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ABSTRACT With the development of vision and haptic sensor technologies, robots have become increas-
ingly capable of perceiving their external environment. Although machine vision and haptics have surpassed
humans in some aspects of perception, it is difficult for robots to describe objects from multiple viewpoints
using a combination of visual and haptic modalities. In this study, we use convolutional neural networks
to separately extract visual and haptic features and then fuse these two types of features. Then, multitask
learning is combined with multilabel classification to form a multitask-multilabel classification method.
The developed method is used to identify the color, shape, material attributes, and class of an object from
the visual-haptic fused feature vector. To verify the effectiveness of the proposed object description method,
experiments are conducted on the PHAC-2 dataset and the collected VHAC dataset. The experimental results
show that the proposed method produces the most accurate object descriptions with the smallest number of
parameters.

INDEX TERMS Object description, machine vision, machine haptics, multimodal fusion, multitasking-
multilabel.

I. INTRODUCTION
It is a common human behavior to perceive objects in visual
and tactile ways and describe them verbally. The core of
this behavior combines visual and tactile perception to make
judgments about the appearances, materials, and categories
of objects. The ability of computers to recognize objects
from images surpassed that of humans [1] as early as 2015.
Machine haptics also perform well in terms of object texture
recognition [2]–[4] and material classification [5]–[7] tasks.
However, vision-based appearance recognition and haptic-
based material recognition are still separate research direc-
tions in the field of robotics, which results in robots being
unable to form descriptions of objects through visual and
haptic perception, as performed by humans.

Currently, there is no standardized dataset for training
deep neural networks to provide visual and haptic-based
object descriptions. To address this problem, we recreated
the labels of the Penn Haptic Adjective Corpus 2 (PHAC-2)
dataset [8] to describe objects in terms of their categories,
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colors, material attributes, and shapes. However, the haptic
collection process of the PHAC-2 dataset is too complicated.
Humans usually generate object descriptions by looking at
and grasping objects. To explore whether robots can generate
object descriptions by grasping and glancing, we collected
the VHAC dataset and applied labels regarding four aspects:
category, color, shape, and material attributes.

In this paper, we propose an object description method
based on multimodal perception with mu ltitask-multilabel
classification (MMM). As shown in Figure 1, in the multi-
modal feature extraction part, visual and tactile features are
extracted using DenseNet169 [9] models and a 1D convo-
lutional neural network, respectively, and then visual fea-
ture vectors and haptic feature vectors are concatenated into
feature fusion vectors. In the feature classification part, a
multitask-multilabel classification method is proposed. The
classification method is a multilabel classification technique
containing four subtasks that describe objects in terms of four
aspects: category, shape, color, and material attributes. In this
paper, the accuracy of an object description is measured
using exact matching. Experimental results on the PHAC-2
and VHAC datasets show that the MMM method yields the
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FIGURE 1. Object description model based on visual and tactile perception.

best object description results with the smallest number of
parameters in comparison with other methods.

Our main contributions are as follows.
1) An object description method based on visual and tac-

tile perception is proposed. Objects can be described in
terms of four aspects: class, color, shape, and material
attributes.

2) Experiments prove that the multitask-multilabel classi-
fication method can effectively balance each task and
achieve the highest matching accuracy with respect to
object description.

3) An object description dataset based on robot grasping
is established, and the feasibility of forming object
descriptions based on visual and tactile grasping is
proven.

II. RELATED WORK AND BACKGROUND
Robots often use machine vision to recognize the appear-
ances of objects in terms of their colors, shapes, sizes,
and textures. In material classification [10], [11] and tex-
ture recognition [12], researchers have tried to build relevant
image datasets to explore more application scenarios for
machine vision. However, the images in these datasets do not
show sufficient surface details for material classification and
texture recognition.

