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ABSTRACT Pneumothorax is a potentially life-threatening disease that requires urgent diagnosis and
treatment. Clinically, a chest X-ray examination is the first choice for diagnosing pneumothorax. However,
it is difficult to diagnose pneumothorax by only frontal chest X-ray imaging when the lesion area is only
composed of a small amount of air. Therefore, we propose a pneumothorax diagnosis neural network based
on feature fusion, where frontal and lateral X-ray information are fused. In this network, there are two inputs
and three outputs. The two inputs are the frontal chest X-ray image and the lateral chest X-ray image. The
three outputs are the classification results of the frontal chest X-ray image, the classification results of the
lateral chest X-ray image, and the classification results integrating the characteristics of the fused frontal
chest X-ray image and lateral chest X-ray image. Our algorithm considers the vanishing gradient problem
in the pneumothorax recognition model and introduces the residual block to alleviate this problem. Because
of the large number of channels in this model, we also utilize channel attention mechanisms to improve
the model’s performance. Our comparative experiments show that neural network fusion of frontal and
lateral chest image features can achieve higher accuracy than the single task model. Using only image-level
annotation, our pneumothorax model can achieve high recognition accuracy.

INDEX TERMS Convolutional neural network, pneumothorax, chest X-ray images, computer-aided
diagnosis, multiple input network.

I. INTRODUCTION
Pneumothorax (lung collapse) occurs when excessive air
accumulates in the pleural cavity between the lung and the
chest wall. This air pressure causes the lung to collapse.
The main symptoms of pneumothorax are chest tightness,
shortness of breath, and cough. Pneumothorax may be caused
by physical factors, such as chest trauma or impact, smoking,
and pulmonary diseases [1], [2]. The diagnosis of pneumoth-
orax is very complex and is usually determined by radiolo-
gists based on a chest X-ray examination. However, using
a chest X-ray to diagnose pneumothorax is challenging for
radiologists. Even experienced radiologists need to carefully
adjust image display settings, such as the window width,
window level, and image contrast, to make the correct diag-
nosis of the disease. This work requires a large amount of
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clinical experience and patience. Sometimes, fatigued doctors
will make incorrect judgments. The diagnostic accuracy of
pneumothorax highly depends on the expertise of the attend-
ing radiologist [3], [4].

In the absence of trained radiologists, the correct diagnosis
and treatment of pneumothorax are often delayed, which may
cause serious injury or even death in patients. The above situ-
ation is common in some undeveloped countries and regions.
Therefore, there is an urgent need for a computer-aided
diagnostic [5], [6] (CAD) tool to help doctors accurately
diagnose and detect pneumothorax. Deep learning-based
technology is a popular choice for image segmentation and
classification. Great success has been achieved using deep
learning in different fields, such as natural scene image under-
standing [7], geographic exploration [8], and medical image
recognition [9], [10]. The popularization of object detection,
semantic segmentation, and disease classification based on
deep learning has greatly relieved doctors of tedious work
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and improved the diagnosis efficiency [11]–[14]. Multitask
learning strategies [15], [16], such as Siamese networks [17]
and auxiliary tasks [18], have attracted increasing attention in
computer-aided diagnostics.

In engineering, when designing an outstanding pneumoth-
orax auxiliary diagnosis algorithm, the following challenges
are usually encountered. The resolution of a chest X-ray is
limited, and it is difficult to distinguish when the lesion area
contains only a small amount of air. Air accumulation areas
can be scattered at various locations and appear in multiple
shapes. Pixel-level medical image annotation (i.e., strong
supervision) is expensive and difficult to obtain. Image level
medical image annotation (i.e., weak supervision) is rela-
tively easy to obtain, but it is not easy to use to achieve high
recognition accuracy [19].

