP algorithm is compared with other
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TABLE 3. Evaluation indicators of algorithms on the Extended Yale B face database (%).

FIGURE 1. Extended Yale B face database.

FIGURE 2. ORL face database.

TABLE 4. Clustering error rate (%) on ORL face database.

state-of-the-art subspace clustering algorithms, such as SCC
[8], LSA [55], LRR, LRR-H and LRSC, in which the
implementations is provided by the authors. Experiments
are performed on three standard databases: Extended Yale
B face database, ORL face database, AR face database and
Hopkins155 motion segmentation database. The experimen-
tal environment is Microsoft Windows10 operating system,
Lenovo G500 notebook computer with Inter(R) Core(TM)
i5-3230M CPU @2.60GHz processor and 4G memory.

A. EXPERIMENTS WITH THE FACE DATABASE
In this subsection, the face databases including the Extended
Yale B database, the ORL face database and the AR face
database are used to evaluate the performance of our algo-
rithm. Face clustering refers to the problem of clustering a
set of face images from multiple individuals according to
the identity of each individual. Here, the data matrix X is
of dimension m × N , where m is the number of pixels and

TABLE 5. Evaluation indicators of algorithms on the ORL face
database (%).

TABLE 6. Clustering error rate (%) on AR face database.

TABLE 7. Evaluation indicators of algorithms on the AR face
database (%).

N is the number of images. According to the Lambertian
assessment, the set of all images of each individual with a
fixed pose and varying illumination forms a cone in the image
space and lies close to a linear subspace of dimension 9 [2].
In practice, a few pixels deviate from Lambertian model
due to cast shadows and specularities, which can be mod-
eled as sparse outlying entries. Therefore, the face clustering
problem reduces to clustering a set of images according to
multiple subspaces and corrupted by gross errors.

The Extended Yale B database samples 38 categories of
faces with a grayscale size of 192 × 168 pixels, and each
type includes 64 face images taken under different lighting
conditions. In order to reduce storage space and computing
cost of all algorithms, we down-sample each image to 48 ×
42 pixels, and then vectorize it to a 2016-dimensional vector
as a data sample. Figure 1 shows some sample images of the
Extended Yale B face database. Following the experimental
settings in [16], the 38 subjects of target images are divided
into 4 groups. They are 1 to 10, 11 to 20, 21 to 30 and
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TABLE 8. Clustering error rate (%) on the Hopkins155 motion segmentation database with the 2F-dimensional data points.

TABLE 9. Clustering error rate (%) on the Hopkins155 motion segmentation database with the 4n-dimensional data points.

31 to 38, respectively. Then we apply clustering algorithms
for each trial, i.e., each set of n subjects. Finally, we take
the mean and median of the clustering results of all trials for
each n subjects. All choices of n ∈ {2, 3, 5, 8, 10} categories
will be considered in the first three groups and all choices
of n ∈ {2, 3, 5, 8} in the fourth group. Table 2 shows the
mean and median subspace clustering error rates of different
algorithms, which include SCC, LSA, LRR, LRR-H, SSC and
LRSC. Under the number of categories 5, the three indicators
ACC, NMI and ARI are shown in Table 3.
The ORL database contains 400 frontal face images of

different ages, genders and races from 40 categories. Each
categories has 10 face images of size 92×112 pixels and black
background, of which 40 subjects are from different ages,
genders and races. These images change in facial expressions,
facial accessories and details, such as smiling or not smiling,
eyes open or closed, wearing or not wearing glasses, etc. The
posture of the face also changes, whose depth rotation and
plane rotation can reach at 20 degrees, and the face size also
changes up to 10%. Some sample images of the ORL face
database are shown in Figure 2. Following the experimental
settings in [16], we resize all the images in the ORL database
to 56×46 and vectorize them to 2576-dimensional vectors as
the data samples of 9D subspace. We divide the 40 types of
target images into the following two groups: 1 to 20 and 21 to
40. For each cluster, we use all 5, 10, 15, 20 categories that
can be selected for the experiments and the clustering errors
are shown in Table 4, and the three indicators ACC, NMI and
ARI are shown in Table 5 under the number of categories 10.
The AR face database contains frontal face images from

50 men and 50 women. Each sample has 26 images with
different shooting angles and facial expressions. There are

FIGURE 3. AR face database.

2600 face images in the database, and the image size is 120×
165. These sample images have a front view, some facial
expressions change and some faces have some occlusion
(sunglasses and scarves). In order to save the computational
cost, we down sample all the images in the AR database,
and then vectorize them. According to Lambert estimation,
we cluster the vectorized 2200 dimensional vector as the data
sample of 9D subspace. Figure 3 shows some samples in the
AR database. We divided the 100 subjects of target images
into the following five groups for repeated experiments: 1 to
20, 21 to 40, 41 to 60, 61 to 80 and 81 to 100. For each cluster,
we use all 5, 10, 15, 20 categories that can be selected for the
experiments and the clustering errors are shown in Table 6,
and the three indicators ACC, NMI and ARI are shown in
Table 7 under the number of categories 10.

B. EXPERIMENTS ON MOTION SEGMENTATION
In this subsection, the Hopkins155 motion segmentation
database [46] is used to evaluate the performance of our
algorithm. Motion segmentation is the problem of dividing
the video sequence of multiple rigid moving objects into mul-
tiple spatio-temporal regions, which correspond to different
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FIGURE 4. Hopkins155 motion segmentation database.

motions in the scene. Specifically, it extracts and tracks a
set of N feature points in each frame of the video, where
a 2F-dimensional vector (F is the total number of frames
of the video) obtained by stacking the feature data points
corresponds to the feature trajectory. The goal of motion seg-
mentation is separating these feature trajectories according
to objects underlying motion. Under the affine projection
model, all characteristic trajectories related to the motion of a
single rigid lie in an affine subspace ofR2F of dimension d =
1, 2 or 3. Alternatively, they lie in a subspace of equivalent to
R2F , which dimension at most 4 [45]. Therefore, the features
of moving objects can be used as data points in subspace,
so segmenting the feature trajectory of moving objects is to
cluster the samples in subspace.

The Hopkins155 motion segmentation database is made
up of 155 video sequences, of which 120 video sequences
contain two motions and each sequence contains 30 frames
with 266 characteristic trajectories; 35 of the video sequences
contain three motions and each sequence contains 29 frames
with 398 characteristic trajectories. Some sample images of
the Hopkins155 motion segmentation database are shown in
Figure 4. Following the experimental settings in [18], we first
apply the principal component analysis algorithm to reducing
the trajectory from 2F (F is the total number of frames of the
video) to 4n (n is the number of subspaces), and then use 2F
and 4n data to execute our algorithm. The clustering results
under 2F-dimensional data points are shown in Table 8 and
under 4n-dimensional data points are shown in Table 9.
The above experimental results show that the clustering

error rate of our algorithm is lower and the value of evalu-
ation indicators ACC, NMI and ARI are higher than other
algorithms on different databases.

VIII. CONCLUSION
In this paper, we propose a general optimization formulation
for subspace segmentation by low rank representation via the
sparse-prompting quasi-rank function. Our key contribution
is to show that any sparse-prompting quasi-rank function
as the measure of the low rank in subspace clustering is
reasonable, i.e., the optimal solution to our optimization
formulation forms a block-diagonal matrix if the clean data
are drawn from independent linear subspaces. In addition,
the alternating direction method of multipliers (ADMM) is
applied to solving the optimization problem if the data are
corrupted by Gaussian noise and gross errors. Finally, a series
of simulations on different databases are conducted.
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