Tactile sensors can obtain richer material information than
vision through direct contact with objects, and thus, haptics
are widely used in object texture recognition [2]–[4] and
material classification [5]–[7] tasks. To improve the haptic
cognitive abilities of robots, Chu et al. [8] collected haptic
data using a BioTac haptic sensor and built the PHAC-2
dataset. In this dataset, 24 haptic adjectives were used to
describe the material attributes of an object, which were iden-
tified by using a multicore learning classifier. Subsequently,

zero-shot learning approaches [13], hierarchical extreme
learning machines [14], and unsupervised learning methods
[15] have been used for material property identification.
These methods treat each material attribute as a binary clas-
sification problem in the classification process. Another line
of research focuses on the correlations between different
material attributes and treats material property classification
as amultilabel classification problem [16], [17]. However, the
disadvantage of tactile sensors is that the tactile contacts are
localized and cannot perceive information about the appear-
ance of an object.

Machine vision and machine haptics have advantages and
shortcomings in object appearance recognition and material
recognition, respectively. Therefore, multimodal deep learn-
ing methods based on visual-haptic fusion are used for object
classification [18] andmaterial property recognition [7], [19].
Experiments have shown that multimodal approaches are
better than unimodal visual or haptic approaches. However,
the above types of methods achieve object classification or
material property recognition in a single-task learning man-
ner. When faced with different objects composed of the same
material and the same objects made up of different materi-
als, single-task methods do not recognize and describe these
objects from multiple perspectives.

Multitask learning can describe objects from multiple per-
spectives, but no related work has implemented an object
description method based on visual and tactile perception
using multitask learning methods. Current multitask classi-
fication methods have their own private networks and loss
functions for each task. During the training process, there are
competition problems between different tasks and different
learning speeds. Therefore, a large amount of research has
focused on multitask parameter sharing methods to reduce
the competition between different tasks [20]–[22]. Studies
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have focused on balancing the weights between different loss
functions [23], but these methods attempt to achieve the best
prediction for each task, ignoring how to make each task
simultaneously output correct predictions.

III. MODEL INTRODUCTION
A. MULTIMODAL FEATURE EXTRACTION
Three main types of data fusion methods are available—early
(data-level), intermediate (feature-level), and late (decision-
level) approaches [24]. In [25], the author compared the three
types of fusion methods on the PHAC dataset, and the exper-
imental results showed that the intermediate fusion method
produced better experimental results. In this paper, we use
the intermediate fusion method to realize the fusion of tactile
and visual data. The deep learning network model is designed
in this paper as follows.

1) HAPTIC MODEL
The haptic data in the PHAC-2 and VHAC datasets con-
sist of 1D time series. The input of the haptic model is a
C × T matrix (see Section 4.1 for details), where C is the data
dimensionality of the haptic data and T denotes the length of
the haptic data.

Although Long Short Term Memory (LSTM) models [26]
are generally quite skilled at addressing time series data,
relevant comparative experiments have shown that LSTM
models perform considerably worse than 1D convolutional
neural networks [7]. As shown in figure 1, this paper uses a
three-layer 1D convolutional neural network to extract tac-
tile features. The parameters in the parentheses indicate the
number of input channels, the number of output channels, the
size of the convolution kernel, and the sliding step. A rectified
linear unit (ReLU) function is employed as the activation
function in each layer of the neural network.

2) VISUAL MODEL
The visual data in the PHAC and VHAC datasets are RGB
images of objects taken from different angles. Visual and tac-
tile sensations are complementary in terms of object descrip-
tion. Therefore, we need to find a visual model that works
well with the haptic model. In this paper, DenseNet169
models are used as vision models, and three-layer 1D con-
volutional neural networks are used as haptic models for
experiments. The experimental results of the DenseNet169
model are found to be better than those of the other models in
terms of accuracy and stability (see Section 5.1 for details).

Because the numbers of images in both the PHAC-2 dataset
and VHAC dataset are small, we use the MINC-2500 [11]
dataset to pretrain the visual model. This dataset is a visual
material recognition dataset containing 23 classes of objects
with 2500 samples in each class.