To alleviate these problems, we propose a multitask learn-
ing model [15] (i.e., a fusion model) for the automatic
detection of pneumothorax. The model can be used to fuse
information from frontal and lateral chest X-ray images to
realize high-precision automatic recognition of pneumoth-
orax. We invited experienced radiologists to build a pneu-
mothorax image dataset (Haut-NY). This dataset contains
not only frontal chest X-ray images but also corresponding
lateral chest X-ray images, which is meaningful. Many well-
known pneumothorax datasets, such as the National Institutes
of Health chest X-ray dataset [19], [20] and the Society
for Imaging Informatics in Medicine (SIIM) Pneumothorax
Challenge Dataset [21], do not contain lateral chest X-ray
images. The main contributions of this work are summarized
as follows.
• Different from previous works that only use frontal chest
X-ray images to identify pneumothorax, we propose a
multi-input multi-output neural network that can fuse
information from frontal and lateral chest X-ray images.
Experiments show that the model’s accuracy is higher
than that of the model using only frontal or lateral chest
X-ray images.

• The fusion model includes residual block and chan-
nel attention mechanism. The residual block alleviates
the vanishing gradient problem, and the channel atten-
tion mechanism gives different weights to different fea-
ture maps. Experiments show that those strategies can
improve the pneumothorax recognition accuracy of the
fusion model.

• The fusion model proposed in this paper only needs
image-level annotation to achieve high pneumothorax
recognition accuracy.

The rest of this study is organized as follows. In Section II,
the literature on the automatic diagnosis of pneumothorax is
introduced. In Section III, the specific structure and classi-
fication results of the fusion model, including the details of
the dataset, the hyperparameters, and the comparison with the
single input model, are described. In Section IV, a compari-
son of our model to models from excellent articles in recent
years is given. Discussions, conclusions, and future work are
given in Sections V and VI.

II. RELATED WORKS
Early automatic pneumothorax detection methods relied on
traditional feature extraction techniques. Hough transform [6]
was used to model the appearance of pneumothorax in X-ray
images and local intensity histograms, image edge detection
was used to catch the visceral pleural edge [22], and tex-
ture information was used to quantify pulmonary vascular
markers [23]. Because the predefined appearance features
cannot capture a variety of human lungs and pneumothorax,
the diagnostic accuracy of such algorithms is still relatively
low. The development of deep learning has introduced a
new approach for the automatic diagnosis of pneumothorax.
The deep learning algorithm can be used to train the model
to classify X-ray images of lungs with pneumothorax and
without pneumothorax [24], [25]. Cicero et al. [26] pioneered
pneumothorax diagnosis. They used GoogLeNet to detect
five common lung diseases using more than 35,000 adult
chest X-ray images. The accuracy of pneumothorax detec-
tion was 0.86 AUC (area under the curve). Taylor et al. [27]
compared the performance of Inception, VGG, and ResNet
neural network architectures, and the AUC obtained for
pneumothorax detection was 0.94. Rajpurkar et al. [28] later
proved that the performance of ResNet is statistically equiv-
alent to the ability of radiologists to diagnose pneumoth-
orax through chest X-ray images. Park applied the YOLO
series network to identify traumatic pneumothorax after chest
puncture. Wang et al. [14] used a multitask training strategy
to improve the accuracy of pneumothorax recognition. The
AUC obtained in pneumothorax detection was 0.9786. The
highest AUC value was achieved by Wang et al. [30], who
combined medical reports with X-ray images from the same
patient to achieve automatic pneumothorax classification.
The AUC obtained in pneumothorax detection was 0.995.
To protect the privacy of patients, they did not publish these
reports.

TABLE 1. Related work on pneumothorax classification in recent years.

