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ABSTRACT Mobile edge computing has been widely used in various IoT devices due to its excellent
computing power and good interaction speed. Task offloading is the core of mobile edge computing.
However, most of the existing task offloading strategies only focus on improving the unilateral performance
of MEC, such as security, delay, and overhead. Therefore, focus on the security, delay and overhead of MEC,
we propose a task offloading strategy based on differential privacy and reinforcement learning. This strategy
optimizes the overhead required for the task offloading process while protecting user privacy. Specifically,
before task offloading, differential privacy is used to interfere with the user’s location information to
avoid malicious edge servers from stealing user privacy. Then, on the basis of ensuring user privacy and
security, combined with the resource environment of the MEC network, reinforcement learning is used to
select appropriate edge servers for task offloading. Simulation results show that our scheme improves the
performance of MEC in many aspects, especially in security and resource consumption. Compared with the
typical privacy protection scheme, the security is improved by 7%, and the resource consumption is reduced
by 9% compared with the typical task offloading strategy.

INDEX TERMS Mobile edge computing, task offloading, differential privacy, reinforcement learning.

I. INTRODUCTION
The rapid development of the Internet of Things (IoT) and 5G
technology has promoted the combination of various smart
applications with mobile devices, such as face recognition,
smart medical care, etc [1]. These smart applications are
gradually becoming more complex and diverse. However,
the size and weight of mobile devices, computing power,
storage capacity and network transmission capacity of users
are limited, which makes them unable to meet the quality
of service requirements of users. Therefore, in order to
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solve the above problems, related scholars proposed mobile
edge computing technology (MEC) [2]. FIGURE 1 reveals
the application of MEC in an intelligent transportation
system. The core technology of MEC is to deploy service
nodes at the edge of the network, and offload the complex
computing tasks of user to edge servers for computing [3].
Compared with local computing and cloud computing, MEC
has stronger computing power and lower latency. However,
while MEC provides users with efficient computing services,
the privacy of mobile users is also facing a huge threat [4].
In order to satisfy the mobile user’s experience, the previous
task offloading strategies mostly aim to reduce the delay
and network resource overhead, while ignoring the privacy
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FIGURE 1. The application of MEC in intelligent transportation system.

protection of the user. For example, a malicious edge
server can infer the user’s location, name, interests and
other private information by monitoring the user’s wireless
channel information. Therefore, when using MEC to offload
computing tasks of user, his private information must be
protected. In addition, it should be noted that excessive
privacy protection may lead to high communication overhead
and delay, which will affect the user’s quality of service
experience. Therefore, how to reduce the overhead of task
offloading while protecting user privacy is still an urgent
problem that needs to be prepared.

To solve the above problems, this paper proposes a task
offloading strategy (DPRL) based on differential privacy
(DP) [5], [6] and reinforcement learning (RL) [7]–[9]. Specif-
ically, before the computing task is unloaded, to avoid leakage
of user privacy, we first encrypt the user’s private information
with DP. Then, to reduce communication overhead, we select
appropriate edge servers to offload tasks in line with the
network resource environment and RL.

As a privacy protection technology, DP has been widely
used in many fields [10], [11]. It protects user privacy
by introducing sufficiently small interference information
into user information. Since the introduced interference is

small enough and can protect privacy, the edge server in
the MEC can still analyze the computing tasks through the
disturbed information. In addition, RL, as a typical machine
learning technique, has been widely used in many fields.
For example, content caching and D2D offloading [12].
Recent studies have also shown its superior performance in
edge computing [13] and edge intelligence [14]. Therefore,
inspired by the above research, it is feasible to use RL
to reduce the communication overhead in MEC. The main
innovations of this paper are as follows:

(1) Firstly, before task offloading, to prevent malicious
edge servers from stealing user’s privacy, we useDP to protect
user’s location information. User’s location information often
contains a lot of user privacy.

(2) Secondly, we construct a four-layer policy model as
a learning agent for RL, which interacts with the MEC
network environment to provide a task offloading scheme that
minimizes communication overhead.