3) VISUAL-HAPTIC FUSION
As shown in Figure 1, the last layers of the visual and tactile
convolutional neural networks are evaluated separately to

obtain a visual feature vector dv and a haptic feature vector
dt . As shown in Equation (1), the number of features is
concatenated to obtain a visual-haptic fusion feature vector
df as follows:

df = [dTv + d
T
t ]

T
(1)

Both the visual feature vector dv and the tactile vector dt
are column vectors, and the sizes of the vectors are shown
in Figure 1. In the model used in reference [7], the size of dt
was approximately four times that of dv. The main task of this
paper is to describe objects in terms of their visual and tactile
aspects. Therefore, we adjust the network parameters of the
tactile model to reduce the gap between dt and dv.

B. MULTITASK-MULTILABEL CLASSIFICATION METHOD
Previous work treated each material property as a binary
classification problem [7], [8], [14], [15]. The 24 tactile
adjectives of the PHAC-2 dataset require 24 training and
test sets. This method of binary classification learning for
each adjective is not flexible enough, the overall parameters
are large, and the correlation between the different tactile
adjectives is fragmented. Recently, some scholars used a
multi-label classification method to classify tactile adjectives
when studying the correlation between tactile adjectives, but
their research was limited to the tactile aspect [16], [17].
Inspired by their research, this paper introduces a multi-
label classification method into object description based on
a multimodal model. Due to the stronger scalability of multi-
label classification, we add shape, color and object category
labels to PHAC-2.

In this paper, objects are described in terms of four aspects:
color, shape, material attributes, and category. A multitask-
multilabel classification method is proposed to coordinate
the individual tasks and simultaneously produce accurate
description results. The method combines four tasks to form
a multilabel classification approach. The specific implemen-
tation is shown in Equation (2), where the color label y1, the
shape label y2, the material attribute label y3 and the category
label y4 of the object are combined to form a multilabel
classification vector with four subtasks as follows:

ym = [y1 + y2 + y3 + y4] (2)

The multitask-multilabel classification method is a mul-
tilabel classification task containing four subtasks, and this
paper defines themultilabel classification loss LMl as follows.

LMl (x, y) = −
1
C
∗

∑
i

y [i] ∗ log
(
(1+ exp (−x [i]))−1

)
+ (1− y [i]) ∗ log

(
exp (−x [i])

(1+ exp (−x [i]))

)
(3)

where x indicates the model output, y is the supervision label,
x[i] represents the value of x, and y[i] represents the value of
y. Here, y[i] ∈ {0, 1}, i ∈ {0, · · · , xn − 1}, and xn − 1 is the
number of output elements.
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FIGURE 2. Visual data of the orange sponge in the PHAC-2 dataset.

From Equation (3), it can be derived that during the back-
propagation process of the neural network, when y[i] = 1,
x[i] is a relatively large positive number to ensure that
LMl(x,Y ), takes the minimum value; Moreover, when
y[i] = 0, x[i] is a relatively large negative number to ensure
that LMl(x, y) takes theminimum value. Therefore, themultil-
abel classification output needs to be adjusted for positive and
negative samples by choosing a threshold value. As shown in
Equation (4), this paper uses 0 as the threshold value for x[i]
as follows:

x[i] =

{
1x1[i] > 0
0x1[i] < 0

(4)

IV. EXPERIMENT
A. DATASET FORMATION
1) PHAC-2 DATASET
The PHAC-2 dataset was collected by Chu et al. [8] and
contains the visual information and tactile signals of 53 types
of objects. The image collection process was performed as
follows: each object was placed on a rotating platform and
photographed every 45 degrees of rotation to obtain 8 images
from different angles.

Figure 2 shows the visual data of an object in the PHAC-2
dataset. A BioTac haptic sensor was installed at the end of the
fingers of a PR2 robot to perform four processes, including
squeezing, holding, slow sliding, and fast sliding, on each
object. The collected haptic data included low-frequency
fluid pressures (PDC ), high-frequency fluid vibrations (PAC )
core temperatures (TDC ) core temperature changes (TAC ) and
19 electrode impedances (E1 · · · E19). PAC signals were
collected 10 times for each object with a sampling frequency
of 2200 Hz, and the rest of the signals were sampled at
100 Hz. Figure 3 shows the original data collected by the
tactile sensor, where the shaded part is valid haptic.

