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ABSTRACT Although the deep reinforcement learning (DRL) technology has been widely adopted in
various fields, it has become an important research hotspot to study the vulnerability of DRL for improving
the robustness of DRL agents. The adversarial attack methods based on white-box models, where the
adversary can access all the information of victims, have been intensively investigated. However, in most
practical situations, the adversary cannot obtain the internal information of the victim’s neural network.
Furthermore, for reward-based attacks, the agent can perform anomaly detection on the perturbed rewards
to detect whether it has been attacked. In this paper, we propose a black-box attack method with corrupted
rewards, which employs DRL exploration mechanisms to improve the effectiveness of attacking agents. The
adversary builds a deep neural network in advance to learn the successor representation (SR) of each state.
Then, the adversary can determine the timing of attacks and generate imperceptible adversarial perturbations
based on the values of the SR. Experimental results show that the black-box attack algorithm based on SR
proposed in this paper can effectively attack agents with fewer adversarial samples.

INDEX TERMS Black-box attacks, corrupted rewards, deep reinforcement learning, successor
representation.

I. INTRODUCTION
In the past few years, deep reinforcement learning (DRL)
technology has been widely applied in various fields, such
as self-driving cars [1] and go [2]. However, at the same
time, we need to pay attention to the fact that when a newly
developed technology is applied to the real world and widely
promoted, the small flaws in the technology will be magni-
fied, which can cause enormouse damage. As a combination
of deep learning (DL) and reinforcement learning (RL), DRL
inherits the shortcomings of DL, which is that it is vulner-
able to adversarial samples. Therefore, when an adversary
attacks the neural network of DRL agents, it will prevent
the agent from learning the optimal policy during training or
from choosing the optimal action during testing. Especially
in some high-stakes areas, these weaknesses can often cause
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massive unintentional damage. To this end, it is necessary to
study the vulnerability of DRL to improve the robustness of
DRL technology.

The attacks against DRL agents can be divided into
black-box attacks and white-box attacks according to the
attacker’s knowledge of the victim’s model. The main adver-
sarial DRL research so far focused on white-box attack mod-
els. In this model, adversaries need obtain the parameter
values of the agent network and query the Q-value of each
state-action pair, and then leverage this information to gener-
ate adversarial samples for attacks, which can often achieve
great effectiveness. For example, strategically-timed attacks
need to obtain the corresponding Q-value of different actions
of the current state to determine the timing of attacks [3].
The perturbation attack against action space also needs to
obtain the model of the agent to change the agent’s action [4].
Although the above attack methods can achieve great attack
results, there are many real applications where the adversary
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cannot obtain the above information. The attacks carried out
in such situations, that is, without the information concerning
the victim’s model, are called black-box attacks.

The reward poisoning attack occurs when the attacker
perturbs the reward received by the agent during training so
that the agent learns a wrong policy. In the recent research
works, the attack against rewards often only considers the
success rate of the attack, and there is no research on whether
the perturbed rewards are imperceptible. The point is, these
corrupted rewards that fall outside the range of environmental
rewards are very easy for the agent to detect and to realize that
it is under attack.

The exploration method is a very important part of the
learning process of RL agents. In general, the exploration
mechanism is mainly used to help agents speed up the
exploration of the environment. In this paper, we consider
exploiting the agent’s exploration strategy to improve the
efficiency of attacks. We propose a black-box attack method
with corrupted rewards in training time, which uses the suc-
cessor representation (SR) to attack agents effectively. The
SR [5], [6] implicitly represents the expected discounted sum
of access frequencies for each successor state from the current
state in the future. It can be combined with rewards to provide
information for decision-making. Machado et al. proposed a
positive correlation between the sum of the absolute values
of the elements in the SR value of the state-action pair and
the number of times the state has been visited [6]. Therefore,
the adversary can use the SR value of each state-action pair
as the basis for determining the attack timing and attack
direction and generate adversarial perturbations.

Compared to previously proposed methods that use the
Q-value difference of local states for attack timing determina-
tion, our approach uses the successor representation to deter-
mine the attack timing. This makes the attack determination
from a holistic perspective and maximizes the impact of a
single attack on the learning of an intelligent agent. At the
same time, in contrast to other black-box attacks, attacks on
the returns of the agent can act directly on most contexts
without the need to design specialized attack samples, as in
the case of attacks on states. In contrast, in past studies of
adversarial reward attacks, attackers often only pay attention
to the effect achieved after the attack without considering
whether the attack is reasonable in the current state and
whether the value domain is different between different states
in a given context. Our attack approach takes this into account
by limiting the size of the postattack reward to the rewards
that can be obtained in the current state.

The adversary first establishes a neural network, called the
SR-Network, by using the knowledge of the environment that
the adversary has. Then, the adversary trains the SR-Network
by interacting with the environment. During the attack pro-
cess, the SR value from the SR-Network can be utilized to
determine the attack timing to reduce the number of attacks.
The SR-Network can also be used to generate the perturba-
tion against the reward of the environment. We have veri-
fied the algorithm proposed in this paper through simulation

experiments. The results show that our algorithm can improve
the efficiency of attacks, and significantly reduce the number
of attacks. This paper makes the following contributions:

1) We utilize exploration mechanisms to design adversar-
ial black-box attacks against DRL.

2) We propose a covert reward poisoning attack method,
by strictly limiting the size of the perturbation on the
reward which makes the attack difficult to detect.

3) The SR value is employed to determine when to inject
the adversarial sample into the reward of the environ-
ment to reduce the number of attacks and help to design
the size of the perturbation.

II. RELATED WORKS
In the past research, various research results have been pro-
posed with respect to black-box attacks.

Behzadan et al. [7]proposed policy induction attacks. The
attack conducts adversarial perturbations to the observations
of the DQN model. The adversary can obtain the environ-
ment information of the attacked agent and the rewards of
the environment. The attacker builds a deep neural network
according to the input type of the attacked agent, and trains
the network to generate adversarial perturbations, so that the
trained policy of the attacked agent tends to choose an action
other than the optimal action in a specific state. This attack
method uses the idea of black-box attacks for deep learning
in classifier fields.