(3) Finally, to further protect users’ privacy, wemeasure the
trust of each edge server according to the intimacy between
the edge server and users, and then take it as one of the
characteristics of the edge server. In addition, to ensure
that the RL agent can be trained in the real MEC network

VOLUME 10, 2022 54003



P. Zhang et al.: DPRL: Task Offloading Strategy Based on DP and RL in Edge Computing

environment, we extract the network resources of MEC and
form a feature matrix as the input of the policy model.

The rest of this paper is organized as follows. Section II
analyzes the research status of MEC. Section III describes
the DP-based user privacy protection strategy. Section IV
presents an RL-based edge server selection strategy.
Section V analyzes the performance of the DPRL strategy.
Section VI summarizes the full text and presents future work.

II. RELATED WORK
As a hot topic in network research in recent years, MEC
has been widely used in intelligent transportation systems,
Internet of Vehicles and other fields. The existing researches
on MEC mainly focus on two aspects: resource optimization
and privacy protection during MEC task offloading. This
section will analyze the research status of task offloading
in MEC from the above two aspects, and compare the
task offloading strategy proposed in this paper with these
researches.

A. RESOURCE OPTIMIZATION IN TASK OFFLOADING
According to the analysis of existing research, the over-
head generated by MEC mainly includes the delay (DL),
bandwidth (BW) and computing (CPU) resources required
for the calculation. The main goal of resource optimization
in the task offloading process is to minimize the BW and
CPU resources consumed in the MEC process with low
DL [15]–[17].

Liu et al. [18] adjust the task offloading strategy according
to the queuing buffer of computing tasks, the available
CPU resources of user and edge servers to achieve the
minimum time consumption. Literature [19] first proves that
minimizing the average DL during task offloading is an
NP-hard problem, and then uses Lyapunov to optimize the
problem to achieve a near-optimal task offloading strategy.
However, it is worth noting that [18], [19] only consider the
DL in the task offloading process, but do not pay attention
to the overhead in the task offloading process. Therefore, the
literatures [20]–[22] try to optimize the computational cost
within a small DL. Among them, Kamoun et al. [20] propose
a resource allocation strategy that takes into account the user’s
local CPU resources and the wireless network resources
between the user and the edge server, which can minimize the
average overhead of the user while satisfying the pre-defined
DL constraints. Huang et al. [21] propose a dynamic task
offloading decision algorithm that combines dynamic task
offloading decision with computing resource allocation to
minimize overhead while ensuring queue stability. Liter-
ature [22] studies long-term task offloading and resource
scheduling. Through Lyapunov optimization technology, the
task offloading problem is decomposed into multiple sub-
problems, so as to achieve the goal of minimizing the average
power consumption of the system. Besides, to minimize the
task duration while satisfying the energy budget constraints,
literature [23] proposed an online task offloading algorithm
based on asynchronous advantage actor-critic. The algorithm

can learn good offloading strategies to obtain near-optimal
task assignments.

Although the above studies improve the resource con-
sumption of MEC to a certain extent, it has the following
limitations. On the one hand, most of these schemes only
reduce the unilateral resource consumption and do not
comprehensively consider the CPU, DL and BW required by
MEC. On the other hand, most of these schemes use heuristic
algorithms to solve MEC problems, which is easy to fall
into local optimization. In order to solve the above problems,
based on the inspiration of literature [23], we propose a
DRRL scheme. DPRL extracts the MEC network resource
state as the RL training environment, so that the performance
of the whole MEC is balanced. In addition, the RL problem
is optimized to avoid falling into local optimization.