A total of 24 haptic adjectives were used to describe
the haptic sensations of the objects in the dataset, and the
haptic adjectives for each object were determined using
36 experimenters. As all 24 adjectives in PHAC-2 dataset
are material attribute adjectives of objects, the dataset can-
not meet the requirements of this paper to describe objects
from the two aspects of object color and shape. To address
the visual description shortcomings of the PHAC-2 dataset,
a total of 10 volunteers were employed to determine the col-
ors and shapes of objects based on the visual color images of
53 objects in the dataset. As shown in Tables 1 and 2, a total
of 19 colors and 6 shapes were used to describe the objects.

FIGURE 3. Tactile data of the orange sponge in the PHAc-2 dataset.

TABLE 1. Color labels of the PHAC-2 dataset.

TABLE 2. Shape labels of the PHAC-2 dataset.

FIGURE 4. Visual data collection process.

2) VHAC DATASET
Humans recognize and perceive most of the properties of an
object when they see and grasp it. To simulate the human
grasping-based cognitive process, this paper collects the
visual and haptic data of 22 grasped objects. The data collec-
tion platform is shown in Figure 1, with a RealSensor D435i
camera mounted on the wrist of a Kinova robotic arm and a
NumaTac haptic sensor mounted on the finger end of the arm.

During the visual data collection process, the wrist camera
of the robotic arm first reaches above the object to shoot the
object, as shown in Figure 4(a)-(d). The object is clockwise
along the symmetry axis of the figure in each pose and rotates
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FIGURE 5. Tactile data after compression.

4 times at 90◦ each time. Then, the camera reaches obliquely
above the object, as shown in Figure 4(e). During the shoot-
ing process, the object rotates 4 times clockwise along the
symmetry axis in the figure, and each time, it rotates 90◦.
This method is used to simulate the situation of the robot arm
approaching the object from different directions during the
gripping process. Twenty images of each object with different
angles are obtained, and 22 objects are shown in Figure 6.

During the haptic data collection process, the arm
approaches each object vertically from above and performs
the gripping action. The NumaTac tactile sensor collects low-
frequency fluid pressures and high-frequency fluid vibration
signals from the arm during the gripping process, with each
object being gripped 20 times with a uniform texture and no
substandial material changes. The PAC sampling frequency
is 2200 Hz, and the PDC sampling frequency is 100 Hz.
A grasp can be divided into three processes: clamping, hold-
ing and opening, where the clamping and opening times vary
slightly between materials, and the holding time is 1.5 s. The
clamping process is stopped when PDC = 270bit . The con-
version formula for the haptic sensor threshold and pressure
is

P = (PDC− offset) ∗ 12.94 Pa/bit (5)

where off set = 238 Pa/bit .
Because the NumaTac sensor does not contain temperature

data or the 19 electrode impedances, the VHAC dataset does
not contain diverse tactile adjectives, such as temperature and
viscosity. As shown in Tables 3 and 4, the VHAC dataset
contains 8 material attributes and 12 colors to describe an
object. The VHAC dataset is the same as the PHAC-2 dataset
in terms of its shape descriptions. The adjectival description

TABLE 3. Material attribute adjectives of the VHAC dataset.

TABLE 4. The color labels of the VHAC dataset.

of each object is determined for both datasets by using
10 experimenters.