Gleave et al. [8]proposed a new black-box attack method,
which attacks agents through policies. The attack is applied in
the zero-sum game scenario. The adversary cannot change the
observation results of the attacked agent on the environment,
but establishes a ‘‘natural observation’’ as the adversarial per-
turbation. There are no ‘‘natural observations’’ in the training
samples of the victim. Thus when the victim learns through
these samples and faces the normal training data again, it will
choose bad actions. The experimental results show that the
attacker can achieve a successful attack through ‘‘natural
observation’’. In this experiment, if the victim successfully
evades the opponent’s attack, the victim wins; otherwise,
the opponent wins. After a period of training, the winning
rate of the victim to the ‘‘natural observation’’ opponent is
approximately 0.86, while that of the normal opponent is
only 0.47.

Inkawhich et al. [9]proposed a snooping attack method in
which the attacker can only monitor the states, the actions,
and the rewards of the attacked agent. The attack trains and
obtains amodel of the agent by following this information and
uses the model to generate adversarial samples. This method
is more feasible for some attacks on an agent deployed on the
server side.

Majadas et al. [10]proposed flipping reward attacks (FRS),
which is a black-box attack method on rewards during
training. The adversary first defines an attack probability p,
0 < p < 1. When the reward returned by the environment
is not 0, the attacker generates a random number between
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FIGURE 1. DRL learning model.

0 and 1, and then when the random number is less than p,
the attack is performed. This will change the sign of the
environmental reward, and feed this corrupted reward back to
the agent. Experiments show that when the attack probability
p is greater than 0.4, it can effectively prevent the agent from
learning a bad policy for the environment. When p is less than
0.4, the agent can also learn a suboptimal policy.

III. BACKGROUND
A. DEEP REINFORCEMENT LEARNING
Deep reinforcement learning(DRL) adopts the Markov deci-
sion process(MDP) model as its environment model, which is
described by states, actions, rewards and transition probabil-
ities. At each time step, the agent takes the state of the envi-
ronment as the input, obtains the Q-value of each action at the
current state through deep neural networks, and chooses one
of the actions for execution according to the action selection
algorithm. After the action is executed, the agent combines
the reward returned by the environment with the new state,
the previous state and the action to form a tuple, which is
stored in the replay buffer. Then, the data in the buffer are
used for learning. The goal of DRL is to find an optimal
policy to maximize its long-term cumulative reward through
learning.

Deep reinforcement learning can be divided into
model-based methods and model-free methods. The model-
based method establishes the corresponding state transition
model through the observed knowledge, while the model-free
method directly trains a deep neural network to find the
optimal policy. Here, we mainly study the deep Q-network
(DQN) algorithm. In the DQN method, the agent obtains the
optimal policy by solving the Bellman equation. The update
process of its Q-value can be recursively defined as:

Qt (st , at ) = (1− α)Qt (st , at )

+α(rt + γ max
a′

Qt+1(st+1, a′)) (1)

where st is the state at time step t , at is the action that the
agent chooses to execute, st+1 is the next state at time step
t + 1, rt is the reward from the environment, Qt (st , at ) is the
Q-value of state-action pair (st , at ), α indicates the learning
rate and γ is the discount factor.

B. BLACK-BOX ATTACKS
In terms of attacks against DRL, because the learning of the
agent is extremely dependent on various types of information
observed, the adversary can attack the agent by perturbing the
states and the rewards of the agent, and make the agent learn a
wrong policy. The attack method of the agent can be divided
into white-box attacks and black-box attacks according to
the knowledge possessed by the attacker. In past research,
scholars have proposed many attack methods.

In the white-box attack, the attacker can fully access the
structure, parameters and training data of the target neural
network.Most of the existing attack algorithms are white-box
attacks, such as adversarial attack methods based on transfor-
mation networks [11] and path vulnerable point attacks [12].
However, this assumption is overidealized. In the real world,
attackers often cannot obtain the above information. When
the adversary cannot obtain the information concerning the
target neural network, this attack method is usually called a
black-box attack [8], [13].

We usually meet the following limitations when we want
to perform attacks on deep reinforcement learning agents on
some commercial platforms.

• The data inside the target model are not visible to us, and
we do not have access to the relevant model structure,
parameters, or training data.

• When collecting information about the interaction of the
agent with the environment, only the state, actions, and
returns are available, and it is impossible to determine
the magnitude of the target intelligence’s Q-value for
each action.

Papernot et al. [14] proposed a black-box attack method
using surrogate models and adversarial sample transferability
to solve the above problems. Transferability refers to when
an adversarial example can successfully attack a model, it is
also likely to successfully attack another similar model. The
surrogate model means that when we want to carry out a
black-box attack on a model, we can first train a local model
with a similar decision boundary to the target model, and then
perform a white-box attack on the model to obtain adversarial
samples, and then use the transferability to attack the target.
The attack on the model, the model deployed locally is the
surrogate model. Using the above two properties, we can
successfully attack an agent without obtaining internal infor-
mation of the target agent.

Black-box attacks against deep reinforcement learning
can be classified from the perspective of the attack target.
State-based attack methods include policy induction attacks
[7], the attack method based on policy imitation [15],
snooping attacks [9], etc; Reward-based attack methods
include Trojan attacks [16], CopyCAT algorithms [17],
and U2 algoithms [18]; Adversarial policy attacks [8] is
a policy-based attack method; Gradient band-based adver-
sarial training attacks [19] is an environment-based attack
method.
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C. EXPLORATION MECHANISM
The goal of the exploration mechanism is to minimize the
learning time of the agent. When an agent efficiently explores
environmental information, it can have more knowledge
about the environment; therefore, it can speed up the learn-
ing process and converge to the optimal policy quickly.
At the same time, the exploration mechanism is also able
to reduce the resources consumed by the agent’s learn-
ing process. At the heart of the exploration mechanism
is balancing exploration and exploitation, and it has been
shown that it is usually beneficial to find a suitable balance
between exploration and exploitation. Exploration means
that the agent uses the current knowledge to identify and
find the policy or action with the highest long-term reward.
If the agent does not explore and only chooses the most
rewarding action at present, that is, using the exploitation
strategy, then the agent may not be able to find a truly optimal
policy.