III. EXPERIMENTS
A. OBJECTIVES
The work presented in [14] and [30] is better than that of
most other work on pneumothorax recognition. The former
used pixel-level annotation, while the latter used medical
reports to detect pneumothorax. However, these two types of

53176 VOLUME 10, 2022



J. X. Luo et al.: Pneumothorax Recognition Neural Network Based on Feature Fusion

annotations are expensive. How to use low-cost image-level
annotation to achieve high-precision pneumothorax recogni-
tion is our main objective. Different sizes of pneumothorax
may be presented in the front chest X-ray image and the
lateral chest X-ray image of the same patient. Frontal chest
X-ray images and lateral chest X-ray images have their own
advantages. Therefore, we aim to use a neural network to fuse
frontal chest X-ray image information and lateral chest X-ray
image information to improve the accuracy of pneumothorax
recognition.

B. DATASETS AND DATA ENHANCEMENT METHODS
1) DATASET
In cooperation with Nanyang Central Hospital in Henan
Province, China, we collected 2,530 pairs of chest X-ray
images from patients of different ages and gender (each pair
consists of a frontal and lateral chest X-ray image from the
same patient). The dataset contains a total of 5,060 digital
imaging and communications in medicine (DICOM) files.
Each DICOM file includes the patient’s protected health
information (PHI), including name, sex, age, and image-
related information. Specifically, there were 1,670 negative
pneumothorax cases and 860 positive pneumothorax cases,
which were labeled by experienced radiologists. Figure 1
shows X-ray images of one patient taken from different
angles. The specific data distribution is shown in Figure 2 and
Figure 3.

FIGURE 1. An example of the chest X-ray images of one patient from the
Haut-NY dataset. The first line includes four frontal chest X-ray images.
The second line contains four lateral chest X-ray images.

2) IMAGE AND METHOD ENHANCEMENTS
Data preprocessing: First, Pydicom was used to convert all
DICOM files into PNG files. The original image resolution
was 3200 × 3200 pixels. We zoomed in on the image to
achieve a 224 × 224 pixel resolution. The advantage of this
resolution is that relatively fewmodel parameters are required
and a fast training speed can be achieved. In addition, we also
attempted to use resolutions of 768 × 768 and 1024 × 1024
pixels. We used bilinear interpolation [31], [32] to ensure the
quality of the reduced image as much as possible.

Considering the limited number of chest X-ray images,
we used the Albumentations image enhancement tool, which
is a fast training data enhancement library for OpenCV,
to enhance the image. It has a very simple and powerful

interface that can be used for various tasks, such as classi-
fication, segmentation, and detection. In addition, it is easy
to customize and add other frameworks and can be used
to convert the dataset pixel by pixel. The specific image
enhancement methods we used are shown in Table 2.

Because ourmodel needs to fuse chest X-ray images of two
different views of the same patient (i.e., frontal and lateral
views), the data enhancement of the two images must be
consistent. Otherwise, convergence cannot occur in our deep
learning model.

TABLE 2. The image enhancement methods used in this experiment are
as follows. The parameter ‘‘p’’ represents probability. For example, the
probability of ‘‘blur’’ is 0.8, and the probability of no ‘‘blur’’ is 0.2. For the
training dataset, we used nine methods to increase the model’s
generalization ability. For the test dataset, only the normalization method
was used because for a real diagnosis, medical images will not be rotated
or blurred.

C. EVALUATED INDICATORS
True positive (TP): Positive samples are correctly classified
by the model;

False negative (FN): Positive samples are incorrectly
classified by the model;

False positive (FP): Negative samples are incorrectly clas-
sified by the model;

True negative (TN): Negative samples are correctly classi-
fied by the model;

The area under the curve (AUC) is defined as the area
under the ROC curve. Researchers often use the AUC value as
the evaluation standard of the model because the ROC curve
cannot clearly explain which classifier is better. In contrast,
the classifier with a larger AUC is better.

Formulas 1-6 are the six indicators used in this experiment
to evaluate the performance of the classification model.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Recall =
TP

TP+ FN
(2)

Precision =
TP

TP+ FP
(3)
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FIGURE 2. The distribution of sex and pneumothorax for the Haut-NY dataset.