B. DATA PREPROCESSING
1) TACTILE DATA
In this paper, we follow the tactile data processing method
of Gao et al. [7]. Because PAC is sampled at a higher rate
than other signals, we first downsample it to 100 Hz to
match the sampling rate of other signals. Then, the useless
parts in the original data are removed, and the tactile data
of the four tactile operations are retained. The electrode
impedances (E1· · · E19) are downsampled to 4-dimensional
impedance signals. Finally, tactile signals are obtained from
PDC ,PAC ,TDCTAC and the 4-dimensional impedance sig-
nals. As shown in Equation (6), the data of each dimension
are normalized to obtain S ′. In the formula, S̄ is the mean
value of the data, and σ is the standard deviation of the data.

s′ =
S − S̄
σ

(6)

Figure 5 shows the tactile data of the fast sliding pro-
cess after data processing. The four tactile action processes
are concatenated to obtain 32-dimensional tactile data. The
size of the tactile data for each object is CP × TP, where
CP = 32 denotes the number of tactile channels and
TP = 150 denotes the length of the data.
Unlike the PHAC-2 dataset, this paper treats a grasp as

a haptic exploration action. The haptic data of the VHAC
dataset contain only PDC and PAC First, we downsample
PAC to 100 Hz. Then, the tactile data obtained from each
grasping process are sampled to a length of 300. Finally, the
haptic data of the left and right hands are concatenated to
obtain a haptic representation CV × TV where CV = 4 and
TV = 300. Figure 7 shows the haptic data collected during
each object grasping process, where the abscissa represents
the data length and the ordinate represents the pressure. The
larger amplitudes in the figure are the PAC and PDC of the two
tactile fingers. According to the tactile data, it can be seen
that the amplitude of a soft object is small (the signal rises
and falls slowly), and the amplitude of a hard object is large
(the signal changes quickly). Because the cleaning sponge is
thinner than the other objects and it is quickly compacted
during the clamping process, a higher amplitude and larger
signal changes occur while grasping the cleaning sponge.
In addition, it was found that the paper cup is hard at first,
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FIGURE 6. Tactile data of the 22 categories of objects in the VHAC dataset.

and as the pressure increases, a certain level of deformation
is caused by vibration. The vibration signal change process of
a smooth object is flatter, while the rising and falling of the
vibration signal of a rough object are accompanied by a small
vibration.

2) VISUAL DATA
Due to the small numbers of visual images in the PHAC-2 and
VHAC datasets, an image enhancement technique is used in
this paper to make the samples of the training set as diverse
as possible for the training process. The specific implemen-
tation steps are as follows. First, the brightness, saturation
and contrast levels of the images are randomly adjusted to
between 70% and 130% of their original values, and the
image size is adjusted to 300×300 pixels. Then, each image is
randomly cropped to 224×224 pixels. Finally, the images are
randomly flipped horizontally with a 50% probability. During
the test, each image is resized to 300 × 300 pixels, and a
224 × 224 pixel image is extracted from the center as the
model input.

C. EXPERIMENTAL SETTINGS
1) FEATURE EXTRACTION
In this section, the superiority of the multimodal feature
extraction model is analyzed in terms of three aspects.

First, this paper verifieswhether adjusting the size of dt and
dv can improve the accuracy of the model. In the model used
in reference [7], the size of dt is approximately four times that
of dv. We reproduce the model and set dv : dt ≈ 1.5 : 1.

Then, the feature extraction models of different visual
models are compared. GoogLeNet [27], ResNet152 [1],
MnasNet [28] and DenseNet169 models are used as compar-
ative visual feature extraction models.

Finally, related studies have compared four multimodal
fusion methods, low-rank multimodal fusion (LFM), the
mixture of experts (MoF) approach, late fusion (Late), and
intermediate fusion (Mid), on the PHAC-2 dataset [26].
To validate the effectiveness of the visual-haptic fusion

method proposed in this paper, the same comparison exper-
iments as those conducted in [25] are performed on the
PHAC-2 dataset.

2) FEATURE CLASSIFICATION
To verify the effectiveness of the proposed multitask-
multilabel classification method, this paper replicates the cur-
rent mainstream hard parameter sharing [20], soft parameter
sharing [21], cross-stitch network [22] and multiple single-
task joint classificationmethods. The currentmultitask classi-
fication methods have separate outputs and loss functions for
each task. The main network architectures of these multitask
classification methods are the same, but their differences are
in the sharing mechanisms used among the various tasks.