In recent years, many kinds of exploration strategies
have been designed. In general, exploration strategies can
be divided into undirected exploration and directed explo-
ration [20]. The main feature of undirected exploration is
that the action is generated based on a certain random
distribution without considering the learning process itself.
These strategies include random exploration, semiuniform
distributed exploration and Boltzmann distributed explo-
ration [20]. The directed exploration strategies make full use
of the information generated in the learning process, and
leverage this knowledge to guide the exploration process,
such as counter-based exploration [20] and E-value based
exploration [21].

However, most of the exploration methods, such as the
counter-based exploration mechanism and Boltzmann distri-
bution exploration mechanism, are localized and hence can
only reflect the knowledge of the current state but cannot
reflect the information of adjacent states, and are difficult
to be applied in continuous space. Choshen et al. [21] pro-
posed a novel exploration strategy based on the exploration
value, called E-value, which establishes a neural network for
exploration in addition to the agent’s neural network, in which
the E-value represents the unknown knowledge contained in
state-action pairs.

IV. BLACK-BOX ATTACKS BASED ON
SUCCESSOR REPRESENTATION
A. SUCCESSOR REPRESENTATION
Successor representation is a generalization of the correlation
between the current state and the subsequent state, where the
successor state refers to the state that occurs subsequently for
a given policy.

For the convenience of presentation, we have the following
definitions:
Definition 1: ψπ (st , j). A value represents the successor

representation of state j along trajectories starting from state
st under policy π .

FIGURE 2. SR-Network.

Then the update of ψπ (st , j) can be expressed as:

ψπ (st , j) = (1− α)ψπ (st , j)

+α((I (st == j)+ γψπ (st+1, j) (2)

for all j ∈ S, and η denoting the step-size. The SR also
corresponds to the Neumann series of γPπ :

9π =

∞∑
t=0

γ tPtπ = (I − Pπ )−1 (3)

where Pπ (s′|s) =
n(s′|s)
n(s) , n(s′|s) means the number of times

from state s to state s′, n(s) means the number of times agent
visit state s.
Barreto et al. [22] proposes successor features (SF), which

is an extension of the successor representation for state-action
pairs. SF can be represented by ψπ (st , a, j).
Definition 2: ψπ (st , a, j). Represents the successor repre-

sentation of action a in state st with respect to state j.
For convenience, we make the following definitions:
Definition 3: SR(st , a). Represents the L1 norms of the SF

value of each action in state st .
The SR-Network can learn the rewards of each action in each
state. According to the SR-Network, the agent can calculate
the Q-value, denoted as Qsr , through the successor represen-
tation SR(st , a) and the reward r(st ). Figure 2 shows the deep
network structure of the SR-Network.

From Figure 2, we can observe that the total loss is from
three aspects. Thus, for the training of the SR-Network, it is
necessary to calculate the loss value for each aspect, and then
add the three loss values to obtain the total loss value, so the
update step can be carried out.

Machado et al. [6] proposed substochastic successor rep-
resentation(SSR):
Definition 4: SSR. Let P̃π denote the substochastic matrix

induced by the environment’s dynamics and by policy π such
that P̃π (s′|s) =

n(s′|s)
n(s)+1 . For a given 0 ≤ γ < 1, the

substochastic successor representation,9̃π , is defined as:

9̃π =

∞∑
t=0

γ t P̃tπ = (I − P̃π )−1 (4)

After calculation, Machado presented the following
equation:

γ

n(s)+ 1
−

γ 2

1− γ
≤ (1+ γ )−

∥∥∥9̃π (s)∥∥∥
1
≤

γ

n(s)+ 1
(5)
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FIGURE 3. The attack model.

where 0 ≤ γ < 1. From this, we can see that the size of the
SSR L1 norms is proportional to the number of visits. Since
n(s) is approximately equal to n(s)+ 1 in the environment of
continuous space, Therefore, Equation (3) is approximately
equal to Equation (4). Thus SR can be used to recover an
estimate of the visit counts, which can be used for exploration.

B. THE ATTACK MODEL
Our goal is to attack the agent’s neural network with black-
box models. In this work, we study reward-based attacks
in the training stage. To achieve the goal of the attack,
we assume that there are the following assumptions:

1) The adversary can inject perturbations into the rewards
of the environment. In other words, an adversary can
access the reward information returned by the environ-
ment to the agent and change the reward value.

2) The adversary can obtain the tuple < st , at , rt , st+1 >,
generated by the interaction between the agent and the
environment in each time step t .

Under the above assumptions, the adversary con-
ducts training the SR-Network in the environment where
the attacked agent is located before the attack starts. The
SR-Network is employed as the basis for determining
the attack timing and the size of perturbations. During the
training of the agent, the attacker collects the interaction
information tuple < st , at , rt , st+1 > between the agent and
the environment, and uses state st of the agent and the size of
the SR value corresponding to action at to determine whether
to attack, and to calculate the size of the perturbation against
the reward.

Figure 3 shows the attack process based on the attack
model. When the agent obtains the state of the environ-
ment, it will choose an action based on the action-selection
rules, and the environment will change because of this action
and return a reward. The adversary obtains this information
through observation to determine the timing of the attack
through the SR-Network, and generates disturbances to mod-
ify the reward returned by the environment.

