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ABSTRACT The latest trends in computer networks bring new challenges and complex optimization
problems, one of which is link dimensioning in Spectrally-Spatially Flexible Optical Networks. The
time-consuming calculations related to determining the objective function representing the amount of
accepted traffic require heuristics to search for good quality solutions. In this work, we address this problem
by proposing a hybrid regressionmodel capable of the objective function estimation. The presented algorithm
uses a machine learning model built on already evaluated solutions for choosing new promising ones,
providing a fast and effective method for solving the considered problem. The experimental evaluation con-
ducted on two representative network topologies demonstrates that the proposed approach can significantly
outperform other methods in the case of the EURO28 topology, while for the US26 topology, it provides
results comparable to the solutions obtained so far.

INDEX TERMS Hybrid regression, link dimensioning, SS-FON, network optimization, machine learning.

I. INTRODUCTION
Recently, telecommunication networks have become an
indispensable part of society’s everyday life, providing sup-
port for such vital areas as education, business, finances,
health care, entertainment, social life, to enumerate a few.
Their crucial function in society was especially emphasized
during the COVID-19 pandemic when several activities could
be performed only remotely [1]. The networks’ important
role and increasing popularity also bring continuous growth
of the number of users, connected devices, as well as inter-
est in bandwidth-intensive services [2]. In order to meet
these growing requirements, the networks have to continu-
ously evolve by implementing advanced physical architec-
tures and technologies which are optimized or controlled by
a dedicated software intelligence [3]. Currently, one of the
most promising technologies for optical transport networks
is the idea of Spectrally-Spatially Flexible Optical Networks
(SS-FONs), which combines benefits of the architecture
of elastic optical networks (EONs) and the technology of
spatial division multiplexing (SDM) [4]. The EONs’ effec-
tiveness comes from the operations within flexible frequency
grids and support for advanced modulation and transmission
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techniques [5] while SDM allows extending the links’ capac-
ity limit by utilizing a number of spatial resources on each
physical link [4].

Moreover, in recent years the field of computer network
optimization has been intensively developing the concept of
cognitive optical networks, introduced in order to improve
the performance of future optical networks comparing to the
conventional solutions used nowadays. In a nutshell, a cog-
nitive optical network is defined as a network with a cogni-
tive process that can perceive the current network conditions
and then plan, decide, and act on them [6]. The key new
element of cognitive optical networks is the application of
various machine learning methods to support and enhance
well-known existing optimization approaches.

In this work, we address an optimization problem of an
efficient link dimensioning in SS-FONs, which consists in
deciding on the amount of spatial resources to be activated
in order to maximize the amount of the served users’ traffic
and minimize the network operational cost [7]. The consid-
ered problem is highly challenging due to two contradictory
optimization criteria, namely, enormous solution space, and
time-consuming evaluation of a candidate solution. In more
detail, the size of the solution space follows from the fact
that due to using the SDM concept each network link can
be assigned with a different number of spatial resources
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(e.g., fibers, cores or modes). For instance, assuming a net-
work with 82 links (such as a EURO28 network tested in
this paper) and the case when each link can be assigned
with from 4 to 8 spatial resources (i.e., 5 possible values)
the number of all possible configurations is about 2 × 1057.
In turn, to evaluate a single candidate solution (unique in
terms of the spatial resources assigned to each link) it is
required to run a dynamic routing simulation in SS-FON
to allocate a large number of demands to obtain a result
showing the amount of traffic that can be allocated in the
considered network. To tackle the problem, we propose and
tune a new optimization algorithm based on a supervised
machine learning hybrid-regressionmodel. The data provided
to the model are obtained as solutions from the optimization
procedure, along with the pool of random sampling of the
same problem. Such an approach leads to disproportions
between both sources and simple models might be vulnerable
to skewed class distribution. The efficiency of the proposed
approach is evaluated using extensive experiments run for two
representative network topologies and various traffic patterns.

The main paper’s novelty and contributions are:

• An interpretation of the optimization problem as a
regression problem.

• Architecture of a hybrid supervised learning system for
a regression task with an integration rule based on a
probabilistic classifier.

• Experimental evaluation of the proposed methods.

The rest of the paper is organized as follows. Section II
discusses related works introducing state-of-the-art methods
in the field. Section III introduces the network optimization
problem and the procedure of dataset generation. Section IV
describes a proposition of the supervised learning-based sys-
tem for network optimization, while Sections V and VI
present the experiments’ set-up and results accordingly.
Finally, Section VII concludes the whole study.

