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ABSTRACT With increasing complexity of design patterns in semiconductor package substrates caused by
demand for high-power semiconductors, it is necessary to be able to predict the thermal properties according
to the pattern. Classifying the patterns is important to predict the effective thermal conductivity (ETC), but it
has some difficulties due to the variable setting being labor-intensive and creating human uncertainty. These
difficulties are amplified by the complexity of the pattern in the printed circuit board (PCB) substrate. This
work presents an automated convolutional neural network (CNN)-based algorithm to infer the anisotropic
ETCs of package substrates. This algorithm divides a layer-pattern image of a PCB into local unit-cell images
and learns the pattern characteristics of each unit cell to identify the local ETC. The algorithm then builds
an ETC map by integrating the local ETCs for the entire layer. The entire process is fully automated to
reduce human uncertainty and required workforce. The ETC map from the algorithm was then used in finite
element (FE) analysis and comparedwith three other predictionmethods. The proposed algorithm can predict
the anisotropic ETCs within 2–3 % errors compared to the reference data while other models lead to at least
16 % error. The FE simulation with the ETC map of the algorithm can reflect the effect of the design pattern
on the heat flux and temperature distributions on the package layer, leading to the lowest root mean square
error in the temperature distribution compared to other models.

INDEX TERMS Artificial intelligence, convolutional neural network, effective thermal conductivity, finite
element method, semiconductor package.

I. INTRODUCTION
Semiconductor industries have attempted to predict the
effective thermal conductivity (ETC) of printed circuit
board (PCB) substrate [1]–[8] because heat flux affects the
performance of chips while heat flows through the elec-
trical path from heat sources [9]–[11]. Some studies have
reported that the thermal energy has a significant effect on
the reliability [12], [13] of systems through thermal defor-
mation [14], dissipation [15], [16] and free energy [17] in
the PCB substrate. Recent advances in heat transfer mea-
surements have improved understanding of the aforemen-
tioned issues [18], [19]. It has been shown that, in the
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submicron-sized device level, the heat transfer coefficient can
be significantly changed by changing the integrated materi-
als [20], [21] and processing methods [22], [23]. Compared
to material level conditions, the package substrate is more
affected by the pattern design, as explained in [8], and [15].
Therefore, researches have been conducted to measure and
predict the ETC at the package level in consideration of
design patterns [24]. A simple approach to predict the ETC
is the linear interpolation method (LIM), in which the macro-
scopic properties of composite materials are described based
on the volume fraction of inclusions under the assumption
that the inclusion builds a path parallel to the medium in the
direction of heat flux [24], [27]. The LIM can be applied
to semiconductor package substrates because the package
substrates usually consist of copper and dielectric materials
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such as FR4, as shown in Fig. 1. Copper is a conductor
having a high thermal conductivity and can be considered an
inclusion in dielectricmaterials. The LIM is simple and useful
for predicting the ETC along the thickness direction of the
substrate. Because the thickness of the substrate layer is much
thinner than the in-plane area of the substrate, the variety of
patterns is limited as explained in [24], and [28]. However,
the copper pattern on the plane substrate is very diverse, even
for the same volume fraction. Consequently, the accuracy of
the LIM for the in-plane anisotropic ETC is unsatisfactory
because the LIM does not account for the difference in the
thermal conductivity caused by the differences in patterns
in the same volume fraction of copper. To overcome this
shortcoming, some studies have proposed a method that
considers the in-plane patterns in the package substrate as
randomly distributed inclusions in a medium. The Maxwell-
Eucken (ME) model is used for the calculation of ETC of
composite materials under the assumption of dispersion of
small particles within a continuous matrix of a different com-
ponent. TheME considers local distortions in the temperature
distributions without interfering with their neighboring distri-
butions [26], and [29]–[32]. Another method is an effective
thermal width (ETW) analysis that considers a thermal array
and heat source [9], and [33]. Because the ETW accounts for
the heat flux depending on the in-plane patterns of copper,
it can detect the effect of heat transfer under different cases
of applied power on the substrate layer. This ETWmodel has
provided good predictions for the ETC of package substrates
[24], [34], and [35], but it is not easy to accurately define the
ETW in complex patterns of the substrates which is further
worsened by human uncertainty. For practical consideration
of the complicated patterns of the package substrate, the local
characteristics of the pattern should also be considered. The
piecewise simulation (PS) method divides a layer pattern into
local unit cell patterns to calculate the ETCs of local areas
[24], [34], and [36]. Fig. 1(b) shows examples of such unit
cells from the substrate layer in Fig. 1(a). The advantage of
the PS method is that it can classify unit cells by classifying
the volume fraction and continuity of the patterns in each
unit cell. However, if the pattern of the package substrate is
very complex, leading to a significant increase in the diversity
among unit cells, it is not easy to classify them, which further
increases human uncertainty.