FIGURE 3. Age distribution for the Haut-NY dataset.

Macro avg =
P_no + P_yes

2
(4)

F1− Score = 2×
Precision× Reacll
Precision+ Reacll

(5)

Weighted avg = p_no × (support_no ÷ support_all)

+ p_yes × (support_yes ÷ support_all)

(6)

D. SINGLE INPUT MODEL
In this experiment, we only used 2,530 frontal chest X-ray
images. The label of the positive pneumothorax image is
set to 1, and the negative pneumothorax image is set to 0.
The model only used the frontal branch (i.e., single input,
single output), as shown in Figure 6, to input the frontal

chest X-ray images and output the binary classification
results. We attempted to use different pretraining networks.
We found that ResNet-50 always achieved the highest accu-
racy (Table 3). Therefore, we used ResNet-50 pretrained on
ImageNet as the backbone. The input size was 224 ∗ 224 ∗ 3.
The data were flattened using the flattening layer. Then, the
image information was parsed using four fully connected
layers with the ReLU activation function. The parameter of
the final fully connected layers was 2 (representing the binary
classification), and the softmax activation function was used
to convert the output value of the binary classification into
probability distributions in the range of [0,1]. The loss func-
tion was binary cross-entropy.

After the first set of experiments, we used only 2,530
lateral chest X-ray images for the next experiment. Themodel
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FIGURE 4. An example of chest X-ray images of a patient from the
Haut-NY dataset. The first row shows the original frontal chest
X-ray images, and the second row shows the frontal chest X-ray images
after image enhancement. The third row shows the original lateral chest
X-ray images, and the fourth row shows the lateral chest X-ray images
after image enhancement. A consistent data enhancement method must
be maintained for a pair of images (i.e., the frontal and lateral chest X-ray
images of the same patient).

only used the lateral branches (i.e., single input and single
output), as shown in Figure 6, to input the lateral chest
X-ray images and output the binary classification results. The
training details of themodel were consistent with the previous
single input single output forward chest X-ray image model.

E. MULTI-INPUT MODEL
Different from traditional learning only through frontal chest
X-ray images or lateral X-ray images, we wanted to design a
multi-input network that could integrate frontal chest X-ray
image and chest lateral X-ray image information to diag-
nose pneumothorax. The model pretrained on ImageNet was
used as a tool to extract image features. We attempted to
use several different pretraining models as the backbone.
We found that when ResNet-50 was used as the backbone,
themodel’s accuracywas the highest (Table 6).We also found
that the characteristics of the ResNet-50 network determine
the accuracy. In training the model, we found that one of
the challenges is the vanishing gradient problem [33], which
occurs when the network is deep. The deeper the network
is, the more obvious the vanishing gradient, and the poorer
the training effect of the network. However, the shallow
network cannot significantly improve network performance.
This is a contradictory problem, but the residual block [34]
(an important module in ResNet-50.) effectively alleviates the
vanishing gradient in a deeper network.

∂L
∂XAout

=
∂L
∂XDin

∂XDin
∂XAout

(7)

XDin = XAout + C(B(XAout )) (8)

∂L
∂XAout

=
∂L
∂XDin

[1+
∂XDin
∂XC

∂XC
∂XB

∂XB
∂XAout

] (9)

FIGURE 5. Skip connection in the residual network.

Figure 5 and Formulas 7-9 show how this is achieved. Even
if the gradient attenuation occurs in the backward propagation
of A-B-C, the gradient at D can still be directly transmitted
to A, that is, the cross-layer propagation of the gradient is
realized. From the perspective of gradient size, no matter how
deep the network structure is, the residual network can main-
tain a large value of the weight close to the data layer (input)
to alleviate the vanishing gradient.