II. RELATED WORKS
This section briefly discusses recent works related to cogni-
tive optical networks and the application of machine learning
methods to other optimization problems.

The processes in cognitive optical networks, which learn
or make use of history to optimize the network performance,
can apply various machine learning mechanisms [6]. One
of their most popular applications are traffic forecasting and
improving routing or resource allocation strategies [8], [9].
Various methods were applied for the task of traffic predic-
tion, wherein the most efficient were based on typical neural
networkswith single hidden layer [3], [10], nonlinear autore-
gressive neural networks [9] and long short-term memory
networks [8]. Besides network traffic, the researchers also
proposed models to forecast the quality of services realized
in the network and the overall network performance under
some specific configurations/circumstances. For instance,
the authors of [11], [12] proposed a regression model to
estimate the bandwidth blocking probability in the network

(it should be minimized) based on the applied configurations
of available modulation formats. Barletta et al. [13] defined
a classification model to predict the probability that the bit
error rate of a candidate optical path will not exceed the
system tolerance threshold. Feature engineering was con-
ducted by employing the traffic volume, modulation format,
path length, length of its longest link, and a number of all
included links as attributes. Ibrahimi et al. [14] utilized the
regression methods to propose a model estimating the signal-
to-noise ratio (which influences the quality of a transmission
significantly) of candidate optical paths in a network. For
more information on optical networks and the application
of various machine learning techniques in optical networks,
please refer to [3], [15]–[17].

Machine learning methods can be used not only to support
computer network optimization methods, but also to support
other solvers for generic optimization problems. For instance,
in [18] the linear and quadratic regression models are used
in STAGE algorithm to approximate the best starting point
for the local search procedure. The model is trained itera-
tively, and the optimization procedure is repeated from a new
starting point giving good results for various optimization
problems. Among more recent works, the regression mod-
els are used to estimate the cost function in the offshore
wind farm layout problem [19], where training data comes
from complex estimations of Mathematical Optimization.
The regression models can be also applied to approximate
functional gradient descent [20], which was found promising
method for optimization in robotic problems.Moreover, it can
be used for prediction of modeling efficiency [21] in feature
selection tasks, based on cross-validation protocol employed
in the Genetic Algorithm.

III. NETWORK OPTIMIZATION PROBLEM
The analyzed optimization problem refers to SS-FONs. The
main idea of SS-FON is an operation within flexible fre-
quency grids, where the entire spectrum width available in
an optical fiber is divided into narrow and same-size seg-
ments called slices [22]. The adjacent slices can be then
grouped together to create communications channels, which
are used for a data transmission. Depending on the number of
involved slices, SS-FON gives possibility to create channels
of different size (tailored to the incoming traffic demands)
and in turn to provide superior spectrum utilization. Con-
currently, SS-FON allows to extend links’ capacity limit by
introducing spatial dimension to enable parallel optical signal
transmission through spatial resources (or spatial modes for
the sake of simplicity) co-propagating in suitably designed
optical fibers. There are several candidate fiber solutions
proposed for SS-FON realization, wherein the most popular
ones are: single-mode fiber bundle (SMBF), multi-core fiber
(MCF), few-mode fiber (FMF), few-mode multi-core fiber
(FM-MCF) [4], [23].

In this paper, authors put the attention on SS-FON network
realized using SMFB fibers. It is important to denote that it
is focused on a transport network topology, which operates
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through areas of different cities, countries, or even continents.
The physical augmentation of the network infrastructure (i.e.,
fiber links) is a complex and expensive process. Therefore,
in order to mitigate these challenges, the transport networks
are always over-provisioned. The links of existing networks
are already equipped with several spatial resources. In order
to decrease network operational costs, the operators keep
some of these resources switched off. However, they can be
quickly and easily activated whenever necessary.

Optical network operators offer various services based on
backbone optical networks consisting of fibers and devices.
From the business point of view, one of the main goals of net-
work operators is to maximize the amount of served network
traffic since it allows to increase the revenue and number of
customers. The basic approach to this goal is to increase net-
work capacity by adding new resources to the network (e.g.,
fibers, devices). Nevertheless, the network expansion gener-
ates additional expenses and takes a long time (e.g., installing
new fibers can last months). Therefore, the operators prefer
to use a method that leverages the existing infrastructure and
delays the new expenditures. To this end, this work states a
proposition of an approach that allows to re-dimension an
SS-FON by changing the number of utilized fibers in some
network links. What is vital, this re-dimensioning method
does not entail additional capital expenditures since only the
existing resources (installed dark fibers, switching nodes,
transponders) currently available in the network are utilized.
In addition, the re-dimensioning approach can be applied rel-
atively fast since the most time-consuming element is to acti-
vate not-used fibers through a proper port rearrangement in
network nodes, e.g., operating with Architecture on Demand
(AoD) paradigm.