C. ATTACK METHODS
In this section, we introduce SR-based reward attacks against
black-box environments during the training phase. For each

state, we can use the value of SR to determine the number of
visits of each action in that state[7]. Generally, after sufficient
training, the more times an action is performed in the same
state, the greater the Q-value corresponding to the action.
Meanwhile, the value of SR will increase with the number
of visits, and each visit will perform the action with the
largest Q-value in the current state with a high probability.
Thus, we can infer that after sufficient training, when the
agent visits a state more times, the greater the number of
times the action corresponding to the maximum Q-value in
this state is performed, the greater the corresponding SR
value. Therefore, we can estimate the visit times of a state
by the maximum SR value of the state. Obviously, after
sufficient training, when a state is visited more times, the
state becomes more important in the process of the agent’s
leaning. Attacking the agent in this state allows us to obtain a
better attack effect. Thus, we can determine the timing of the
attack by themaximumSR value in each state. In addition, the
adversary can determine the size of the perturbation through
the SR value. The adversary can also reduce the reward of
the action with the larger SR value and increase the reward
of the action with the smallest SR value so that the attacked
agent is biased to perform the action with a small original
Q-value. Therefore, the purpose of the attack can be achieved
with fewer attacks. Because this is to induce the agent to learn
a bad policy by changing the value of the reward, it is a reward
poisoning attack.

When an adversary attacks, there are two important factors.
One is the timing of the attack and the other is the size of the
perturbations. For the timing of an attack, if the adversary
attacks every time step, it will have a huge attack cost. In the
process of agent learning, the attack effect of most states is
relatively low. Hence we need to determine the best time for
adversarial attacks to reduce the number of attacks and the
cost of attacks. On the other hand, when the attacker carries
out a reward poisoning attack and generates an adversarial
perturbation to the reward, the size of the perturbation must
be considered. If the corrupted reward exceeds the maximum
reward or is below the minimum reward that the original envi-
ronment can provide, the attack behaviour is easily detected
by the agent. However, if the perturbation is too small, the
purpose of the attack may not be achieved.

In summary, our goal is to find an attack method to com-
plete effective attacks with as few attacks as possible and with
as little perturbation as possible.

1) ATTACK TIMING
Because the agent’s neural network is a black box to the
adversary, the attacker needs to rely on its own trained net-
work to determine the attack timing.

From the properties of the SR-Network, the action with
the most execution times in the same state has the largest
SR value, while the action with fewer execution times has
a smaller SR value. Obviously, the Q-value of the action with
the largest Q-value is always greater than that of other actions,
so the difference between the SR value of the action with the
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largest Q-value and the action with the smallest Q-value in
this state will become increasingly larger. By judging the size
of the difference of the SR value in a state, we can determine
whether the state should be attacked.
Definition 5: Y(s,a). A value represents the effect of

adding a disturbance when state s performs action a.
Theorem 1: The larger the difference between the maxi-

mum and minimum values of SR in a state, the higher the
profit of attacking the state when the disturbance is the same.

Proof: Suppose there are two states s1, s2, their actions
with the maximum SR value and the minimum value are
s1max , s1min, s2max , s2min, respectively, and s1max-s1min >
s2max- s2min. Because the SR value represents the connec-
tion to the successor state, SR(s, a) =

∑
j∈S ψ(s, a, j) and

ψ(s, a, j) =
∑
∞

i=1 r
i(si == j). Then when we add a distur-

bance δ to the action, the effect of the disturbance on state j is
Y (s, a, j) =

∑
∞

i=1 r
i(si == j) ∗ δ = ψ(s, a, j) ∗ δ. The effect

on all states is Y (s, a) =
∑

j∈S ψ(s, a, j) ∗ δ = SR(s, a) ∗ δ.
Therefore, the larger the SR(s, a) is, the greater the impact
after the disturbance is added. At the same time, as seen from
the above, if the difference between the maximum value and
the minimum value of SR is larger, the number of visits will
be greater. At the same time, as the number of visits increases,
the number of executions of each action in the same state will
also increase, so if s1max-s1min > s2max- s2min, then for every
action a, SR(s1, a) > SR(s2, a). Obviously

∑
a∈A SR(s1, a) >∑

a∈A SR(s2, a). In the case of adding the same perturbation,
one can obtain

∑
a∈A Y (s1, a) >

∑
a∈A Y (s2, a). Therefore,

the greater the difference between the maximum value and
the minimum value of SR in a state, the greater the impact,
and the higher the income of the attack. �

We make the following definitions:
Definition 6: dis_SR:A value represents the difference

between the maximum SR value and the minimum SR value
in a state.

dis_SR(st ) = max
a∈A

SR(st , a)−min
a∈A

SR(st , a) (6)

Definition 7: Max_dis_SR. A value represents the maxi-
mum value of the difference between the maximum SR value
and the minimum SR value in the same state in all states.

Max_dis_SR = dis_SR(st ) st ∈ S (7)

The timing of the attack, whether the state needs to be
attacked, can be determined by the following formula:

dis_SR > βMax_dis_SR (8)

where β is an adjustment parameter. The attacker’s hyper-
parameter β is a predetermined number, and its size affects
the attack frequency. For reward-intensive environments, the
value of β needs to be smaller so that the attack frequency
increases. In contrast, for environments where most of the
rewards are 0, β can be set larger so that the attack frequency
is lower.

This approach has two main advantages. The first is that
the more times a state is accessed, the more important the

state is, so higher benefits can be obtained by attacking
the state. On the other hand, we can stably attack some
of these states through the difference of SR since these
differences do not change over the training process, which
can effectively ensure that the agent converges to the wrong
policy.

2) PERTURBATION SIZE
In the existing research, the attack based on observations
often only considers reducing the size of the perturbation as
much as possible to avoid being detected. However, this is
not enough for attacks based on rewards. For instance, if the
reward of the environment is limited to the set {0, 1}, in a
time step with a return reward of 0, the corrupted reward after
adding the perturbation to the original reward becomes 0.05,
or the reward range is [-1,1], and the corrupted reward after
adding the perturbation is -1.1. These corrupted rewards obvi-
ously exceed the range of the original environmental reward,
even if the attack perturbation is small, so that they are easily
detected by the attacked agent. In this paper, we impose strict
constraints on the perturbation size of the reward poisoning
attack. We make the following definition:
Definition 8: (Covert Reward Poisoning Attacks). In

reward poisoning attacks, when the reward after the attacker
adds perturbation belongs to the normal reward value of
the environment, we call this attack covert reward poisoning
attacks (CRPA).