The channel of our fusion model is deep (with a large
number of feature maps). Different feature maps have dif-
ferent importances for pneumothorax recognition. Therefore,
we decided to introduce a channel attention mechanism to
optimize the model. We use the channel attention mechanism
SeNet [35]. After the emergence of SeNet, the loss caused
by the different importance of different channels of feature
maps in the process of convolution pooling was solved. The
squeeze and exception (SE) block improves the representa-
tion ability of the network by modeling the dependence of
each channel and adjusts the features channel by channel
so that the network can learn to selectively strengthen the
features containing useful information and suppress useless
features through global information.

The basic structure of SeNet is shown in Figure 7. The
parameter VC represents the Cth convolution kernel, and XS

represents the Sth input. The Ftr parameter represents the
convolution operation before the attention mechanism, and
Fsq represents the squeeze operation. After global average
pooling, the characteristic information changes from H ∗W ∗

C to 1 ∗ 1 ∗ C. The Fex parameter represents the excitation
operation. After the first fully connected layer, the ReLU
layer, the characteristic information changes from 1 ∗ 1 ∗ C
to 1 ∗ 1 ∗ C/r, where r is 16. After passing through the second
fully connected layer and sigmoid function, the characteristic
information changes from 1 ∗ 1 ∗ C/r to 1 ∗ 1 ∗ C (called
weight s). The Fscale parameter represents the multiplication
of ‘‘weights’’ and ‘‘U’’ obtained in the front convolution
to obtain the output. The relevant equations of the channel
attention mechanism are as follows:

uc = vc ∗ X =
∑C ′

S=1
V s
c ∗ X

s (10)

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (11)

s = Fex(z,W ) (12)
∼

Xc = Fscale(uc, sc) (13)
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FIGURE 6. Pneumothorax recognition neural network based on feature fusion.

FIGURE 7. Squeeze-and-excitation module and concat.

In our work, frontal and lateral chest X-ray images were
combined and two-channel attention mechanisms were used.
In the first step, the global spatial characteristics of each
channel were taken by the squeeze operation as the repre-
sentation of the channel to form a channel descriptor. In the
second step, the dependence on each channel was learned
and the feature map was adjusted according to the depen-
dence. The modified feature map was the output of the SE
block. The benefits of SE block reprofiling could be accu-
mulated throughout the network. The concat function was
used to fuse information of frontal and lateral chest X-ray
images, and finally, a flatten layer was used to flatten the
data. Fully connected layers (FCs) played the role of classi-
fiers in the whole convolutional neural network. Finally, the
binary classification results were output using the softmax

function (Formula 14).

Pc =
exp(fc)∑C
i=1 exp(fi)

(14)

Our model has two inputs and three outputs. The two
inputs are the frontal chest X-ray image and the lateral chest
X-ray image. The three outputs are the classification results
of the frontal chest X-ray image, the classification results of
the lateral chest X-ray image, and the classification results
integrating the characteristics of the fused frontal chest X-ray
image and lateral chest X-ray image. Our fusion model can
fuse frontal feature maps and lateral feature maps of chest
X-ray images and then learn them.

FTotal=FFc{FF latten[Concat(FF−−featuremap,FL−−featuremap)]}

(15)
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The loss function was binary cross-entropy (Formula 16).
Using cross-entropy as the loss function can alleviate the
imbalance between positive and negative samples to a certain
extent, and the calculated gradient is more stable [36]. The
loss function adopted by the three branches was binary cross-
entropy, but the weighting indices of the three branches are
different (Formula 17).

LBCE = −
∑
i

[yi log(
∧
yi)+ (1− yi) log(1−

∧
yi)] (16)

LTotal = λFusedLFused_BCE + λFrontalLFrontal_BCE
+ λLateralLLateral_BCE (17)

All experiments in this study adopted the 5-fold-cross-
validation method, where the data were divided into five
equal parts on average. Each data point was completely inde-
pendent and did not cross other data points. One part of the
data was taken for testing in each experiment, and the rest
was used for training. The average value was obtained for
five experiments.