This study aims to build a fully automated algorithm to
predict the in-plane anisotropic ETC of semiconductor pack-
age substrates. The presented algorithm uses a convolutional
neural network (CNN) [37] to automatically extract struc-
tural feature maps of the substrate patterns. Since the CNN
method is a very useful method for dealing with image data
and learning features of the data [38]–[40], recent attempts
have been made to solve the heat transfer [41], [42] and
heat source optimization problems [43], [44] with image-
based data. In this paper, based on the advantage of the CNN
method, the proposed algorithm recognizes the image files
of the package substrate layers as the input file and divides
the entire layer into local unit cell images to learn the local

ETC of the pattern. During the training of the local ETC,
an image classification algorithmwas used to classify the unit
cell pattern. The main objective of image classification is to
identify the existence of dielectric bands that block the heat
flux. According to the results of the image classification, two
different CNN algorithms were used, which are described in
detail in Section III. For the unit cell training data, the finite
element (FE) analysis data for each unit cell were used. Note
that the FE analysis was also automated within the presented
algorithm using a macro code. After training based on the
local ETCs of each unit cell, an ETC map can be built by
integrating the local ETCs for the entire layer. The entire
process was fully automated. The predicted ETC results were
validated by FE simulation using the original package CAD
file, and three other pre-existing models were also compared
to the proposed method. The methods compared are the LIM,
ME, and ETW. Note that, in this paper, the compared mod-
els (LIM, ME, and ETW) were also combined with the PS
method to increase the prediction accuracy by obtaining the
local ETC. The results of this study show that the proposed
method accurately predicts in-plane anisotropic ETCs. The
remainder of this study is structured as follows. Section II
briefly summarizes the three compared models (LIM, ME,
and ETW), and Section III explains the proposed CNN-based
algorithm in detail. Section IV presents the results and discus-
sion, and the conclusion is presented in Section V.

FIGURE 1. Examples of package substrates: (a) Example of one layer, and
(b) Examples of unit cells.

II. SUMMARY OF THE PRE-EXISTING MODELS
This section summarizes the three pre-existing models that
will be compared with the proposed method in Section IV.

A. LINEAR INTERPOLATION METHOD (LIM) MODEL
The LIM model [24]–[27] only accounts for the volume
fraction of copper in the dielectric material matrix, as shown
in Fig. 2(a), and the ETC of the LIM (KLIM

eff ) is defined as

KLIM
eff = φ × K1 + (1− φ)× K2, (1)

where, K1 is the thermal conductivity of copper and
K2 is the thermal conductivity of the dielectric material.
φ denotes the volume fraction of copper. The LIM model
assumes that the inclusion builds a path parallel to the
medium for the direction of heat flux, and an isotropic model
providing the same ETC value for all directions.
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FIGURE 2. Pre-existing models: (a) LIM model, (b) ME model, and (c) ETW
model.