B. PRIVACY PROTECTION IN TASK OFFLOADING
The privacy problem in task offloading usually consists of
two aspects, namely the privacy problem caused by data
interaction and the privacy problem caused by the task
offloading feature. The privacy problem caused by data
interaction is mainly due to the malicious MEC server
stealing the user’s privacy based on the calculation data.
To solve this problem, Xu et al. [24] divide computing tasks
into different types of data, and increase privacy entropy
by enhancing the uncertainty of computing tasks to protect
user privacy. Xu et al. [25] propose a two-stage task offload
optimization strategy to maximize resource utilization and
minimize time cost in the first stage, and balance task
offload performance and privacy effect in the second stage.
Aiming at the privacy problem caused by the characteristics
of task offloading, Min et al. [26] propose a privacy-aware
offloading scheme to improve the privacy protection level
of users. The scheme selects the task offloading ratio and
local processing ratio of user according to information such
as wireless channel status, sensor data, size and priority
of computing tasks, which reduces the DL and saves the
computational overhead of user. Nguyen et al. [27] propose
a MEC-based mobile network user privacy model, where
user selects an efficient task offloading scheme through
constrained Markov decision.

Similar to the literature [26], [27], the proposed scheme is
mainly used to solve the privacy problem caused by the task
offloading feature. The difference is that most of the privacy
protection methods in previous task offloading only pre-set
the privacy protection level and optimize it as an indicator.
This kind of methods lacks clear privacy protection means,
which may lead to privacy disclosure. And due to the lack of
protection of the location information of the user, a malicious
MEC server can steal the private information of the user
according to the location information of the user. The scheme
proposed in this paper takes the user’s location information as
the entry point, and interferes with the distance between the
user and the edge server through DP, which provides clear
privacy protection for the user.
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C. RESEARCH ON MEC SECURITY BASED ON
DIFFERENTIAL PRIVACY
At present, DP-based MEC research is mainly divided into
centralized DP and localized DP. Centralized DP refers to
uploading the initial data to the data center for storage, and
then the data center uses the DP mechanism to perform
privacy protection processing on the data, and finally
publishes the protected privacy information. Literature [28]
proposed a new data encryption technology based on Trusted
Third Party (TTP), which can maintain privacy protection
in cloud environment. Literature [29] uses DP to build an
optimal model based on TTP, in which TTP can obtain
some information from public datasets to better understand
private datasets without compromising its privacy. The
work of Wang et al. [30] is to propose a DP-based location
perturbation scheme to protect location privacy in third-party
geolocation services, which uses a TTP architecture to
perform the protection. However, it is worth noting that
although the centralized DP mechanism can ensure that the
user’s private information will not be leaked. However, since
third-party data collectors are often untrustworthy, they can
pose a threat to users’ private information without their
knowledge.

To solve the above problems, a localized DP mechanism is
proposed. On the basis of protecting user privacy, localized
DP also considers the personalized protection of each user’s
private information. The difference between it and centralized
DP is that each user will obfuscate the private data locally, and
then publish the perturbed private data. The representative
local DP studies are in [31] and [32]. Wang et al. [31]
proposed a method to protect user location based on
localized DP preference. In order to avoid the privacy
problems caused by excessive reliance on third parties,
Zhang et al. [32] proposed a contract signing protocol, which
uses the decentralized features of block-chain technology to
avoid excessive reliance on third parties and protect user
privacy.

Similar to the literatures [31] and [32], this paper uses
localized DP technology to solve the security problem of
MEC, and on this basis, uses RL to reduce the communication
overhead of MEC.

III. LOCATION PRIVACY PROTECTION BASED ON DP
During the task offloading process of MEC, the user will
choose different task offloading strategies according to the
wireless channel between the user and the edge server. If the
channel conditions are good, user will offload computing
tasks to edge servers to save overhead. On the contrary,
if the channel condition is poor, the user tends to perform
operations locally. It is worth noting that when the channel
conditions are good, the malicious edge server will infer
the location of the user by analyzing the wireless channel
between the user and the edge server. Therefore, in this
section, we will focus on the location privacy leakage
problem of user during task offloading.