In the multitask classification approach for classifying
object colors, shapes and material properties, the loss func-
tions used for all three tasks are multilabel loss functions
(Equation (7)). The loss function for the object classification
task Lc (classification) is defined as follows:

Lc (x, y) = −x [y]+log(
∑

j
exp(x[j])) (7)

where x denotes the model output, y denotes the category
label, and x[j] represents the value of x.

The total loss function of the multitask classification
method is defined as follows:

LMt (x1, y1, x2, y2, x3, y3, x4, y4) = LMl (x1, y1)

+LMl (x2, y2)+ LMl (x3, y3)+ LC (x4, y4) (8)

where (x1, y1) , (x2, y2) , (x3, y3), and (x4, y4) are the output
and supervised labels for color, shape, material attribute and
classification tasks in the multitask classification method,
respectively.

The multiple single-task joint classification approach sep-
arately trains multiple networks for different tasks and then
combines the results of the individual network models. This
approach has an independent visual-haptic fusion model
and a single-task classification network for each task. This
method uses LMl as the loss function for the color, shape, and
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FIGURE 7. Tactile data of the 22 categories of objects in the VHAC datas.

material property classification tasks, and employs LC as the
loss function for the object category classification task.

The visual and haptic data are paired when input into
the neural network during the experiments. To ensure a fair
comparison experiment, the number of fully connected layer
neurons and the activation function are the same in all clas-
sification methods. During the training process, 20% of the
neurons of the fully connected layer are randomly deacti-
vated to enhance the robustness of the network. To acceler-
ate the training speed of the neural network, the output of
the fully connected layer is normalized, which is shown in
Equation (9) [29] as follows:

y =
x − E [x]
√
Var [x]+ ∈

γ + β (9)

where γ = 1, β = 0,∈= 1e − 5, and γ and β are the
parameter vectors of size C that can be learned (C is the
input size).

The VHAC dataset contains 20 visual and haptic samples
per object, which are divided into two training and test sets
at a ratio of 1:9. Each object in the PHAC-2 dataset contains
8 images and 10 tactile data points. Thus the dataset has only
eight valid visual and tactile data pairs. Each object keeps
one visual and tactile dataset as a test set and the rest of the
data are used as a training set. To ensure the accuracy of the
experimental data, five different pairs of test and training sets
are randomly formed.

In this paper, we use the PyTorch deep learning framework
to build the neural network model, and the model is run on an
Nvidia Tesla V100 graphics card during training and testing.
Throughout the training process, an Adam-based parameter

FIGURE 8. Comparison results produced by different visual models.

optimization method is used, where the batch size is set to 4,
the learning rate is set to 0.00002, the remaining 10 parame-
ters are set to their default values, and the number of epochs
is set to 250.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. FEATURE EXTRACTION RESULTS
Figure 8 shows the results of the material attribute classifi-
cation experiments yielded by different visual models on the
PHAC-2 dataset. A total of 225 epochs are used for training
in the experiment, and one test is performed every 25 epochs.
It can be seen from the figure that the DenseNet169 model
has better accuracy and stability than the other models. It is
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TABLE 5. Comparison of the visual-haptic fusion methods.

worth noting that in the figure, GoogLeNet is the visual-
tactile fusion network model reproduced in reference [7], and
GoogLeNet-L is the model with a reduced dt size. It can be
seen in the figure that the loss increases and the accuracy
of the GoogLeNet model decreases during the later period,
indicating network overfitting. The above comparison proves
that the sizes of the visual and tactile feature vectors should
not be too different in the visual-tactical fusion model.

As shown in Table 5, this paper compares the proposed
method with other visual-haptic fusion methods on the
PHAC-2 dataset. Due to the uneven distribution of the mate-
rial attribute samples of objects in the PHAC-2 dataset, the
area under the curve (AUC) score is used in this paper as
the evaluation criterion for material attribute identification.
The first five rows of Table 5 show the results and average
values obtained in the five material attribute classification
experiments by the LFM, MoF, Late, Mid and M methods
on the PHAC-2 dataset. The visual-haptic fusion model pro-
posed in this paper is titled ‘‘multimodal & single-task’’ (MS)
in Table 5. The data comparison shows that the MS method
performs much better than the other methods in terms of
material attribute classification, which proves that the visual-
haptic fusion method is better than the other methods for
feature extraction.