Algorithm: 5-Fold Cross-Validation
Input: Preprocess pneumothorax dataset, then the dataset was
randomly divided into 5 parts on average:

D = D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5
Di 6= Dj(i 6= j)

1 o=1;
2 for o ≤ 5 do
3 Train model using D − Do;
4 Test model using Do;
5 Save score as R;
7 o++;
end
Output:

∑
R

5

F. EXPERIMENTAL DETAILS AND OPTIMIZATION
METHODS
The following experimental hyperparameter settings were
utilized. The Adam optimizer was used, the batch size was
32, and the initial learning rate was 0.0001. The epoch
was 60. If the model’s performance was not improved
after five epochs were trained continuously, the learn-
ing rate was decreased to one-tenth of its original value.
If the performance after 15 epochs was not enhanced,
‘‘early stop’’ was initiated to prevent overfitting. All net-
works were implemented based on the TensorFlow frame-
work and trained using NVIDIA GeForce RTX 3080 Ti
GPU cards.

G. CLASSIFICATION RESULTS
1) SINGLE INPUT MODEL CLASSIFICATION RESULTS
The classification results of frontal chest X-ray images
are shown in Table 4. First, for the binary classification
of the frontal images, based on the 334 nonpneumotho-
rax images, a recognition precision of 0.89 was achieved,
and based on the 172 pneumothorax images a recognition

precision of 0.82 was achieved. The recognition accuracy
was 0.87.

The classification results of lateral chest X-ray images
are shown in Table 5. First, for the binary classification
of the frontal images, based on the 334 nonpneumotho-
rax images, a recognition precision of 0.90 was achieved,
and based on the 172 pneumothorax images, a recognition
precision of 0.77 was achieved. The recognition accuracy
was 0.85.

TABLE 3. Prediction results of single input models under different
pretraining networks. (AUC was the indicator.)

2) MULTI-INPUT MODEL CLASSIFICATION RESULTS
For the case of multiple inputs, the classification results of the
frontal branch are shown in Table 7. For the 334 images from
patients without pneumothorax, a recognition precision of
0.93 was achieved, and for the 172 images from patients with
pneumothorax, a recognition precision of 0.85 was achieved.
The recognition accuracy was 0.91. In the case of multiple
inputs, the classification results of the lateral branch are
shown in Table 8. For the 334 images from patients without
pneumothorax, a recognition precision of 0.91 was achieved,
and for the 172 images from patients with pneumothorax,
a recognition precision of 0.87 was achieved. The recognition
accuracy was 0.90. Compared with a single input, all values
were improved to varying degrees.

The most obvious improvement in the accuracy was a
result of the fusion branch. In the case of multiple inputs
(without channel attention), the classification results of the
frontal branch are shown in Table 9. For the 334 images from
patients without pneumothorax, a recognition precision of
0.95 was achieved, and for the 172 images from patients with
pneumothorax, a recognition precision of 0.88 was achieved.
The recognition accuracy was 0.92. Both the macro avg and
weighted avg indices improved to varying degrees. In the
case of combining the multiple inputs model and channel
attention, the classification results of the frontal branch are
shown in Table 10. For the 334 images from patients without
pneumothorax, a recognition precision of 0.93 was achieved,
and for the 172 images from patients with pneumothorax,
a recognition precision of 0.95 was achieved. The recognition
accuracy was 0.94. Both macro avg and weighted avg indices
improved to varying degrees.
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TABLE 4. Comprehensive performance index of the pneumothorax binary classification for frontal chest X-ray images (single input, single output).

TABLE 5. Comprehensive performance index of the pneumothorax binary classification for lateral chest X-ray images (single input, single output).

FIGURE 8. Pneumothorax classification confusion matrix of the frontal images (Single input), lateral images (Single input) and fused branch (With
channel attention).

TABLE 6. Prediction results of multi-input models under different
pretraining networks. (AUC was the indicator.)