B. MAXWELL-EUCKEN (ME) MODEL
The Maxwell-Eucken (ME) model [29]–[32] defines ETC as

KME
eff = K1

K2 + 2K1 − 2(1− φ)(K1 − K2)
K2 + 2K1 + (1− φ)(K1 − K2)

. (2)

K1 is the thermal conductivity usually used for continuous
phase, copper substrate applied in this work, and K2 repre-
sents the thermal conductivity of a dispersed phase such as
inclusions in a composite, as shown in Fig. 2(b). φ denotes the
volume fraction of copper. It should be noted that a random
distribution of inclusions was assumed. The ME model also
provided an isotropic ETC value.

C. EFFECTIVE THERMAL WIDTH (ETW) MODEL
As shown in [24], [34], and [35], the ETC changes according
to the patterns and volume fraction of copper. As shown in
Fig. 2(c), in the ETW model, the heat flux (Arrow-treated q
in the figure) is strongly affected by the copper lines. The
ETW model defines the effective width as a key variable for
obtaining the ETC value, as shown in (3).

KETW
eff ,i = f (weff ,i), (3)

where,

weff ,i =
winlet,i + woutlet,i

2
(i = x and y).

KETW
eff ,i is defined by functions of the effective width weff ,i and

the detailed form of function f () can be defined in diverse
ways. The subscript i denotes the orthogonal direction of
the in-plane layer to provide an anisotropic ETC. Note that
Fig. 2(c) shows only the vertical direction (y-direction), but
another ETW is also defined for the horizontal direction
(x-direction) independently. As the effective width increases,

the ETC also increases represented in Fig. 3. In Fig. 3,
the reference ETC values are normalized by the thermal
conductivity of the copper according to the effective width.
As explained in [24], and [34], a widely used method is to
use FE analysis data to build a quadratic fitting function f ()
based on weff ,i,. In the fitted equation in Fig. 3, x denotes
the effective width and y is the fitted ETC for the ETW
model. Note that, in this paper, when a pattern contains a
discontinuous path of copper, the ETC is fixed as the thermal
conductivity of the dielectric material.

FIGURE 3. Quadratic fitting function for the ETW model.

III. PROPOSED CNN-BASED MODEL
A. IMAGE PROCESSING
Image processing is the earliest stage of the algorithm used to
build the training data automatically, as shown in Fig. 4. The
algorithmmainly consists of image processing, data construc-
tion, and training steps, and each step is described one by one
in this Section III. This method uses the image data of the
package substrate. All of the layer images provided by Sam-
sung Electronics were standardized to 12 mm × 12.7 mm.
The dimensions of the layer images have not been changed
further, and one layer has 768× 768 pixels in this work. Four-
layer images were included in the substrate layout. Among
the four-layer images, a one-layer image is used to com-
pare the accuracy of several models and is called the test layer.
The remaining images called the train layer are used to train
the proposed CNN model. Before training, the layer images
were converted to a unit cell material map through image
data processing, which consisted of downsizing, and binary
masking. In the downsizing process, a layer image (shown in
Fig. 5(a)) was pre-processed by dividing the layer into unit
cells consisting of 8 × 8 pixels, as shown in Fig. 5(b). Next,
the unit cell images were converted into binary images, which
had binary colors to express two-phase materials representing
copper and dielectric materials, as shown in Fig. 5(c). Each
color of the unit cell in Fig. 5(c) denotes copper as white,
which has a thermal conductivity of 385 [W/m·K], and the
dielectric material as black, which has a thermal conductivity
of 0.2 [W/m·K]. For the train data, total 16,382 pieces were
generated from the training layers through image processing
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FIGURE 4. Framework of the proposed method.

after eliminating duplicated unit cell images. For the test data,
6,054 pieces were generated from test layer with the same
process.

B. DATA CONSTRUCTION
To train the CNN model, the training data should be con-
structed from the image-processed data. The labeled unit
cell ETC data were obtained by FE thermal analysis, and
ABAQUS was used for heat transfer analysis. First, for the
FE analysis, the unit cell images from the image processing
are converted to FE mesh modeling, which is automatically
generated by a mapping algorithm between the pixel and
element positions in the spatial domain, as shown in Fig. 6(a).