The considered optimization problem related to the
SS-FON re-dimensioning consists in augmenting or reducing
the number of active fibers in some network links under
a constraint that a limited number of ports is available in
network nodes. SS-FON is modeled as a directed graph G =
(V ,E) where V is a set of optical nodes (devices) and E is
a set of directed links (bundle of fibers). We assume that each
SS-FON link has a number of available fibers aggregated
in a bundle. Some of the fibers in the link are active, i.e.,
they can be currently used to provision the incoming light-
path requests. In turn, some of the fibers are inactive (dark),
and they cannot be currently used to provision the incom-
ing requests. It is assumed that inactive fibers are already
deployed, and it is simple and quick to lift them up and
make them available for allocation of lightpaths. As a default
configuration, SS-FON is dimensioned uniformly, i.e., every
link e ∈ E has the same number of active fibers denoted as
K . Moreover, it is assumed that every optical node v ∈ V has
pv = K · deg(v) input/output ports, where deg(v) denotes the
node degree (number of adjacent links) of the port v. In other
words, every node v has as many ports as necessary to serve
all active fibers connected to the node v.
The considered optimization problem can be formulated in

the following way. Let integer variable ye denotes the number

of fibers assigned to the link e. Moreover, let a set Y =
(y1, y2, . . . , y|E|) denotes a network configuration defined as
a network, in which each link e ∈ E is assigned with the
number of fibers given by ye. Due to the limited number of
available ports pv in nodes v ∈ V , every network configu-
ration must satisfy the constraint that the overall number of
fibers connected to/from a particular node v cannot exceed
pv. A network configuration is feasible if the above node
constraint is satisfied. The considered optimization problem
involves finding a feasible network configuration that pro-
vides the best network performance under a dynamic traffic
scenario.

The following procedure is applied to verify a particular
network configuration Y . A network dimensioned according
to Y (each network link is assigned with ye fibers according
to Y ) is saturated with a dynamic traffic, i.e., traffic requests
between network nodes arrive in the network over a time.
Every request has a holding time in which the request stays
in the network, and after this time, the request is removed
from the network. Moreover, every request has a capacity,
i.e., bit-rate required to serve the request. To serve a request
that arrived in the network, a lightpath has to be established
consisting of a routing path and a range of optical spectrum
slices allocated in network links included in the routing path
necessary to serve the request’s bit-rate. We assume a flexible
back-to-back (B2B) regeneration of an optical signal that
allows regeneration of lightpaths with modulation conversion
in any intermediate node of a lightpath [24]. If the network
resources are not sufficient, the request is rejected. The main
performancemetric used tomeasure a particular network con-
figuration is bandwidth blocking probability (BBP) defined
as the ratio of the volume of rejected requests to the whole
offered traffic volume. Next, a more aggregated metric called
accepted traffic (AT) for 1% threshold of BBP is formulated.
To measure the accepted traffic, the network traffic intro-
duced to the network is gradually increased in order to reach
BBP of 1%. This procedure allows estimating the amount of
traffic that can be served in the network configured according
to Y with BBP 1%, which is a commonly accepted threshold.
For the dynamic routing, we apply Adaptive Routing with
Back-to-back Regeneration (ARBR) algorithm proposed and
evaluated in [24]. For a more insightful description and more
details on the considered optimization problem, please refer
to [7], [25].

The addressed SS-FON re-dimensioning optimization
problem (i.e., decision on values of variables ye) can be solved
using various approaches. In our previous works [7], [25],
we have proposed a heuristic method, in which the decision
which links are to be augmented or reduced is made based on
metrics assigned to the network links. In particular, links with
the highest value of the metric are selected to be augmented,
while the selection of links to be reduced is made according to
the lowest value of the metric. All re-dimensioning decisions
must satisfy the node constraint due to the limited number
of ports. We have examined various link metrics utilizing
data analytics observations related to network topological
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characteristics and network traffic allocation within a partic-
ular period.

Moreover, in the context of this work, we have solved the
problem using Integer Linear Programming (ILP) approach.
In more detail, the analyzed problem was formulated as a set
of constraints with an objective function that minimizes the
expected load on the most congested network link after the
re-dimensioning. The ILP model uses as an input the values
of network loads obtained by simulating the dynamic routing
operation in a network configured in a default way, i.e., ye =
K for every e ∈ E . Finally, the obtained solutions are used to
create datasets applied in further experiments.