A. DESIGN OF INTERFERENCE DISTANCE PROBABILITY
DENSITY FUNCTION
DP is widely used in data mining and deep learning
privacy protection because of its superior privacy protection
performance. However, due to the limited coverage of edge
servers, traditional DP methods are difficult to directly apply
to task offloading in MEC. Therefore, this paper proposes a
new distance obfuscation probability density function (PD),
which can directly obfuscate the distance between the user
and the edge server to prevent the leakage of the user’s
location information. It is calculated as follows:

PD
(
l∗|l

)
=


ε

2∆l
e−

ε|l∗−l|
∆l +

e
ε(l1−l)
∆l +e

ε(l2−l)
∆l

2∆l ,

if l∗ ∈ [l1, l2]

0, otherwise

(1)

among them, l is the distance between the user and the edge
server, the distance after obfuscation is l∗. l1 and l2 represent
the previous and next term of the confusion range, where l1 <
l2, l1, l2 ∈ [0, lmax] and∆l = l2− l1. This function takes into
account the restriction of the confusion range and ensures that
l∗ is within the confusion range with probability 1.

The flow of using PD to interfere with probability is shown
in FIGURE 2. It can be revealed from Fig.2 that the key to
using the PD to interfere with the distance between the user
and the edge server lies in the selection of the interference
range, that is, the determination of l1 and l2. Generally
speaking, when the real distance l is relatively small, the
distance l∗ ∈ [l1, l2] after interference is relatively small,
so as to ensure that users can offload more computing tasks
to the edge server to save costs. Therefore, in order to ensure
that the task offloading decision made by the user based on
the interference distance l∗ has the same utility as the decision
made at the distance l, the value of l∗ must be within the
smallest possible range on the left and right sides of l. The
closer l1 and l2 are to l, the better the utility of the task
offloading strategy after privacy protection.

B. DESIGN OF PRIVACY LEAKAGE DEGREE FUNCTION
According to equation 1, the user can interfere with the real
distance between the user and the edge server before the
task is offloaded. Malicious edge servers are then unable to
deduce the user’s true location. However, it is worth noting
that since the process of using DP to interfere with the real
distance is random, the real distance l and the interfered
distance l∗ may be equal. The greater the equal probability,
the higher the probability of user privacy leakage. This
privacy leakage caused by the randomness of DP interference
data is inevitable, so we also need to introduce the user
privacy leakage degree function. We first use the Kullback-
Leibler divergence (KLD) to measure the fit between the true
distance l with and without privacy protection. The specific
calculation method is as follows:

KLD (P||Q) =
∫ l2

l1
Q
(
l∗|l

)
log

Q (l∗|l)
P (l∗|l)

dl∗, (2)
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FIGURE 2. DP-based privacy protection process.

among them, Q (l∗|l) represents the probability distribu-
tion of the user’s task offloading according to the real
distance, and P (l∗|l) represents the probability distribution
of the user’s task offloading according to the distance
after interference. According to the definition of KLD,
we can know that the smaller the value, the higher the
degree of fit and the greater the probability of user
privacy leakage. Conversely, when the value of KLD is
larger, the fitting degree is lower and the probability
of user privacy leakage is smaller. Therefore, the degree
of privacy leakage (PLD) can be defined as the inverse of
equation 3.

PLD = −
∫ l2

l1
Q
(
l∗|l

)
log

Q (l∗|l)
P (l∗|l)

dl∗ (3)

IV. RL-BASED EDGE SERVER SELECTION ALGORITHM
After using the DP to interfere with the user’s location
information, the computing task needs to be offloaded. Before
offloading computing tasks, to further protect user privacy
and ensure user QoS requirements, we need to select a
safe and high-performance edge server for task offloading.
Therefore, in this section, we first set a trust attribute for each
edge server according to the interaction frequency between
the edge server and the user. Then we design an edge server
selection algorithm based on RL, which comprehensively
considers the resource environment and security conditions
of the entire MEC network. Finally provides users with an
optimal task offload scheme through the interaction between
the resource environment and the RL agent. This scheme
can optimize the resource overhead of task offloading while
protecting user privacy [15].

A. FEATURE EXTRACTION OF MEC NETWORK RESOURCES
Edge server has strong social attributes because it interacts
with users. Interaction frequency is an important aspect of
the social attribute of edge server. The higher the interaction
frequency, the more reliable the edge server is. Before feature
extraction, we set the trust attribute for each edge server by
calculating the interaction frequency between the edge server

FIGURE 3. MEC network model.

and users. The calculation of trust is as follows.