FIGURE 5. Image processing: (a) layer image, (b) downsizing, and
(c) binary masking.

In this step, the FE models were created using two types
of meshes, triangular and square mesh types. The effect of
mesh type is discussed in Section IV. From the FE mesh
modeling, two heat transfer simulations were conducted in
two orthogonal directions, as shown in Fig. 6(b) and 6(c).
In the simulation, the temperatures of the heat source and

heat sink were fixed at 397 and 297 K, respectively. The
thermal conductivities of the copper and the dielectric were
385 [W/m·K] and 0.2 [W/m·K], respectively. Then, the ETCs
for the x and y-directionswere extracted from the FE analysis.
The ETC is calculated in the FE analysis using the conduction
law [45], and [46], given as in (4),

qi
Acs
= Keff ,i

∂T
∂xi
, where (i = x and y). (4)

qi represents the total thermal energy per unit time applied to
a unit cell in the ith direction caused by the heat source. In this
study, Acs denotes the cross-sectional area of the element, and
∂T/∂xi is the temperature gradient between the heat source
and sink. Keff ,i in (4) was used for training. The total number
of training data was 16,382.

After obtaining all training data, this algorithm divides the
unit cell data into two groups according to the presence or
absence of dielectric band, as shown in Fig. 4. The dielectric
band consists of the dielectric materials resulting in blocking
the copper paths and heat flux, as shown in Fig. 7 [24]. There-
fore, the dielectric bands with different thermal behaviors
should be considered through an image recognition algorithm
that checks the connection between the lines of the material.
The image recognition algorithm was conducted line-by-line,
as shown in Fig. 8. It first checks the position of the copper
in the first boundary line and then moves to the next line to
check the connectivity of the copper included in the first and
second lines. The algorithm repeats the verification process
until the final line is reached. During the image recognition
process from the first line to the last line, if there is an area
where the dielectric connection continues, it is determined
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that a dielectric band exists in the unit cell. This step is called
dielectric band classifier in this work, as shown in Fig. 4.

FIGURE 6. FE generator routine to build the training data: (a) FE
modeling, (b) x-direction, and (c) y-direction.

FIGURE 7. Examples of the dielectric band: (a) with band, and (b) without
band.

Among 16,382 pieces of training cell images, 8,736 pieces
had no dielectric band along the x-direction, and 8,010 pieces
had no dielectric bands along the y-direction. They are then
used to train the CNN model along the x and y-directions,
separately. Note that duplicated pattern images can cause
bias during training; thus, only different pattern images were
extracted as the training dataset.

C. TRAINING
After the data construction state, the algorithm starts the
training process. In this work, a CNN was used to predict the
unit cell ETC because it has shown excellent performance in
image training [47], and [48]. The CNN structure is shown
in Fig. 9. A skip connection, which has shown good perfor-
mance in image detection using a shortcut path connecting
the starting and end parts [49], was used. The kernel size of
the convolutional layer was fixed at 3× 3, and the stride size
was 1. Whenever the data passes through the convolutional
layer, the number of kernels increased from 8 to 256. Zero
padding was applied to maintain the data size. During the
training process, a batch normalization layer was used to

prevent data biasing. The ReLU function was used as an acti-
vation function to increase the nonlinearity of the network and
construct a deeper network system. The max-pooling layer
was introduced to decrease the complexity of the network
and prevent overfitting. A fully connected layer before the
output regression layer was used to integrate the parameters
collected by the previous layers and output one value related
to the ETC.

In this study, identical CNN model structures and training
methods were used in each x and y direction. In the learning
process, the Adam optimizer was used to minimize RMSE,
as shown in (5).

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2

n
(5)

where yi is the ETC obtained from the FE analysis while
ŷi is the predicted ETC (i = 1, 2, 3, . . . , n). n is the total
number of validation data points. As a training option, the
learning rate was 0.001, the number of epochs was 200, and
the mini-batch size was 128.