Product of performed simulation states collection of
datasets – for each considered topology – fueling further
supervised learning methods:

DSC set of all correct problem instances, but without cal-
culated criterion function,

DSR set of 300 random correct instances (subset of DSC ),
with calculated AT value,

DSH set of 16 correct instances being products of different
heuristic approaches to the problem [25], with calcu-
lated AT value,

DSI set of 32 correct instances being products of different
ILP approaches to the problem [7], with calculated
AT value,

DSO union of DSH and DSI ,
DSA union of DSR and DSO sets supplemented with cat-

egorical vector establishing label (positive) for DSO
instances and label (negative) for elements of DSR.

IV. SUPERVISED LEARNING INTERPRETATION
OF THE PROBLEM
Both network optimization and supervised learning are opti-
mization tasks, thus – for their basic concepts – it is possible
to define a generic plane of interpretation. It exists mainly in
the area of a description of system inputs [11]. An instance
of an optimization solution Y is represented by a vector
describing the parameters and the related criterion function
value AT which has to be determined in a complex network
simulation. Similarly, an instance of the supervised learning
problem x is also a vector, described by a label, which can
be either discrete or continues value for classification and
regression task respectively. Highlighting this similarity, one
may easily propose a translation between these definitions,
and a definition of a recognition model capable of estimating
the AT value for new solutions, without the need to perform
a computationally expensive simulation.

In the optimization task the system is known in advance,
but all calculations performed for it are time-consuming due
to its high complexity. On the other hand pattern recogni-
tion methods may model such system, which means that the
resulting prediction is no longer so time-consuming, but at
the same time, burdened with a measurable generalization
error. The last key difference between systems of both types
is also the user’s expectations. From optimization systems,

TABLE 1. Description of models stating architecture components and
their parameters.

it is required to designate an instance of the problem that will
minimize or maximize the value of the objective function.
On the other hand, pattern recognition systems are required
to minimize the prediction error.

The default requirement for ensuring high generalization
capability of any model employing the inductive learning
paradigm is to provide the training procedure with a suffi-
ciently large pool of annotated observations [26]. However,
due to the characteristics of the problem under consideration
and the high complexity of the simulation used to construct
the training set for research purposes, only a limited pool of
objects is available. Such a situation makes the problem par-
ticularly difficult [27] and necessitates the use of alternative
decision-making system improvement mechanisms, which in
the proposed solution will be based primarily on ensemble
approach to supervised learning [28].

It is essential to underline that the available labels of
the dataset allow the interpretation of the problem as both
a regression and classification task. Thus, in the designed
method, the column of the AT value will be a target of
the regression, and the column specifying the source of the
solution instance (DSR, DSH or DSI ) will be a target of the
classification.

A. SOLUTION ARCHITECTURE
To facilitate the reading of this subsection, all symbols which
are not present in the summary of Section III, are summarized
in the Table 1.

The task of the algorithm proposed in the following paper
is to construct a recognition model capable of high-quality
AT value prediction, allowing to probe the complete available
set of correct solutions (DSC ) in order to select the optimal
network configuration Y that maximizes this value.

The first step to solve this problem is to construct a basic
regression model (Areg) fitted on all available samples from
the training set (DSA). It states a basic solution, which turns
out to be sufficient in the case of problems with low-complex
distribution characteristics [29], [30]. However, as it was
shown in the preliminary tests, which are also presented
in Section VI of the paper, it is not an acceptable solu-
tion to solve the problem of optimal network configuration
selection. It is necessary to underline that the authors are
aware of the fact that the typical metrics for assessing the
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quality of regression models are not perfectly tailored to
the optimization-aiding challenge [31]. However, the low
r2 score for objects from the DSO category obtained by Areg,
was sufficient to induce a suggestion for the construction of
a more complex solution.

This early premise from the preliminary research led to
the proposition of a hybrid architecture of the constructed
prediction model [32]. Its primary idea was the construction
of a minor, homogeneous pool of independent regression
models [33], diversified by identified categories of available
data [28], integrated with the use of a classification model
capable of generating support for pattern membership for
these categories [34].

The first of the two most important criteria for the con-
struction of a reliable hybrid recognition system is to ensure
appropriate differentiation of the models contained therein to
support the final decision [35]. Therefore, in the proposed
collection of regressors, the basic Areg model built on all
three categories of labeled subsets (DSR, DSI , and DSA) was
supplemented with two additional predictors:

Rreg constructed exclusively on randomly generated
instances (DSR), which constitute the majority of
available samples ( examples).