Trust =

∑n
i=1 ti
T

, (4)

where, T represents a time period, n represents the number
of interactions between the edge server and the user in the T
time period, and ti represents the time of each interaction.

To facilitate the extraction of network features, as shown
in FIGURE 3, we model the MEC network as a weighted
undirected graph Ges = {N es,Les}. N es represents the set
of edge servers, and Les represents the set of communication
links. The numbers on the edge server nodes represent the
available CPU of the edge server, and the numbers on the
links represent the BW and DL, respectively. The key to
using RL to select edge servers for task offloading lies in
the understanding of the MEC network environment, which
facilitates the training of RL agents in real environments.
Therefore, we extracted the following features for each edge
server node:

(1) CPU: The capacity of edge server depends on its
available computing resources. An edge server with higher
computing capability can load more computing tasks.

(2) Degree: In the MEC network, the greater the degree of
the edge server node, the more available communication links
exist between it and the user.

(3) SUM (nes)BW : Each edge server has a set of links linked
to it, SUM (nes)BW is the sum of the bandwidth resources of
these links. The larger the value, the stronger the ability to
transmit data between the edge server and the user.

(4) SUM (nes)DL : SUM (nes)DL is the sum of the delays of
the links connected to the edge server. The smaller the value,
the shorter the interaction time between the edge server and
the user, and the better the user QoS experience.

(5) Trust(nes): Each node has a trust attribute. The
higher the trust, the smaller the probability of user privacy
disclosure.

In fact, there are many network features that can be
extracted from MEC networks. The more features extracted,
the more realistic the training environment of the RL agent,
but the complexity of the algorithm increases accordingly.
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Therefore, after comprehensively considering the actual
situation of MEC task offloading, we extract the above
features, which are also the main factors determining the task
offloading overhead.

After extracting the features of the edge servers, we nor-
malize them to feature vectors, and construct the feature
vectors of all edge servers into a feature matrix, which is used
as the input environment for the RL agent. The feature matrix
is shown in equation 5, as shown at the bottom of the next
page.

B. DESIGN OF POLICY NETWORKS FOR RL
We design a four-layer policy network as the RL agent,
which is the input layer, the convolutional layer, the softmax
layer and the output layer. We take the feature matrix of the
MEC network as the input of the agent, and operate it in the
convolution layer. The specific convolution operation is as
follows:

Outputi = w.vi + b, (6)

among them, Outputi is the i-th output of the convolution
layer, w is the weight vector of the convolution kernel, vi is
the i-th input of the convolutional layer, and b is the deviation.

The softmax layer mainly outputs the probability of each
edge server being selected according to the available resource
vector of each edge server. The higher the probability, the
higher the priority of selecting the edge server for task
offloading. The specific calculation method of softmax is as
follows:

Pi =
eOutputi∑
jeOutputj

. (7)

During the training of an RL agent, the agent relies on the
reward signal to decide what action to take next. In order
to motivate the agent to act correctly and optimize the
resource overhead during the MEC task offloading process,
this paper uses the total resource consumption of the task
offloading process as the reward signal. If the current total
resource consumption is low, it means that the agent’s
current behavior is correct. Conversely, if the current total
resource consumption is high, it means that the agent needs to
adjust the current behavior. The equation for calculating total
resource consumption is as follows:

RC (s, a) = ω1E (s, a)+ ω2T (s, a)+ ω3Γ (s, a) , (8)

among them, E (s, a) represents the total computing
resources required to offload the current task. T (s, a)
represents the total delay in offloading the current task.
Γ (s, a) represents the task loss probability, which is
calculated as follows:

Γ (s, a) =
nloc
Nt
, (9)

where nloc represents the number of tasks executed locally,
and Nt represents the total number of currently submitted
tasks unloaded. In addition, s and a represent the current state

TABLE 1. The parameters of the MEC network.

and behavior of RL, respectively, where s is determined by
the input feature matrix, and a is the offloading of the current
computing task.

V. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS
In this section, we will verify the effectiveness of the
proposed scheme in this paper. We divided the experimental
part into two parts. On the one hand, we verify the feasibility
of the DP-based location privacy protection strategy. On the
other hand, we verify the superior performance of the
RL-based task offloading strategy in reducing resource
overhead. In addition, we also analyze the scalability and time
complexity of the algorithm.

A. EXPERIMENTAL ANALYSIS OF LOCATION PRIVACY
PROTECTION STRATEGY BASED ON DP
In order to simulate the scenario of task offloading in MEC
as realistically as possible, this paper selects the real dataset
EUA to simulate the relationship between edge servers and
users. We select a base station with a longitude of 144.96 and
a dimension of -37.81 in the EUA as the edge server, its
coverage is 400 meters, and there are about 70 mobile users
within the coverage. Then we set the parameters of the
MEC network. For the specific configuration, we refer to
Chen et al. [33]. For the convenience of viewing, the network
parameter settings are shown in TABLE 1.

To highlight the effectiveness of theDP-based user location
privacy protection strategy, we selected two strategies for
comparison with the strategy proposed in this paper, namely
the Basic task offloading strategy without considering user
privacy and the NDR task offloading strategy without consid-
ering the interference range. At the same time, we determined
two indicators to measure the effectiveness of the strategy,
namely the probability of privacy leakage, and the user’s
security level.

The security level of mobile users in each period of task
offloading can be calculated by the following equation:

USLn = PLDn + ζUSLn−1, (10)

where ζ is the security and privacy compromise factor of the
user’s continuous task offloading. PLDn is the probability of
user privacy leakage, which can be calculated by equation 3.

FIGURE 4 indicates the privacy leakage probabilities of
the three strategies. As revealed in the FIGURE 4, the
probability of privacy leakage of the three strategies gradually

VOLUME 10, 2022 54007



P. Zhang et al.: DPRL: Task Offloading Strategy Based on DP and RL in Edge Computing

FIGURE 4. The privacy leakage probability of three strategies.

increases, because as time goes on, users continue to send
task offloading information to the edge server, and the
edge server can infer user privacy from this information.
Therefore, the probability of user privacy leakage increases
with time. Compared with the Basic strategy without privacy
protection, NDR and the strategy proposed in this paper
are at a lower level, which means that interfering with
user location information can effectively avoid user privacy
leakage. In addition, it is worth noting that since the NDR
does not limit the interference range, the edge server still has
a certain probability to infer the user’s location information,
so the probability of privacy leakage is higher than the scheme
proposed in this paper.

FIGURE 5 reveals the change in user security level over
time. It can be clearly seen from the FIGURE 5 that the
Basic task offloading strategy without privacy protection is
relatively low in security. Privacy protection can significantly
improve the security level of users and reduce the probability
of privacy leakage. At the same time, compared with the
NDR strategy that does not limit the interference range,
the scheme proposed in this paper can stabilize the user’s
security level above 0.5, and the security level is improved by
about 7%.

In addition, it is worth noting that privacy protection will
affect the quality of service for users to a certain extent.
Because privacy protection is invisible to users, the intuitive
performance of privacy protection is the degradation of
service quality. Therefore, we compare the service quality

FIGURE 5. The security level of three strategies.

FIGURE 6. The quality service of three strategies.

of the three strategies over time. As shown in FIGURE 6,
the quality of service of the Basic strategy without privacy
protection is higher than that of NDR and the task offloading
strategy proposed in this paper, because privacy protection
will bring additional delay overhead, such as transmission
delay and privacy protection delay. Furthermore, because the
NDR does not limit the interference range, the real distance
of the user may be blurred too far, so the delay and bandwidth
overhead will also increase accordingly.
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FIGURE 7. The resource consumption of the four task offloading
strategies.