IV. RESULTS AND DISCUSSIONS
A. PERFORMANCE OF THE PROPOSED MODEL
After the training of the model, the quality of the prediction
was verified with the test data. The test dataset comprised of
about 27 % of the whole dataset, which contained 6,054 unit
cells. The predicted ETC values show good agreements with
the test data (reference ETC), as shown in Fig. 10. The value
of R2 measure is 0.9998 in both x and y-directions. Note
that the ETC is expressed with normalized values between
zero and one. Although the test layer data were not used
in the training process, the proposed model predicted well.
Therefore, a high-quality prediction can be expected with
other new layers for further practical applications.

Fig. 10 presents the predicted results by the trained model
based on the rectangular mesh FE model. In order to ana-
lyze the effect of mesh type, as shown in Fig. 6(a), the
differences of Keff ,x and Keff ,y between two different mesh
types are compared. In case of Keff ,x , the two mesh types
of 6,054 unit cells lead to 13.63 [W/m·K] in the maximum
difference, 0.0 [W/m·K] in the minimum difference, and
1.33 [W/m·K] in the average. The maximum difference and
average value are about 3.5% and 0.3% compared to the heat
transfer coefficient of the copper (385 [W/m·K]), which is
the main material for conduction in this work. The maxi-
mum, minimum, and average of the differences in Keff ,y are
8.49 [W/m·K], 0.0 [W/m·K], and 1.25 [W/m·K], respectively.
Changing the mesh type does not significantly affect the
results of the simple heat transfer analysis. Based on these
results, all subsequent studies are conducted using the results
from the rectangular mesh type because the rectangular mesh
type can reduce the number of elements.

Fig. 11, the effect of the dielectric band classifier
in the y-direction is discussed with absolute percentile
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FIGURE 8. Image recognition algorithm checking the connectivity of copper.

FIGURE 9. Structure of the CNN model.

error (APE), defined by

APE =

∣∣∣∣yi − ŷiyi

∣∣∣∣ , where i = 1, 2, 3, . . . , n. (6)

yi denotes the reference ETC and ŷi denotes the estimated
unit cell ETC. By using APE, the effect of improving accu-
racy through the dielectric band classifier can be checked
especially in the low range of reference ETC. Fig. 11(a)
presents the case without the dielectric band classifier while
Fig. 11(b) shows the opposite results with the dielectric band
classifier. The reference ETC is normalized by thermal con-
ductivity of the copper. While the APE range in Fig. 11(a)
is from 0 to 10, the range of Fig. 11(b) is below 0.3. The
distribution of the APE is also expressed as root mean square
percentile error (RMSPE), as shown in (7).

RMSPE =

√√√√1
n

n∑
i=1

(
yi − ŷi
yi

)2

. (7)

The case without the dielectric band classifier produces a
larger RMSPE result compared to the case with dielec-
tric band classifier, corresponding to 0.3725 and 0.0008,
respectively. This comparison confirms the important role of
the dielectric band classifier in the algorithm.

The ETC values predicted by the CNN-based model are
analyzed (blue dots in Fig. 12) along the y-direction based on
the viewpoint of the volume fraction of copper and effective
thermal width from the results in Fig. 10. Fig. 12(a) presents
the ETC predicted by the CNN-based model according to the
volume fraction, consisting of copper paths. The proposed
model shows that even the same volume fraction results in
different ETC values, meaning that the volume fraction alone
cannot provide sufficient information to predict the ETC.
However, the LIM and ME models only provide simplified
values from the fitted curve. The orange line and yellow
curve denote the LIM and ME models, respectively (refer
to (1) and (2)). Fig. 12(b) presents the pattern effect based
on the effective width and demonstrates that the ETCs from
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FIGURE 10. Comparison between the reference and predicted ETC of test
data: (a) x-direction, and (b) y-direction.