Oreg built on the basis of DSI and DSH sets unified in
DSO due to the small number of the described prob-
lem instances resulting from previous optimization
approaches ( examples combined).

The second key factor of an effective hybrid recognition
system is the design of an appropriate method of integrating
the responses of member regressors [36]. The authors, after
a preliminary analysis of simple approaches of achieving
consensus – based on the rules of averaging the obtained
prediction [37] – decided on a more complex combination.
The proposition is based on a trainable fuser, estimating the
weights ofmember regressors’ decisions based on the support
given by it to problem categories identified as the training sets
of individual models from the pool [38].

The classification model supporting the integration of the
ensemble is trained on the DSA set, in the labeling bias
solving the dichotomy of belonging to the DSR and DSO
categories constituting its disjoint subsets. Due to the dis-
proportion between the classes of the problem interpreted in
this way, the set of random solutions (DSR) will assume the
role of a negative class, and the optimized solutions union
(DSO) – a positive class, which will allow us to denote the
support vector F of the classifier as:

F = {FR,FO}, (1)

where FR and FO estimate the probability of belonging to
the, respectively, DSR and DSO set. The prepared integration
model allowed to propose two rules for the combination of
base regressors’ responses:
Optimized Random Combination (ORC) which weighs

only the predictions of the regressors Rreg and Oreg with the

support vector F , assuming the formula:

ORC = FR(x)× Rreg(x)+ FO(x)× Oreg(x). (2)

Optimized Random All Combination (ORAC) which also
takes into account the response of the Areg regressor, adopting
the formula:

ORAC =
Areg(x)+ ORC

2
. (3)

The rule of integration of the pool of regressors incorpo-
rated in this way allowed for the closure of the proposed
processing architecture, presented in Figure 1. Its left side
presents the relations between the individual training sets of
the hybrid model, and the right side – the applied approach to
the combination.

The proposed solution to the problem presented in this
paper considers a set of predictors with a hierarchical struc-
ture, using both regression and classification models. In order
to standardize the experimental evaluation, the Multi-Layer
Perceptron (MLP) with the lbfgs optimization function and
 neurons with the ReLU activation function in a single
hidden layer was selected as the base algorithm for the con-
struction of the recognition model in both the regression and
classification task.

The authors would like to underline that in the preliminary
experiments, the potential of many other simple regression
methods was verified for the considered problem pool, which
justified the use ofMLP as the base model for both regression
and classification.

B. AIDING OPTIMIZATION BY A HYBRID
REGRESSION MODEL
In the experimental evaluation procedure of the proposed
hybrid AT value prediction method for instances of the ana-
lyzed problem, a 5-fold cross-validation protocol was used.
This approach was also utilized as an additional factor sta-
bilizing the estimation of the criterion function value in the
final optimization-aiding model, in which instances from
the complete available set of valid, unlabeled DSC solution
instances were given at the input of the hybrid predictor
built on each of the cross-validation folds. Furthermore, this
made it possible to build an external ensemble of predictors,
using the knowledge from the entire training set, which is
quite a common, recognized practice in the development of
production recognition systems [39].

In the final approach to aiding optimization, for the best
20 instances of the DSC set, the simulation procedure cal-
culated the value of the criterion function. Selected best
instances had to meet following criteria:

(a) the hybrid regression method returned the highest
predictions,

(b) the classification model assigned them to the category
DSO, which distribution is characterized with a higher
expected value.
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FIGURE 1. Proposed hybrid regressor system architecture.

V. EXPERIMENTS SET-UP
In order to evaluate the proposed method, a coherent experi-
mental protocol was established, under which both the distri-
bution of solutions, and the predictive ability of the proposed
method were examined. The protocol defines the description
of the datasets, the detailed plan of each experiment, and
the specification of the research environment in which the
research was conducted.

A. DATASETS
In the experimental evaluation of the hybrid aided-
optimization method proposed in this paper, two representa-
tive optical network topologies were used (Figure 2), each
of them in two network traffic scenarios, which together
gives four analyzed datasets that constitute a problem for
recognition models:

EURO28A EURO28 network topology, in which requests
are uniformly distributed between all origin-
destination node pairs in the network.

EURO28G EURO28 network topology, in which the dis-
tribution of requests between origin-destination
nodes is inversely proportional to the distance
between these nodes.

US26A US26 network topology, in which requests
are uniformly distributed between all origin-
destination node pairs in the network.

US26G US26 network topology, in which the distri-
bution of requests between origin-destination
nodes is inversely proportional to the distance
between these nodes.