The reward poisoning attack could be successful only if
the Q-value of the target action after being attacked is greater
than the Q-value of other actions. Thus in order for the
agent to learn the wrong policy, we need to add a suffi-
ciently large perturbation to the reward of the environment
to the agent. Zhang et al.[22] show that when the added
perturbation is greater than a certain threshold, we can suc-
cessfully attack the agent’s policy. However, the threshold
in this paper is (Q∗−Qπ )

2 , where Q∗ and Qπ represent the
Q-value of the optimal policy and the Q-value of the target
action without attacks, respectively. According to the nature
of the SR-Network, we can obtain the range of real Q-values
through the SR networks trained in advance. However, it is
obvious that the newly generated reward does not conform to
the CRPA, so we need constrain the size of perturbations.

Before the attack, we let the adversary train the SR network
on the environment where the attacked agent is located, obtain
the SR network under normal conditions to approximate the
Q-value of each state learned by the attacked agent and the
reward value fed back by different actions in each state, and
record themaximum reward valueRmax andminimum reward
value Rmin during the training.

For the convenience of explanation, we define the
following:
Definition 9: asr (st ). The action with the minimum SR

value when the state is st

asr (st ) = argmin
a∈A

SR(st , a) (9)
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Definition 10: aq(st ). The action with the maximum real
Q-value when the state is st .

aq(st ) = argmax
a∈A

Q(st , a) (10)

Definition 11: R(st ). The value set of the rewards when the
status is st .

R(st ) = {r(st , a)|a ∈ A} (11)

Definition 12: Qsr (st ). When the state is in st , the
SR-Network is used to calculate the Q-value obtained by
approximating the real DQN.

Firstly, we obtain the R(st ) of the current state st , which
represents the reward of each action in this state. For
instance, we assume that there are four actions and R(st ) =
{A,B,C,D}. We add Rmax and Rmin to R(st ) to form the new
reward set. Therefore, we define the set by the following:
Definition 13: RD(st ). The set consists of Rmin, Rmax and

the elements of R(st ) in the state st .
When sorting RD(st ), the sorted RD(st ) is {Rmin,A,B,C,

D,Rmax}. We also obtain SR(st ) from the SR-Network.
According to the properties of the SR-Network, we can obtain
Qsr (st , aq(st )) andQsr (st , asr (st )) throughQsr (st ). According
to the definition in [22], when the size of the perturbation is
greater than

dt =
Qsr (st , aq(st ))− Qsr (st , asr (st ))

2
(12)

the attack can be established. However, to meet the conditions
of a covert reward poisoning attack, that is, the size of the
corrupted reward is selected from the set RD(st ), so the
perturbation needs to be obtained from the set formed by
subtracting the environmental reward from the elements in
RD(st ). For the convenience of explanation, we make the
following definitions:
Definition 14: DR(st ). The set is formed by subtracting the

environmental reward rt from the elements in RD(st ) in the
state st .

DR(st ) = {x − rt |x ∈ RD(st )} (13)

When the action is asr (st ), the perturbation δt is set as:

δt = min{x|x ∈ DR(st ) and x > dt } (14)

However, it is possible that dt is too large and there is no
qualified reward in RD(st ), so we directly define:

δt = Rmax − rt (15)

When the action is not asr (st ),the perturbation δt is set as:

δt = min{−x|x ∈ DR(st ) and x < −dt } (16)

If there is no eligible reward in RD(st ), we directly define:

δt = rt − Rmin (17)

Thus, by adding this perturbation δt to the original reward, the
agent can be effectively prevented from learning an optimal
policy.

In summary, the generation of perturbation δt can be rep-
resented by the Figure 4.

FIGURE 4. The δ-generator.

D. FEASIBILITY ANALYSIS
FromTheorem 1, we can conclude that using SR to determine
the timing of an attack maximizes the impact caused by a
single attack. Because the SR network is trained in advance
and does not change its parameters as the agent is trained, the
attack will be carried out at a fixed state-action pair.

Suppose state s satisfies Equation (8) and action a1 is the
action with the largest Q value and action a2 is the action
with the smallest SR value; then, the attacker will attack the
agent in that state. According to Equation (12), we derive d =
Q(s,a1)−Q(s,a2)

2 . Since the attacker will perform a stable attack
on the action of that state, suppose the Q value of a1 after the
attack is Q′(s, a1), and the Q value of a2 is Q′(s, a2). Then
according to Equation (14) and Equation (16), we can derive

Q′(s, a1) ≤ Q(s, a1)− d,

and

Q′(s, a2) ≥ Q(s, a2)+ d .

Since Q(s, a1) = Q(s, a2)+ 2d , we have

Q′(s, a1) ≤ Q(s, a1)−d = Q(s, a2)+ d ≤ Q′(s, a2).

Therefore, the agent then selects the action with the small-
est SR value.

The SR-based CRAP(SR-CRAP) algorithm is shown in
Algorithm 1.

V. EXPERIMENT RESULTS
In this section, we investigate the efficacy of the SR based
covert reward poisoning attacks(SR-CRPA) algorithm on
the Pong environment, Pendulum environment and Freeway
environment of Gym.