FIGURE 11. APE for the test dataset according to the dielectric band
classifier in the y-direction: (a) without dielectric band classifier, and
(b) with dielectric band classifier.

the CNN-based model are different even under the same
effective thermal width. Among the pre-existing models for
the comparison, only the ETW model (the orange curve in

Fig. 12(b)) can account for the effective width. As shown
in Fig. 12, the proposed CNN-based model is more flexible
when considering the diversity of the data.

Fig. 13 compares the proposed model with three other pre-
existing models for the accuracy of the prediction. In Fig. 13,
the value on the vertical axis indicates the normalized value of
the difference between the predicted and reference ETC val-
ues. In most cases, as the volume fraction increased, the dif-
ference gradually increased. The proposed CNN-basedmodel
showed significantly better results for all volume fractions.

In the case of the ETW model, the data are located at both
negative and positive values, meaning that there exist all cases
where the predicted ETC is greater than or lower than the
reference data. This is because even though some unit cells
have the same effective width, their reference ETCs can be
distributed over awider range. The LIM andMEmodels show
the largest errors because they only account for the volume
fraction of copper, without considering the dielectric band
effect.

FIGURE 12. Predicted ETC of unit cells according to volume fraction and
effective width along the y-direction: (a) ETC according to volume
fraction, and (b) ETC according to the effective width.

Among the results in Fig. 13, a representative case of
unit cell is shown in Fig. 14, and the ETC results of the
models are summarized in Table 1. There is a dielectric band
protecting heat flux along the y-direction in the unit cell. The
predicted ETC values of the LIM and ME models were much
higher than those of the other models, while the other models
provided much smaller ETCs because of the dielectric band.
The proposed model provides a good prediction. The detailed
reasons for the result are shown in Fig. 13. For quantitative
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comparison with Fig. 13, RMSE was calculated as shown
in Table 2. The LIM and ME models presented the highest
values because of their simplicity, and the proposed method
provided the lowest error than the other methods.

TABLE 1. Comparison of ETC for the unit cell along the y-Direction.

TABLE 2. Comparison of RMSE for unit cell ETCs.

FIGURE 13. Comparison of the proposed model to other three models.
(a) x-direction, and (b) y-direction.

B. DISCUSSIONS
A well-predicted ETC of a unit cell is required to obtain high
prediction accuracy in layer-scale thermal simulations, which

FIGURE 14. An example of unit cell having a dielectric band.

is used in practical applications. The CNN-based model’s
ETC prediction values in the x and y-directions were used
in-plane anisotropic thermal conductivity. The ETC in the
thickness direction (z-direction) is related to the volume
fraction because the volume fraction-based ETC model pro-
vides good results in the thickness direction [24]; thus, can
be calculated analytically using (1). The orthotropic ETCs
can be mapped to the RGB color palette with ETC in the
x-direction being red, in the y-direction being green, and
in the z-direction being blue, which makes it convenient to
compare the distribution of ETCs. The ETC maps of test
layer from the proposed model and pre-existing models are
shown in Fig. 15. The converted images from LIM and ME
models are expressed as grayscale images because they are
isotropic. In contrast, the proposed and ETW models have
RGB coloring because they reflect anisotropy. The ETC map
in Fig. 15 can be used for heat-transfer simulations.

Next, using the ETC maps shown in Fig. 15, steady-state
thermal analysis was conducted for the x and y-directions.
The same boundary condition was applied, as shown in
Fig. 6. The temperatures of the heat source and sink were
397 and 297 K, respectively. The results of the temperature
distributions are presented in Fig. 16 and 17, and RMSE
of the temperature distribution on the layer was calculated,
as shown in Table 3. Note that the FE reference refers to
the FE simulation result with the original package CAD file,
and it was used as a reference. Therefore, the FE model does
not have the ETC map; the unit cells and ETC map were
created in the models to learn the effect of the local pattern.
The temperature contour of the proposed model is in good
agreement with the contour of the FE reference. Among the
pre-existing models, the ETW also shows a similar temper-
ature contour to the FE reference model. The proposed and
ETWmodels present bumpy temperature boundaries because
of the dielectric bands. The dielectric bands build an obstacle
to the heat flow and divert the heat flow. On the other hand,
the LIM and ME models show that the border lines of the
temperature are parallel, in Fig. 16 and 17, because they do
not consider the dielectric band, which results in relatively
simple heat flow. The details are discussed in Fig. 18.