The adopted strategy for the construction of the recog-
nition system uses a classification model that resolves the
dichotomy between the categories of data with a highly
imbalanced cardinality in the available training set, which
could cause difficulties in prediction resulting from the pres-
ence of imbalanced data [40]. These difficulties were taken
into account by the authors of the study. However, the

experimental evaluation carried out in terms of classification
showed that the datasets, despite a strong imbalance [41],
present a relatively simple dichotomy, solved by the proposed
predictor at the level of over 90% of the balanced accu-
racy score [42], so they were not subjected for additional
preprocessing phases necessary to balance the prior class
distribution.

B. EXPERIMENTS DESIGN
As a part of the experimental evaluation of the proposed
method, four computer experiments were designed to ver-
ify possibly broad spectrum of aspects influencing the
processing:

E1 Analysis of the distribution of the AT value in individual
categories of solutions.

The first preliminary experiment aims to build more
knowledge about the analyzed problem to support the obser-
vations resulting from further experiments and reach bind-
ing conclusions. The distributions of AT values for the sets
DSA, DSR, DSH , DSI and DSO determined for each collected
dataset will be analyzed, using the kernel density estimation,
with the bandwidth estimated using the silverman method.
Such an approach will allow the dependencies between the
labeled subsets of the DSC and draw preliminary conclu-
sions about the potential dependencies between member
regressors.

The possible observed significant differences between the
AT distributions for different categories of solution sources
will constitute a proper justification for the hybrid approach
to the construction of the recognition system.

To gather information about the solution distribution in
target value space (explained with AT) results were obtained
using kernel density estimation with estimated bandwidth
using silverman method. All available solutions for differ-
ent datasets were used in various combinations described
in Section III.
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FIGURE 2. Tested optical network topologies.

E2 Assessment of the recognition model’s ability to distin-
guish between DSR and DSO members.

A critical component of the proposed hybrid regression
model is the development of a robust recognition system
fuser. The literature on the problem indicates that the pre-
dictive ability of a multi-classifier system based on a deci-
sion rule aimed to recognize an area of responsibility of the
member classifiers has a direct impact on the effectiveness
of the entire ensemble [43]. Therefore, this experiment will
aim to assess the classifier’s effectiveness in controlling the
combination of regressors, assuming that the observations
typical for classifier ensembles can also be generalized for
the other supervised learning tasks.

This experiment is conducted on a single model – MLP,
which will be used to estimate binary classification accuracy
explained in balanced accuracy score. The experimentation
protocol is stratified 5-fold cross-validation, conducted on
each dataset.

E3 Assessment of the cross-predictive ability of the devel-
oped regression models concerning each of the cate-
gories of labeled solutions.

It should be underlined that the regression models built as a
part of the proposed processing architecture, due to the lack of
dedicated optimization-aiding metrics for such solutions, are
optimized in a traditional way to squared-loss determined on
the available training set. It means that the model constructed
in this way does not ensure the correct ordering of the prob-
lem instances concerning the value of the criterion function,
which would be the most beneficial effect, but minimizes
the error made on the part of the feature space sampled by
the training set. The evaluation of the effectiveness of the
regression model measured with the use of classical metrics

of this task cannot, therefore, be directly interpreted as an
evaluation of its usefulness in optimization aiding.

However, it is necessary to carry out such evaluation to
assess the constructed models’ general predictive ability and
verify their effectiveness for individual categories of available
training data. Therefore, this experiment will aim to verify
how single individual models (Areg, Rreg, and Oreg) and the
proposed hybrid models (ORC and ORAC) perform both
against the full available dataset (DSA) and its categories (DSR
and DSO).

Regression models created in this experiment are com-
pared with explained variances score obtained in stratified
5-fold cross-validation. All results for individual model are
compared for statistical significance using paired Student’s
t-test.

E4 Final evaluation of the effectiveness of the hybrid regres-
sion model in aiding link dimensioning.

The last experiment will be designed to verify how the
proposed hybrid models and their member-regressors work
in link dimensioning aiding. For each of the regression-based
models, the best 20 solutions will be selected following the
aiding-strategy described in Section IV-B, for which the real
AT values will be determined in the simulation procedure.
Both the highest AT values from such selected samples and
(using the T-student test for independent samples) the distri-
butions of the best 20 values of the criterion function available
in the sets DSR, DSH and DSI will be compared.