B. RL-BASED EDGE SERVER SELECTION STRATEGY
To verify the performance of the RL-based edge server
selection strategy during task offloading. We compare it with
the DDLO algorithm proposed in [34], the classical task
offloading algorithm using Q-learning and the task offloading
algorithm without resource optimization in terms of total
resource consumption and task loss rate.

We use Pycharm and python to code the experiments,
and build a policy network based on TensorFlow. The
initial parameters of the policy network satisfy a normal
distribution, and the learning rate of the agent is 0.005.
Finally, we trained 100 epochs using gradient descent. The
agent dynamically adjusts the current behavior according to
formula 8 to obtain better training effect.

FIGURE 7 shows the total resource consumption of the
four task offloading strategies. It is obvious that our proposed
RL-based task offloading strategy is more advantageous
than the other three algorithms in optimizing resource
consumption. This is because our strategy uses the network
resource environment of MEC as the input of the RL agent,
and trains with the goal of minimizing resource overhead.
Compared with other algorithms, it is more in line with
the actual situation of task offloading in MEC, and pays
attention to the change of network resources. According to the
analysis of specific data, the solution proposed in this paper
reduces resource consumption by about 9% compared with
the Without strategy, 3.3% less than DDLO, and 6.3% less
than Q-learning.

FIGURE 8 reveals the task loss rates of the four algorithms
at different time periods. The task loss rate is the proportion
of the number of locally executed tasks and the number of
failed tasks to the total tasks, which is greatly affected by
the channel state and delay. As indicated in FIGURE 8, the
task loss rates of the other three strategies except the Without
strategy decreased rapidly in the first 500 time points, and
then gradually stabilized. This is because with the training

FIGURE 8. The task loss rate of four strategies.

TABLE 2. Scalability and time complexity analysis.

iteration of the model, the model’s understanding of the
network environment gradually deepens, and then gradually
stabilizes. According to the analysis of specific data, the
strategy proposed in this paper reduces task offloading by
19.5% compared to Without, 6.8% lower than DDLO, and
11.4% lower than Q-learning.

C. SCALABILITY AND TIME COMPLEXITY ANALYSIS
The scalability of task offloading strategy refers to the
adaptability of the strategy when dealing with a large number
of computing tasks. For a scalable strategy, the change of
processing efficiency is stable when the amount of data
increases. In addition, the scalability of task unloading
strategy is closely related to its time complexity. Based on
this, we analyze the scalability and time complexity of the
DPRL strategy proposed in this paper. The analysis results
are indicated in TABLE 2.

It can be seen from TABLE 2 that the DPRL strategy
proposed by us has high time complexity, but good security
and scalability. This is because compared with the other
three algorithms, we first need to blur the user information
and calculate the reputation of the edge server, so the
time complexity is higher than other algorithms. However,
in terms of scalability, DPRL has excellent performance.
This is because our solution uses RL to solve the problem
of task unloading, so the mobility is better. When there are
new computing tasks, a good task offloading scheme can
be obtained by using a simple pre-train, so it has better
scalability.
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According to the analysis of the above experimental
results, the task offloading strategy based on DP and RL
proposed in this paper can effectively solve the privacy
leakage in the process of MEC task offloading and optimize
the resource overhead.

VI. CONCLUSION
The low latency and strong computing characteristics of
MEC promote the development of the Internet of Things.
However, due to the lack of consideration of security and
resource overhead in the task offloading process, the existing
task offloading strategies are gradually unable to meet the
high quality of service requirements of users. To address
these issues, we propose a task offloading strategy based on
DP and RL. This strategy first encrypts the user’s private
information through DP to ensure security, and then uses
RL to select appropriate edge servers for task offloading
to optimize resource overhead in combination with MEC
network resource status. Experimental results show that this
scheme can effectively ensure the privacy of users and reduce
the cost of task offloading. However, it should be noted that
the network resource environment of MEC is often very
complex in practical situations, and the time complexity of
DPRL is high. So in future work, we will extract more
reasonable network features, and strive to reduce the time
complexity of DPRL. In addition, we will study how to meet
the differentiated service quality requirements of users in
MEC.
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