H. SOME FACTORS AFFECTING THE ACCURACY OF THE
MODEL
1) INFLUENCE OF MODEL TRAINING SEQUENCE ON
ACCURACY
We also found that training three branches in different
sequences will affect the performance of the fusion model.
We trained our fusion model with four different sequences.

1) Three branches were trained at the same time (train
together).

2) First, the frontal branch was trained, and then the lateral
branch and fused branch were trained (1-2-3).

3) First, the lateral branches were trained, and then the
frontal branch and fused branch were trained (2-1-3).

4) The frontal and lateral branches were trained together,
and then fused branch was trained (1 2-3)

2) INFLUENCE OF WEIGHT RATIO OF LOSS FUNCTION ON
MODEL ACCURACY
Because our model contains three outputs, the weight ratio
between the three loss functions must be considered. In fact,
in our experiment, different weight ratios affect the accuracy
of the model to a certain extent.

We found that when the weight of the loss function is set
to 1:0.6:0.6 (fused:frontal:lateral), the fused branch achieved
the highest AUC.

I. STATISTICAL ANALYSIS OF THE FUSION MODEL
We attempted to analyze the connection between the frontal
branch, lateral branch, and fusion branch from the perspec-
tive of statistics. Softmax was used in the process of binary
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TABLE 7. The comprehensive performance index of the pneumothorax binary classification for frontal chest X-ray images (two inputs, three outputs).

TABLE 8. The comprehensive performance index of the pneumothorax binary classification for lateral chest X-ray images (two inputs, three outputs).

TABLE 9. The comprehensive performance index of the pneumothorax binary classification for fused images (two inputs, three outputs, and without
channel attention).

TABLE 10. The comprehensive performance index of the pneumothorax binary classification for fused images (two inputs, three outputs, and with
channel attention).

TABLE 11. Area under the curve (AUC), 95% confidence interval (CI), and convergence time with different strategies.

classification to map the output of multiple neurons into the
(0,1) interval, which can be understood as probability, to carry
out binary classification when we input a chest X-ray image
into the model. The softmax function output of the frontal
branch was [0.49,0.51], which means that the probability
of the corresponding chest X-ray image showing nonpneu-
mothorax is 0.49, and the probability of pneumothorax

is 0.51. The softmax function output of the lateral branch
is [0.01,0.99], which means that the probability that the lat-
eral branch assesses the corresponding chest X-ray image is
nonpneumothorax is 0.01, and the probability of pneumotho-
rax is 0.99.

Let the softmax function output of the frontal branch
be [XFrontal, YFrontal], the softmax function output of the
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FIGURE 9. The ROC curves of all methods (corresponding to Table 11).

TABLE 12. AUC under different training sequences. (ResNet-50 was used
as the backbone.)

TABLE 13. AUC under different training weight ratios. (ResNet-50 was
used as the backbone, and the training sequence was trained together.)

lateral branch be [XLateral, YLateral], and the softmax func-
tion output of the fusion branch be [XFused, YFused]. The
connection between the three is shown in Table 14, where
P (YFused > 0.5) represents the probability that the cor-
responding image of fusion branch recognition is positive
pneumothorax.

IV. COMPARISON WITH OTHER WORK
Relevant articles from recent years on pneumothorax clas-
sification were divided into two categories. The first cat-
egory was multiclassification, which usually predicts 5-14
different chest diseases, and the AUC for pneumothorax
recognition ranges from 0.80 to 0.92 [19], [26], [39]–[41].

TABLE 14. The relationship between the activation functions of the three
branches.

The second category of articles was the binary classification
of pneumothorax [14], [37], [38]. The work related to the
binary classification of pneumothorax was the main compar-
ison for this experiment.