Such an approach will allow for the final verification
of whether the classically trained (squared-loss optimized)
hybrid regression model can be used to select the best
available network configuration and whether the possible
profit from this type of solution turns out to be statistically
significant.
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Positive verification in this scope will allow us to propose
an effective hybrid regression method for link dimensioning
aiding. However, obtaining a method statistically dependent
on the standard approaches used so far in this domain will
suggest the need to adapt the existing regression algorithms
to optimization to the cost function, which does not directly
assess the predictive ability of the regression model, but its
effectiveness in supporting external optimization tasks.

Presented results are determined following the procedure
specified in Section IV, based on the prediction fused by
ensemble, and the non-parametric Student’s t-test for inde-
pendent samples was used to determine the statistical rela-
tionship between the methods used to solve the network
problem.

The research environment used to conduct experiments
was prepared in Python supported by commonly used scien-
tific packages – scikit-learn [44] and SciPy [45]. Provided
results of experiments are reproducible and code is available
in on-line repository.1

The solution of the considered problem instances for
four analyzed datasets were obtained using two approaches
described above, namely, heuristic algorithms [25] imple-
mented in C++ and an ILP approach implemented in C++
using the ibm ilog cplex Optimization Studio V12.6.3.

VI. EXPERIMENTAL EVALUATION
Conducting the research under the conditions strictly defined
in the previous section resulted in the evaluation of the pro-
posed method. For each of the experiments, the observations
and conclusions drawn on the basis of the obtained results are
presented.

E1: Analysis of the distribution of the AT value in individ-
ual categories of solutions.

Figure 3 presents the density distributions of the AT value
for the analyzed datasets. The AT is expressed in NTUs
(Network Traffic Units) [7]. The results of the preliminary
analysis prepared in E1 confirm the existing significant dif-
ferences in distributions between solutions of different cat-
egories. As predicted, the expected value for the solutions
selected with heuristic methods is much higher than for the
pool of random solutions. At the same time, it is possible to
observe a much smaller variance in these distributions, which
is related to the search procedure itself, which – considering
the nature of the network optimization problem – aims to
maximize the value of AT. However, the expected, perfect
training set shall cover the entire solution space in the consid-
ered supervised learning problem. Therefore, the use of only
solutions from the optimized pool may lead to the underrepre-
sentation of the problem, which will increase the inaccuracy
of predictions, especially for solutions placed outside of the
local optima evaluated in heuristics.

The benefit of concatenating all sets to DSA is to increase
the quantified value while maintaining a high standard devi-
ation. The performed experiment also indicates – which is

1https://github.com/w4k2/hybrid-regression-optimization

TABLE 2. The ability of a categorical classifier to distinguish between
potentially useful and random cases.

especially emphasized in solutions from the DSI group –
the tendency of heuristics to search in local optima, which
is exposed in two peaks for the density distribution plot
observed in each dataset. The proposed combination of DSI
and DSH allows creating a homogeneous pool that can be
used for the needs of the recognition task.

E2: Assessment of the recognition model’s ability to distin-
guish between DSR and DSO members.

The observed differences in the distributions, especially
the significant difference between the expected value of the
setsDSO andDSR, give grounds for formulating a dichotomy
consisting in selecting the set to which the previously unde-
termined solution belongs. The results presented in Table 2
seem to confirm this assumption, where we observe very
high results of the balanced accuracy score metric for the
MLP. As a result, it is possible to prepare a hybrid model in
which the high ability of the classifier to recognize categories
will be used to integrate the pool of regressors modeled
on separate pools of solutions. Thus, the narrowing of the
pool of optimized solutions, which in the case of a single
regressor could harm the prediction, can be reduced by using
themodel prepared inE2, allowing for the creation of a hybrid
model, composed of regressors trained on the fragments of
the solution pool.

E3: Assessment of the cross-predictive ability of the devel-
oped regression models regarding each category of labeled
solutions.

As mentioned before, the square-loss metric is insufficient
to assess the regressor model’s usefulness in the optimization
aid task. However, the results obtained using this metric allow
for a reliable comparison of the created models in terms of
the correctness of prediction. Each section of Table 3 relates
to the results obtained on the successive datasets. Each row in
the section informs which subsets were used to estimate the
regression quality (DSA : all;DSR : random;DSO : optimized).
Table columns represent consecutive approaches to the solu-
tion. These are both the base regressors (Areg, Rreg and Oreg)
and the hybrid models built with their use in two integration
approaches (ORC and ORAC).

In almost all sets, except for EURO28A, we can observe a
bias of the Oreg regressor favoring the DSO category, which
forDSR andDSA sets achieves significantly lower results than
other models from the single models group. However, it is
worth noting that the statistical significance of differences
was observed only on the EURO28G set, with a very high
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FIGURE 3. Original objective function distributions in standard and random approaches.

deviation of the established metric values for other datasets.
It can be assumed that this is related to the narrow distribution
of the objective function values, which was a observation
of E1.