A. EXPERIMENTAL ENVIRONMENTS
To verify the effectiveness of the attack algorithm, we con-
duct experiments in Atari’s Pong environment, Freeway
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Algorithm 1 SR Based Covert Reward Poisoning Attacks
Require: hyperparamter β, the maximum reward value
maxr ,the minimum reward valueminr ; trained SR network
SR; the maximum steps maxepoch
maxsr ← 0
for t = 0,1,. . . .,maxepoch: do
the victim generates data (st , at , rt , st+1)
the attacker observes data (st , at , rt , st+1)
obtain Q(st ),SR(st ),R(st ) through the SR network.
dis_SR = maxa∈AQ(st , a)− Q(st , argmina∈ASR(st , a))
if dis_SR > maxsr then
maxsr = dis_SR

end if
if βmaxsr < dis_SR then
dt =

maxa∈A Q(st ,a)−Q(st ,argmina∈ASR(st ,a))
2

end if
DR(st ) = {x − rt |x ∈ R(st )}
if a == argmina∈ASR(st , a) then

if {x | x ∈ DR(st ) and x > dt} is not empty then
δt = min{x | x ∈ DR(st ) and x > dt}

else
δt = maxr − rt

end if
else

if {x | x ∈ DR(st ) and x < −dt} is not empty then
δt = max{x | x ∈ DR(st ) and x < −dt }

else
δt = minr − rt

end if
end if
the victim receive data (st , at , rt + δt , st+1)

end for

environment and the classic control environment Pendulum,
and compare the experimental results of the agent under
SR-CRPA attacks with the experimental results with other
attack methods. All the three environments are shown
in Figure 5.

In the Freeway environment, a chick needs to get from
one side of the highway to the other within a specified time,
but there will be cars passing by constantly on the highway,
and when the chick touches these cars, it will back off by a
certain distance. When the chick reaches the end, the player
will get a point, and the chick will instantly return to the
starting point and start crossing the road again. After a period
of time, we counted the total number of times the chick has
successfully crossed the road, that is, the score.

In the Pong environment, the agent and the opponent are
located at both ends to hit a small ball together. When the ball
is hit by the agent and the opponent does not hit it, the agent
scores one point. When the opponent hits the small ball and
the agent does not, the opponent gets one point. The game
ends when either side’s score reaches 21 points. The total
score of the agent is its score minus the opponent’s score.

FIGURE 5. Experimental environments.

In Pendulum, the agent applies a force to a fixed length
wooden stick, namely the pendulum, making the pendulum
move around the centre, and the environment gives a reward
according to the angle of the pendulum. When the angle
is smaller, the greater the reward given, that is, when the
pendulum is just at the direction of 0 o’clock, the reward
given by the environment is 0. When the angle is larger, the
reward given by the environment is smaller. In particular, the
reward given by the environment in 6 o’clock direction is
approximately−16.2736. Over a period of time, we calculate
the sum of the rewards as the score for this run. Because the
environment is a continuous action space, it is not suitable for
processing in DQN. Hence, the original action space [−2, 2]
is discretized into 11 actions, namely, [−2, −1.6, −1.2, . . . ..,
1.6, 2].

B. EVALUATION OF ATTACK EFFECTS
To compare the effectiveness of the attack, we conducted
experiments in Freeway, Pong and Pendulum. The Free-
way and Pong environments are environments with discrete
reward values. In this environment, the agent is rewarded only
when it reaches the goal, and the rewards are all 0 at the rest
of the time. In the Pendulum environment, the agent will
receives a reward at each time step. Obviously, the latter is
often more difficult to attack than the former.

We also added two kinds of attacks for comparison: The
first one is the flipping reward attack (FRS) mentioned above.
The other is the attack that uses the Q-value as the basis to
determine the timing of the attack. This attack employs a
pretrained Q network, and finds the maximum difference of
between the maximum of the Q-values and the minimum of
the Q-values in each state. Then, a hyperparameter c, which
is less than 1, is defined. When the agent reaches a certain
state, where the difference between the maximum of the
Q-values and the minimum of the Q-values is greater than the
product of themaximumQ-value and c, the adversary attacks.
The idea follows the strategically-timed attack proposed by
Lin et al[5]. We call this attack a black-box DQN attack. Due
to the lack of an SR-Network, we cannot scale the size of
the perturbation. Hence we directly use Rmin and Rmax as the
corrupted reward. For comparison with our proposed attack
method, we adjust the size of the hyperparameter c so that
the attack frequencies in the Pong, Freeway and Pendulum
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environments are 0.038, 0.01 and 0.6, respectively. The above
three values are the attack frequencies that we obtain through
the SR-CRPA attack.

Figure 6 is a comparison of the attack performance of the
agent in the Pong, Freeway and Pendulum environments with
different attack methods. The solid line represents the aver-
age value of multiple experiments, and the shadow around
the solid line represents the standard deviation of multiple
experiments in this time step.

Figure 6(a) shows the comparison with different attack
methods in the Pong environment. In this experiment,
we executed 1500 episodes under different attack methods.
We define the agent learning rate as 0.9999, and each data
point is the average of the scores of this episode and the
scores of the next 19 episodes. In this game, the best score
of the agent is 21 points, and the worst score is - 21 points.
As shown in Figure 6, the red line is the score of the agent
without attacks. From the figure, we can see that the agent
basically achieves the optimal 21 points after 700 episodes
of training, and the blue line is the score after the SR-CRPA
attack. Under the SR-CRPA attack, the agent’s score always
remains below - 20 points. Therefore, the SR-CRPA attack
can effectively attack in the Pong environment. The green
line is the experimental result under the flipping reward sign
attack. In this experiment, we set the attack probability to
25%. It can be seen that the learning speed of the agent
decreases significantly under the FRS attack, and the score
curve becomes more unstable, but it will ultimately approach
the best policy. The yellow line is the experimental result
under the black-box DQN attack. It can be seen that in
the Pong environment, the effect of the black-box DQN
attack is good, but it is slightly less than our SR-CRPA
attack.