In Table 3, RMSEs of the proposed model provide the
lowest errors among the presented models. Fig. 18 shows the
magnitudes of the heat flux vectors on the layer. The proposed
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FIGURE 15. Comparison of the test layer ETC maps: (a) Proposed model,
(b) LIM model, (c) ME model, and (d) ETW model.

TABLE 3. Temperature RMSE in the x and y-directions.

and ETW models show similar distribution compared to the
FE reference, whereas the LIM and ME models have very
uniform heat flux distributions throughout the layer. This is
why the temperature contours of the LIM and ME models
present parallel border lines in Fig. 16 and 17. Based on the
heat transfer simulation shown in Fig. 16–18, the thermal
properties including thermal resistance, layer ETC, and aver-
age heat flux of the entire layer were calculated, shown in
Table 4. The average heat flux was obtained with dividing
the sum of the heat flux magnitudes of all elements by the
number of elements for each direction. By using the thickness
of a layer (10 µm), the thermal resistance R was calculated
dividing the difference between the boundary temperatures
by the heat transfer rate. The ETC value representing the
entire layer (layer ETC in Table 4) can be calculated using (4)
based on the average heat flux of the layer.

The thermal properties of each model in Table 4 are com-
pared to the reference data. The proposed model results in
errors of 2.00 % and 1.96% in the thermal resistance and
the layer ETC, respectively, along the x-direction. The ETW
model leads to errors of 19.24 % and 16.14 % in the thermal
resistance and the layer ETC along the same direction. In the
y-direction, the proposed model gives 2.9 % and 2.3 % errors
for the thermal resistance and the layer ETC, respectively,
while the ETW model results in 19.9 % and 16.6 % errors
for the same properties. For the average magnitude of heat

FIGURE 16. Temperature distribution of the test layer under the boundary
condition of x-direction: (a) FE reference, (b) Proposed model, (c) LIM
model, (d) ME model, (e) ETW model, and (f) Range of temperature.

flux, the proposed and ETW models lead to 1.96 % and
16.6 %, respectively. These results show that the proposed
model leads to closer results to the FE reference data than
the ETW model. Note that both models (the proposed and
ETW) show much higher accuracy compared to the other
models. For example, the LIM and ME models have 96.85 %
and 74.85 % errors, respectively, for the layer ETC along the
x-direction.

For a new FE simulation, Fig. 19 presents another bound-
ary condition with four heat sources. The heat sources are
placed symmetrically with respect to the center. The tem-
peratures of heat sources and sinks are 397 and 297 K,
respectively. Fig. 20 show the results of the four models.
While the LIM and ME models show symmetric temperature
distributions, the proposed and ETW models show some
asymmetries. This is because the proposed and ETW models
reflect the characteristics of the local pattern, and they exhibit
temperature distributions similar to that of the FE reference.

For a more detailed comparison, the temperature distribu-
tion along the line of A-A’ is presented in Fig. 21. As shown in
Fig. 21(a), the FE reference (blue line) shows the asymmetric
temperature distribution due to the different local design
patterns. The proposed and ETW models can follow the
asymmetric distribution, on the other hand, the LIM and ME
models provide symmetrical temperature distributions. The
main position of the temperature asymmetry is marked with
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TABLE 4. Comparison of thermal properties of the whole layer along the x and y-directions.

FIGURE 17. Temperature distribution of the test layer under the boundary
condition of y-direction: (a) FE reference, (b) Proposed model, (c) LIM
model, (d) ME model, (e) ETW model, and (f) Range of temperature.

a red dotted square on the line A-A’ line in the lower part of
Fig. 21(a); the temperature field image in Fig. 21(a) is from
the proposed model.