B. FEATURE CLASSIFICATION RESULTS
The comparison of the proposed multitask-multilabel classi-
fication method with other multitask classification methods
on the PHAC-2 and the VHAC datasets is shown in Figure 9.
The images in the first and second rows are the experimental
results achieved on the PHAC-2 and the VHAC datasets,
respectively. The pictures in each row are the experimental
material property, shape, color, category and matching accu-
racy results. A total of 250 epochs are used for training in the
experiment, and one test is performed every 50 epochs.

In the Figure 9, the AUC scores is used as the evaluation
criterion for the color, shape, and material attributes, and the
rate of correctness is used for the categories. The data in
the table are the averages calculated over five experiments.
The task in this paper is to form accurate object descriptions,
and it is necessary to make the four tasks as accurate as
possible while simultaneously performing prediction. We use
precision matching to measure the performance of the dif-
ferent methods on the object description task. In this paper,

TABLE 6. Comparison of parameter quantities for different models.

precision matching refers to the percentage of the four tasks
that are simultaneously correctly predicted.

Experiments are performed with hard parameter sharing,
soft parameter sharing and cross-stitch networks in the fully
connected classification part to achieve parameter sharing.
As shown in Table 6, the cross-stitch networks and other
operations have little effect on the parameters of the overall
network, and after conducting an analysis, it is found that the
numbers of parameters of the three methods only differ by
approximately 0.001M. Since the tactile data in the VHAC
dataset are longer than those in the PHAC-2 dataset, the
overall number of parameters is larger for each method when
training on the VHAC dataset.

C. DISCUSSION
From the multiple sets of comparison data in Figure 9, it can
be seen that the proposed multitask-multilabel classification
method is slightly better than the other methods in terms of
individual colors, shapes, and material attributes but signif-
icantly better than the other methods in terms of precision
matching. The higher matching precision indicates that the
multitask-multilabel classification method can better simul-
taneously coordinate the given tasks. In this paper, objects are
described in terms of four aspects, and once an error occurs
with respect to one aspect, it leads to inaccurate descriptions,
especially when the descriptions of the color, shape and
material attributes of an object correspond incorrectly to the
categories of the object. Such incorrect descriptions do not
have any meaning.

Each multitask-multilabel task is part of the multilabel
classification procedure, and different tasks use the same loss
function. The network automatically learns the interrelation-
ships between different tasks during the training process to
obtain accurate object description results. On the other hand,
the supervised labels of different tasks are merged, and the
merged labels increase the label differences between different
objects. For example, for different objects with the same color
and shape, performing the visual and color classification tasks
without merging the labels tends to produce two identical
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FIGURE 9. Comparison of multitask classification methods. The images in the first and second rows are the experimental results obtained on the PHAC-2
and VHAC datasets, respectively.

FIGURE 10. Classification results of the three methods on the 1:7 partition of the PHAC-2 dataset.

objects, which affects the accuracy of the classification task.
After merging the labels into one label, the overall label
differences make the neural network parameter optimization
goal more explicit.

To verify the possibility of forming object descriptions
after the robot sees and grasps an object, experiments are
conducted on the VHAC dataset, and the results are shown in
the second line of Figure 9. Due to the relative simplicity of
the VHAC dataset, the fivemodels achieve high classification
accuracy by the 50th epoch. However, as training progresses,
it can be found that the multitask-multilabel method has sta-
ble performance and has huge advantages in terms of accurate
matching.

Compared with the four fast object actions of squeezing,
holding, slowly sliding, and quickly sliding in the PHAC-2

dataset, the process of grasping objects in the VHAC dataset
is more common in practical applications. From the experi-
mental results, this process can be achieved by using visual
observation and simple tactile grasping operations when fac-
ing simple object description tasks in daily life.