Taylor et al. [37] established a private pneumothorax
dataset. They used several different pretraining networks
for comparative experiments. The average AUC obtained in
pneumothorax detection was 0.94. Their main contribution
was to analyze the differences in recognizing various severi-
ties of pneumothorax, such as nonpneumothorax, trace pneu-
mothorax, moderate or large pneumothorax. In the case of
unbalanced pneumothorax datasets, Wang Y et al. [38] used
the positive image augmentation method to increase the pos-
itive pneumothorax cases and improve recognition accuracy.
When the ratio of the original positive pneumothorax sample
to the negative pneumothorax sample was 1507:26891, the
model’s accuracy was only 50.08%. Then, they increased
the data of positive pneumothorax cases to 27126:26891 (no
new positive images were added, only image augmentation
was used), and the model’s accuracy improved to 88.52%.
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TABLE 15. Comparison with the work of other researchers in recent years (binary classification of pneumothorax).

However, only using image augmentation to expand the posi-
tive samples may risk overfitting without adding new images.
It may only improve the recognition accuracy of the current
dataset, while in the face of new datasets, the recognition
accuracy of the model may be reduced. The strategy by
X. Wang et al. [14] was to use pixel-level pneumothorax
annotation combined with a multitask learning model to
achieve high-precision pneumothorax classification. Their
work was very comprehensive. Among the five evaluated
indicators in Table 15, AUC is the most valuable because
AUC can resist the imbalance of the number of samples to
a certain extent. The accuracy, precision, recall, and F1-score
are vulnerable to data imbalance (i.e., the number of positive
and negative pneumothorax cases).

V. DISCUSSION
When accuracy was the evaluated indicator, using the fusion
network improved the accuracy by approximately 7% com-
pared with using only the frontal chest X-ray image infor-
mation and approximately 9% more accurate than using only
lateral chest X-ray image information. When AUC was the
evaluated indicator, our fusion model was 4% higher than that
using only frontal or lateral models. In fact, by comparing the
data in Table 11, we found that no matter which performance
index was used as the evaluation, the performance of the
fusion network was the best.

Our further experiments showed that the accuracy of pneu-
mothorax recognition was related to the training sequence of
the model and the weight ratio of the loss function. When
the training sequence was three branches trained simulta-
neously and the weight of the loss function was 1:0.6:0.6
(fused:frontal: lateral), the model’s accuracy was the highest.

Referring to Table 15, using only image-level annota-
tion, our model still achieved high pneumothorax recognition
accuracy.

VI. CONCLUSION AND FUTURE DIRECTIONS
We proposed a pneumothorax binary classification neu-
ral network based on feature fusion. This was meaningful

because most of the literature on pneumothorax recogni-
tion only considers frontal chest X-ray images. Our model
could be used to fuse frontal and lateral X-ray informa-
tion to achieve higher precision pneumothorax recognition.
The model design considered the phenomenon of the van-
ishing gradient in deeper neural networks, so we introduced
the residual block to alleviate it. There were too many chan-
nels in the feature map after feature fusion, so the channel
attention mechanism SeNet was used to adjust the feature
map. Comparative experiments showed that the accuracy of
this method was higher than that of the traditional single
task pneumothorax recognition network. The main value of
our work is that only using image-level datasets can achieve
high pneumothorax recognition accuracy. However, we need
pairs of image-level annotations (frontal annotation+ lateral
annotation) rather than only front images. Therefore, our
dataset is more expensive than the dataset containing only
frontal images. This is a limitation of our method. However,
the cost is still lower than that of pixel-level annotations, even
for paired image-level annotations. Therefore, the proposed
method may assist radiologists with the prompt and accurate
diagnosis of pneumothorax and precise treatment planning.

Future work is as follows. First, we will improve the
dataset, expand the number of images, invite experienced
radiologists to add pixel-level annotations to our dataset, and
conduct in-depth research around visualization techniques.
Second, we will combine our model with the expert sys-
tem [42] and the fuzzy consensus [43], which play an impor-
tant role in artificial intelligence-aided diagnosis and the
internet of medical things.
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