At the same time, no statistically significant difference
can be observed between Areg and Rreg regression efficiency.
However, the average values on the DSA and DSR sets are
higher for Rreg on almost all sets except US26G. It is also
worth noting that including the set of solutions optimized for
training the regressor improves the results on DSO, which is
an expected observation. Interestingly, the Rreg results on the
DSO set for US26 problems after flattening reaches the result
of 0.00, while for EURO28, it manages to achieve acceptable
results. Presumably, it is related to the scale of the intersection
of both sets.

The validity of the use of hybrid methods was confirmed
for the problems from the EURO28 group, for which a
statistically significantly better result than the basic models
can be observed. Furthermore, the hybrid approach, using
a classifier identifying the solution class (hybrid models),
allows obtaining a model with a much better global predictive

ability than solutions built on the entire available pool of
solutions (DSA) or any of their categories (DSR and DSO).

Consistent with this observation, single regression models
perform well with consistent distributions (disjoint DSR and
DSO characteristics) but cannot achieve a globally high pre-
dictive capacity in such an environment.

E4: Final evaluation of the effectiveness of the hybrid
regression model in aiding link dimensioning.

The final element of the analysis of the proposed meth-
ods is presenting the quality of the hybrid regression model
in the Link Dimensioning-aiding task, included in Table 4.
It shows, for each dataset, the best value of the criterion func-
tion (AT metric) in each of the training subsets (DSR, DSH ,
andDSI ) and the best values of the twenty solutions identified
by each of the recognition models selected according to the
procedure set out in Section IV. For comparison, the AT value
obtained for the base approach, which is the current solution
used in SS-FON networks, is also marked.

Based on a hybrid approach, we produce a solution with
generally better decomposition characteristics. The expected
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TABLE 3. The ability to recognize in models built across categories. Main
values in each cell show r2 score with its standard deviation over folds
and indexes of statistical superiority below.

value of a random variable of solutions increases with
assumptions about its normality while reducing the standard
deviation. Increasing the expected value with a reduction of
the standard deviation means that we have a better chance
of achieving a better solution and, at the same time, a lower
chance of achieving the best solution, so we achieve greater
stability of results.

This observation raises the problem of discrepancy in gen-
eral research objectives in optimization and pattern recogni-
tion, as indicated earlier. In optimization, we want to find
the best, single result, which is the optimum of the objective
function (which may sometimes be burdened with the non-
deterministic nature of the simulation). On the other hand,
we want to build a model with the best average solution
parameters in supervised learning. Hence, the perfect opti-
mization result for the recognition model often turns out to be
a harmful outlier. At the same time, an excellent supervised

TABLE 4. The ability to support optimization with the dependence
determined by the pair test for independent samples. Cells show AT
values obtained by each approach expressed in NTUs.

learning outcome sometimes leads to average results from an
optimization perspective.

It does not mean, of course, that the use of supervised
learning methods does not allow to improve the results
achieved by standard optimization methods dedicated to spe-
cific optical network issues. For EURO28 datasets, each
of the proposed methods allowed obtaining a higher AT
than the base solution and each of the solutions proposed
so far by the literature. In the US26 set, it was possible
to achieve results comparable to the solutions proposed so
far, which – according to the authors’ assumptions – results
mainly from the substantial inconsistency of DSR and DSO
criterion function distributions.

VII. CONCLUSION
This paper proposes a hybrid regression method dedicated
to supporting the configuration of SS-FONs. This method
allows the prediction of the AT value based on the network
configuration provided to the model, which is later used in
the review of all possible network configurations in order to
select a quasi-optimal solution. The conducted experimental
evaluation showed its usefulness in the EURO28 topology
and competitiveness against state-of-the-art solutions in the
US26 topology.

Future works plans to introduce further problem decom-
position by distinguishing between heuristic (DSH ) and ILP
(DSI ) models in place of the general DSO model. This raises
the interesting problem of a strongly reduced size of the train-
ing set, but could potentially improve the quality of the model
for the US26 topology. The predictive ability of the hybrid
regression model seems to strongly depend on the appropri-
ate definition of the solution category, which seems to be
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the most likely cause of significant differences between the
effectiveness of the support obtained for EURO28 and US26.

It is possible that an interesting approach would be to use
as part of the solution also unsupervised learning methods
to determine the category of solutions and use the proposed
hybrid combination rule based on these categories.
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