Figure 10 shows the classification results of the hard
parameter sharing, cross-stitch network, and multitask-
multilabel approaches for each task on the PHAC-2 dataset.
From the material attribute classifications produced by the
three methods, all three methods perform poorly regarding
the classification of the ‘‘hairy’’ and ‘‘prickly’’ attributes.
This may be because the distinction between these two mate-
rial attributes or between them and other attributes is not obvi-
ous. The hard parameter sharing method does not perform
well in terms of ‘‘thick’’, ‘‘smooth’’ and ‘‘slippery’’ attribute
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FIGURE 11. Classification results obtained by the three methods on the 1:9 partition of the VHAC dataset.

classification but is significantly better than the othermethods
regarding ‘‘thin’’ attribute classification. The hard param-
eter sharing method is worse than the other two methods
at shape and color classification. The multitask-multilabel
method is worse than the other methods at classifying ‘‘gray’’
but significantly better than the other methods at classifying
‘‘silver’’ and ‘‘transparent’’. Overall, the multitask-multilabel
method performs best, and the hard parameter sharingmethod
performs worst.

In addition, a commonality can be found from the line
graph in Figure 10, where the number of labels is not related
to the classification accuracies of the three tasks. For exam-
ple, ‘‘precise’’, ‘‘sticky’’, ‘‘unpleasant’’, ‘‘bottle’’, ‘‘pink’’,
‘‘dark red’’, and ‘‘orange’’ are all classified in each task.
‘‘Pink’’, ‘‘dark red’’, and ‘‘orange’’ have the fewest numbers
of labels for each task, but all of them have nearly 100% cor-
rect classification rates. Although the numbers of these labels
are small, the features of these labels are more distinguishable
from other features, and the network model can easily learn
these features and distinguish them from other features.

Figure 11 shows the classification results obtained for each
task on the VHAC dataset by the hard parameter sharing,
cross-stitch network, and multitask-multilabel approaches.
From the figure, it can be seen that the cross-stitch networks
perform worst in terms of color and material property classi-
fication and best in terms of shape classification. The com-
parison shows that the number of labels has a large impact on
the cross-stitch networks. The hard parameter sharingmethod
and the multitask-multilabel method perform better overall.

The combined experimental results obtained on the two
datasets show that the multitask-multilabel approach per-
forms best. The hard parameter sharing method performs
the worst on the PHAC-2 dataset. The cross-stitch networks

perform worst on the VHAC dataset. The comparative exper-
imental evidence produced by the two datasets shows that
keeping the labels in parallel between different tasks when
performing the multitask-multilabel classification method
can reduce the competition between different tasks and
achieve the best classification results for each label in a
balanced way.

VI. CONCLUSION
This paper proposes an object description method for robot
arms. The method includes two parts: feature extraction and
feature classification. In the feature extraction part, a pre-
viously developed visual-haptic fusion method is improved
and compared with other visual-haptic fusion methods. The
experiments prove that the improved visual-haptic fusion
method in this paper is better than other methods. In the
feature classification part, a multitask-multilabel classifica-
tion method is proposed and compared with other mul-
titask classification methods. It is demonstrated that the
multitask-multilabel method can achieve the most accurate
classification results with the smallest number of parameters
while utilizing the same feature extraction network. Finally,
this paper measures the accuracy of object description by
using the precision matching effect. Experiments on the
modified PHAC-2 and VHAC datasets show that the MMM
method can better coordinate tasks and achieve 5%-10%
higher accuracy for the matching precision than the other
methods. Experiments on the VHAC dataset prove the feasi-
bility of robot grasping and describing objects based on vision
and touch.

This paper explores the field of robot object descrip-
tion. Similar to the field of image captioning, keywords
such as objects, actions and scenes in images are extracted
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and formed into description sentences. This paper hopes
that robots can use vision and touch to explore objects
autonomously. Then the object is described from four aspects:
color, shape, material properties, and class of the object.
In future work, we hope to build a larger visual and tactile
dataset to enable robots to automatically generate diverse
description sentences.
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