Fig. 21(b) and 21(c) magnify the temperature fields in
the inner area of the red dotted square from the temperature
results of the proposed and LIM models, respectively. The
proposed model and the LIM model represent the difference
according to whether the pattern design is learned or not.

Finally, Fig. 22(a) and 22(b) compare the heat flux results
of the new model and LIM model, respectively, in nine
unit cells inside the blue square positioned at the center of
Fig. 21(b) and 21(c). The binary colors in the background of
Fig. 22(a) and 22(b) show the pattern design from the binary

FIGURE 18. Heat flux magnitude distribution of the test layer under the
boundary condition of y-direction: (a) FE reference, (b) Proposed model,
(c) LIM model, (d) ME model, (e) ETW model, and (f) Range of heat flux.

FIGURE 19. Boundary condition of ETC map on the test layer for the
example with four heat sources.

images of the unit cells, as shown in Fig. 5. The arrows are
the heat flux vectors and the numbers indicate the magnitude
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FIGURE 20. Heat transfer simulation of the test layer with four heat
sources: (a) FE reference, (b) Proposed model, (c) LIM model, (d) ME
model, (e) ETW model, and (f) Range of temperature.

FIGURE 21. Temperature analysis along the A-A’ line: (a) Temperature
distribution curve, (b) Inner area of the red dotted square from the
proposed model, and (c) Inner area of the red dotted square from the LIM
model.

of the vector. In Fig. 22(a), it can be seen that the heat flux
is significantly lowered at the positions where the dielectric

FIGURE 22. Heat flux analysis near the asymmetric temperature field
region: (a) heat flux of proposed model (unit: kW/m2), and (b) heat flux
of LIM model (unit: kW/m2).

FIGURE 23. Interface of the automated ETC prediction program

bands exist, whereas the LIM model, in Fig. 22(b), does not
consider the dielectric pattern.

The results of this paper show that the proposed algorithm
can predict the anisotropic ETC of the package substrate with
very high accuracy. The ETC in a semiconductor affects not
only the temperature distribution inside the semiconductor
but also the temperature distribution of the entire electronic
device system because semiconductors are the main heat
sources in electronic devices [43], [44]. Therefore, the ETC
map provided by this algorithm can be used as important
information to improve the thermal management quality of
the entire electronic device system [50]–[52]. Furthermore,
the CNN-based algorithm in this paper not only predicts the
ETCwith high accuracy, but is also fully automated to greatly
reduce human labor time. Fig. 23 shows the interface of the
automated prediction program. By clicking the buttons in
Fig. 23, the whole process processes are completed automat-
ically, greatly reducing the labor-intensive tasks. In addition,
from a long-term perspective, this algorithm has a potential
to develop into an advanced technology that can propose a
package design considering the thermal distribution as well
as the electronic performance.
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V. CONCLUSION
This paper presents an application of CNN-based prediction
of the ETC for semiconductor package substrates. The results
are summarized as follows.

1. The proposed CNN-based algorithm divides a layer-
pattern image of a PCB into local unit-cell images and learns
the pattern characteristics of each unit cell to identify the local
ETC. The algorithm then builds an ETC map for a PCB layer
by integrating the local ETC of the unit cells to use in thermal
analyses.

2. The CNN-based algorithm is fully automated and does
not need to define arbitrary functions or variables, thus reduc-
ing human uncertainty and labor intensity.

3. The proposed model was validated by FE simulation
using the original package-layer CAD file. The results of the
model were in good agreement with the results of the FE
simulation for the temperature contour and heat fluxes.

4. Considering the dielectric band is very important to
increase the prediction accuracy because it strongly blocks
the heat flux. The proposed model builds the dielectric band
classifier, and it shows good performance.

5. The proposed model shows a comparative advantage
over other models in accuracy and convenience.
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