Figure 6(b) shows the experiential results in the Freeway
environment. In this experiment, we executed 1000 episodes
under different attacks, and the agent learning rate was
defined as 0.9999. Each data point is the average of the scores
of the current episode and the subsequent 19 episodes. In this
game, it is difficult to define the optimal score because of
the randomness of vehicles. Generally, a score of more than
22 points is regarded as success. In the worst case, the chicken
does not cross the road successfully even once, that is, the
score is 0. As shown in Figure 6(b), the red line is the training
score of the agent without attacks. From the figure, we can
see that without attacks, the agent’s score in each game after
800 training rounds has basically exceeded 22 points. The
blue line is the score under the SR-CRPA attack. The agent’s
score is 0, from which we can conclude that the SR-CRPA
attack can effectively attack in the Freeway environment.
The result of the Freeway experiment under the FRS attack
is shown by the green line. In this experiment, we also set
the attack probability to 25%. The standard deviation of the
agent’s score under the attack is very large. It can be seen that
the experimental result is unstable, but it will slowly converge
and tend to a suboptimal strategy in the end. The yellow

FIGURE 6. Experimental results of the three environments.

area is the performance of the agent being attacked by a
black-box DQN attack. In this environment, the performance
of black-box DQN attacks is relatively poor. The reason may
be that there are many variables in the environment in the
Freeway environment, so that the attacker cannot completely
attack the agent only by determining the attack timing with
the Q-value.

Figure 6(c) shows the experimental results in the Pendulum
environment. In this experiment, we executed 9000 episodes
under different conditions. The learning rate of the agent
is defined as 0.9999, which is different from that of the
previous two. The difference between this environment and
the previous two is that in the Pendulum environment, the
initial position of the clock pendulum at the beginning of
each episode is randomly generated, which has a particularly
large impact on the total reward of the environment. Hence
we increase the number of averages for each data point, using
the score of this episode and the scores of the following
359 episodes are averaged. The results are shown in the
figure. The red line is the training score of the agent that
has not been attacked. From the above figure, we can see
that the score of the agent in each game after 800 training
sessions before being attacked basically exceeds 22 points.
The blue line is the score under the SR-CRPA attack. After
being attacked, compared to the result of the discrete reward
environment, the environment is still fitted in the Pendulum
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environment, but we can see that although part of the learning
is successful, the final result does not reach the normal level.
The green line is the result of the FRS attack, where the attack
probability is 0.25. It can be seen that it is very close to the
normal level, and the learning process of the agent has not
been greatly affected. The yellow curve is the result of the
black-box DQN attack. It can be seen that the attack is better
than the SR-CRPA attack at the same attack frequency. This
is because Pendulum has multiple reward values in each state,
while the SR-CRPA attack is different from the Pong and
Freeway environments. It will choose to inject less distur-
bance into the reward, and the black-box DQN attack does
not have the SR network, so it directly uses Rmin and Rmax to
attack. However, in the Pendulum environment, if the reward
frequently returns the maximum reward 0 and the minimum
reward -16.2736, the attack is very easy to be detected by the
victims. Thus, compared with the black-box DQN attack, the
SR-CRPA attack requires more attacks, but the attack is not
easy to detect.

We generally judge the degree of adaptation of the agent’s
policy to the environment by the score in the game, and the
lower the score, the poorer the fitness of the agent’s policy
to the environment. For an untrained agent, when it comes to
a new environment, the score it gets is often the lowest, e.g.,
-21 in Pong environment and 0 in Freeway environment, with
only a tiny chance to get a relatively high score. Therefore,
we can let the agent perform multiple games in the environ-
ment and record the corresponding score data to reflect the fit
of an agent’s policy and the environment.

We first recorded the scores of the agents in each envi-
ronment when they were untrained and then performed
Black-Box DQN or SR-CRPA, or FRS attacks on the agents,
respectively, while training them. After saving the trained
models, we recorded the scores of these models performing
the tasks in the environment compared with the scores of
the untrained agents, where each dataset was collected with
500 data points. The Kolmogorov-Smirnov test(a.k.a. K-S
test) was used to verify the distributional similarity between
the datasets. In general, two data sets are considered from
the same distribution if the Kolmogorov-Smirnov test yields
a p-value greater than 0.05.

In the Pong environment, with the model trained with
FRS attacks, the p-value of the Kolmogorov-Smirnov test is
1.94e-119, which shows that the difference is very significant.
For the model trained with Black-Box DQN attacks, the
p-value is 6.75e-10, which is better than that of FRS attacks,
but the difference with the data before training is relatively
significant. With the model trained with SR-CRPA attacks,
the p-value is 0.11, which is greater than 0.05, and it can
be decided that it is the same distribution. Therefore, by the
Kolmogorov-Smirnov test, we can determine that the fit of the
agents to the environment after being attacked by SR-CRPA
in the Pong environment is similar to the fit of the untrained
agents and the environment.

In the Freeway environment, the p-values of FRS, Black-
Box DQN, and SR-CRPA attacks are 1.06e-239, 1.34e-199,

and 1.0, respectively, and it is evident that the score distribu-
tion of SR-CRPA attacks is the same as that of the untrained
agents. At the same time, the score distributions of FRS,
Black-Box DQN, and untrained agents differed significantly.

In the Pendulum environment, the p-values of FRS, Black-
Box DQN, and SR-CRPA attacks are 0.0, 7.30e-220, and 0.0,
respectively. The FRS and SR-CRPA attacks did not prevent
the agents from fitting the environment, while the Black-Box
DQNattack effect was relatively improved, but still very poor.

C. THE RATE OF BAD ATTACKS
In the process of an attacker’s attack on an agent, in most
cases, the agent cannot determine whether it is under attack.
Nevertheless, it can be judged by some particular states. For
example, in the Pong and Freeway environments, if the agent
receives the message that the round is not yet over. Neverthe-
less, the reward is not 0, or in the Pendulum environment, the
agent is in a state other than the 12 o’clock direction, but the
reward is 0. Then, the agent can quickly determine that it is
under attack. We call this attack Bad Attack, and use the rate
of bad attacks (RoBA), to express the number of bad attacks.

RoBA =
the number of bad attacks
the number of actions

(18)

We attacked with SR-CRPA and black-box DQNwith similar
attack frequencies in Pong, Freeway, and Pendulum, respec-
tively, and calculated their RoBA. The results are shown
in Figure 7.

The x-axis in Figure 7 represents the experiments con-
ducted in the three environments, and the y-axis represents the
RoBA. Because the RoBA in Pendulum is too large, we divide
the RoBA of the two attacks in that environment by 10 for
comparison. From the figure, we can see that the RoBAs of
SR-CRPA and Black Box-DQN in Pong and Freeway are not
significantly different. SR-CRPA changes the reward value
after the attack to RD(st ). Black Box-DQN directly sets the
reward after the attack to the maximum or minimum value in
the reward domain, while the rewards in Pong are only -1, 0,
and 1. The rewards in Freeway are only 0 and 1. Therefore,
the RoBAs of the two are not very different when the attack
frequencies are similar. The RoBA of SR-CRPA in Pendulum
is significantly smaller than that of Black Box-DQN because
the reward domain of each state in Pendulum is a set. The
rewards of Black Box-DQN after the attack are only the
maximum and minimum values of the reward domain and
can be easily identified. At the same time, the SR-CRPA will
choose the values in the original reward domain. Therefore,
the RoBA of SR-CRPA is smaller than that of Black Box-
DQN. Because the rewards in the Pendulum environment
are more significant as they go up, the RoBA of SR-CRPA
appears slightly larger, and the attack will maintain a lower
value in a similar environment in Freeway.

D. EFFECTS OF THE β VALUE ON ATTACK TIMES
In Section 4.2.1, we choose the attack timing, that is, when
dis_SR > βMax_dis_SR, the attacker will attack the agent.
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FIGURE 7. The rate of bad attacks in different environments.

Obviously, the larger the β value is, the fewer states that
meet the attack conditions and the lower the attack frequency.
We use the rate of attacks (RoA) to express the number
of attacks. RoA is the ratio of the total number of attacks
by attackers to the total number of actions performed by
agents:

RoA =
the number of attacks
the number of actions

(19)

Figure 8 shows the effect of different β values on the
RoA. Figure 8(a) shows the result in the Pong environ-
ment. Obviously, as the β value increases from 0.55 to
0.61, the ROA decreases from 0.042 to approximately 0.03.
Figure 8(b) shows the RoA affected by β in the Free-
way environment. As a result of β increasing from 0.6 to
0.9, the value of RoA decreases from 0.14 to less than
0.01. Figure 8(c) shows the result in the Pendulum environ-
ment, where when β increases from 0.2 to 0.32, the RoA
decreases from 0.65 to approximately 0.32. In summary, the
attack frequency of the SR-CRPA attack will decrease with
increasing β.

E. EFFECTS OF THE β VALUE ON THE ATTACK RESULTS
In the previous section, we have shown that the number of
attacks by adversaries increases with increasing β. However,
with a decrease in the number of attacks, it must also have an
impact on the efficacy of attacks.

Figure 9(a) shows the results of the agent in the Pong
environment. The experiment was repeated 100 times in the
environment to generate data. From this figure, we can see
that when the value of β is less than 0.56, the attack is very
successful, which can make the agent score completely at
the lowest score. As β increases, when β is 0.57, it is still
at a very low score. When β is 0.58, the score oscillates
approximately 0, there are many extreme data points, and
the performance of the agent is very unstable. When β is
0.59, it is basically stable at 0 points, and when β is equal to
0.6 and 0.61, the agent has a certain advantage over the oppo-
nent in the Pong game, but it still cannot reach the highest
score.

The experimental results in the Freeway environment
are shown Figure 9(b). The experiment was also repeated

FIGURE 8. The rate of attacks affected by β.

100 times in the environment to generate data. By analysing
the figure, we can observe that when the value of β is less
than 0.8, the attacked agent cannot learn the optimal policy
from the environment.When the β value is 0.85, the agent can
learn a better policy from the environment, and the chicken
can cross the road about 18 times in each game. When the
β value is 0.9, the attack has little effect on the learning of
the agent, and the agent learns a policy with a very high
score.

Figure 9(c) shows the experimental results in the Pendulum
environment, where we conducted this experiment 100 times
to generate the experimental data. From this figure, we can
see that when the value of β is less than 0.24, the score of the
victim on the environment is relatively low, and the median
is around 900 points. When the β value is 0.24 to 0.26, the
agent has a certain improvement compared to the previous,
but it is lower than the results without attacks. When the β
value is above 0.28, the agent can learn a good policy from the
environment normally. By comparing the impact of β on the
attack frequency in the previous subsection, we can find that
in the Pendulum environment, only when the RoA is greater
than 50% can the attack have an impact on the learning of
the agent. There are two reasons for this. The first is, that to
prevent the attack from being discovered, we impose certain
constraints on the size of the attack, which cannot have a
large enough impact through a single attack. On the other
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FIGURE 9. The attack effects affected by the β value.

hand, each state of the Pendulum environment can generate
rewards, and the closer the direction is to the zero point, the
greater the reward. This leads to the fact that the Q-value of
the action in the direction closer to the zero point is much
larger than that of other actions in all states. Thus, a large
RoA is required in the Pendulum environment to generate an
effective attack.

VI. CONCLUSION
In this paper, we use the properties of SR to propose a new
reward poisoning attack method, which can achieve effective
attacks on DRL agents. This method uses the trained SR
network to determine the attack time and the attack size,
so that the agents learn a bad policy. The main idea of this
attack is that the norm of the SR can be used to guide
exploration, and it should also be used to guide attacks.
We have conducted extensive experiments with our attack
method in different DRL environments. The results show
that the SR-CRPA attack method has demonstrable effects in
a variety of experimental environments, especially in envi-
ronments with sparse rewards, and it can achieve the attack
target through a small number of attacks. However, an envi-
ronment with dense rewards needs more attacks. The main
advantage of out attack method is that it is a critical moment
attack. In future work, our research will focus on targeted
attacks.
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