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ABSTRACT Compared with the traditional antenna array, the time-modulated array can increase the
flexibility of the array by adding time switches. However, due to the introduction of time switches, the
time-modulated array antenna is more sensitive to random errors than the traditional array. Besides random
errors caused by unavoidable factors such as array deformation and defects of processing and assembly
in the traditional array, time-modulation parameter errors will be introduced by time switches. As errors
in the traditional array can degrade the performance of the array, time-modulation parameter errors can
lower the performance of the array pattern as well, which will lift the side-lobe and increase the dynamic
range of the side-lobe. Aiming at the time-modulation parameter errors in the time-modulated array, an anti-
error robust pattern synthesis algorithm (AERPS) based on the convex optimization (CVX) is proposed in
this paper. In the algorithm, the optimization model for the pattern synthesis of the time-modulated array is
established and analyzed. Then the model is divided into two sub-models of the center frequency and the first
sideband, and the convex optimization solution is first performed on the center frequency model. After the
center frequency model is solved, the convex optimization solution is used to solve the first-order sideband
model to obtain the final results. The simulation results of the time-modulated array in this paper show that
the algorithm can reduce the average value and the dynamic range of the normalized side-lobe level, thus
verifying the effectiveness and the robustness of the algorithm.

INDEX TERMS Array antenna, convex optimization, error analysis, pattern synthesis, time-modulated array.

I. INTRODUCTION
Array antenna can achieve higher performance than a single
antenna by combining signals with each other. However, due
to the manufacturing mistakes and other unavoidable factors,
array antenna will be affected by various kinds of errors, such
as the position error of elements, the amplitude and phase
excitation error, the interval error of elements, etc. These
errors will raise the side-lobe of the pattern of arrays, resulting
in degradation of the radiation pattern performance. In order
to reduce the negative impact of errors, it is necessary to make
analysis of errors.

Many researchers have studied the amplitude and phase
excitation error in array antenna. Appasani et al. proposed
a pseudo measurement technique for detection and correc-
tion of excitation error of the array antenna [1]. Zahedi and
Arand proposed a phase compensation method based on the
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genetic algorithm to realize the phase error correction for
large phased array antennas [2]. Huang et al. proposed a
non-iterative technique for the self-calibration of the ampli-
tude and phase error of the sensors of the airborne array
antenna with unknown source location [3]. Aiming at the
amplitude and phase error of the microwave feed network
of the phased array radar, Xie et al. proposed an array mon-
itoring method based on the compensation and correction
technology [4]. Zhang et al. proposed an improved calibration
method using coefficient matrix for the amplitude and phase
error in the phased array radar [5]. Dai et al. proposed a new
method that does not require a priori calibration information
for the problem of amplitude and phase error calibration
for large-scale planar arrays [6]. Wang et al. proposed a
calibration method for circular array antennas with mutual
coupling and amplitude and phase error, and obtained a more
accurate DOA (Direction of Arrival) estimate [7]. Rocca et al.
proposed a statistical method based on the interval analysis to
analyze the influence of the amplitude and phase excitation
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with random errors on the radiation pattern of the phased
array [8]. He et al. introduced how to use the probability-
based method and method based on the interval arithmetic
to evaluate the effects of the phased array antenna with exci-
tation errors [9].

There are also many literatures that have analyzed and
studied the position error of array elements. For the array
antenna with element position errors, Lou et al. considered
the mutual coupling effect in the traditional compensation
method to reduce the influence of the array deformation [10].
Yoo et al. studied the phased array radar where the antenna
feed position is not in the center of the antenna, and proposed
a compensation technique that does not collect information
at the center of the antenna [11]. Ye et al. proposed an
equivalent method for estimating signal parameters based
on the single-signal source rotational invariance technique,
which can effectively balance the position error caused by the
vibration deformation of the array [12]. Sippel et al. analyzed
the antenna array with mutual coupling, unknown time delay
and position errors, and proposed a calibration method using
an incoherently transmitting beacon [13]. Wang et al. pro-
posed the coupled structure-electromagnetic statistic model
for the randomness of the position of elements in the antenna
array, which can quickly and effectively obtain the antenna
performance [14]. Sa et al. proposed a hybrid tolerance
designmethod for antenna array with geometric errors, which
improved the performance of the antenna [15]. Wang et al.
proposed a prior knowledge-based algorithm for large array
antennas with interval errors, phase excitation errors and
position errors, which improved the robustness of the antenna
array [16]. Zhang et al. analyzed the position error existing in
the conformal array and proposed a position error calibration
algorithm to reduce the influence of the error [17].

In addition to the excitation error and position error men-
tioned above, other kinds of errors (including interval error,
beam pointing error, etc.) have also been studied in related
literature. Zhou et al. analyzed the joint array antenna with
the array pointing error, and found the error will increase
the side-lobe of the array pattern and reduce the gain [18].
Frid et al. analyzed installation errors such as platform reflec-
tion, diffraction from metal edges, and reflection and refrac-
tion in the radome, and proposed a post-processing method
to improve DOA estimation accuracy [19]. Guo et al. studied
large-scale array antennas containing assembly errors. They
established an accurate gain prediction model based on the
improved extreme gradient boosting algorithm and transfer
learning method, and proposed a compensation method to
control the error [20]. Aiming at the beam pointing error
of phased arrays, Zhang et al. proposed a sequential phase
feeding algorithm with the minimum beam pointing error
for centrally symmetric planar array antennas, and deduced
the theoretical expression of the beam pointing error caused
by phase quantization errors [21]. Lee and Song conducted
a detailed mathematical analysis of the array antennas with
the quantization error and interval error, and theoretically

FIGURE 1. Time-modulated linear array.

FIGURE 2. Rectangular time-modulation function.

obtained the statistical characteristics of the radiation pattern,
which is in good agreement with the simulation results [22].

Compared with the traditional antenna array, the time-
modulated antenna array deploys the time-modulation
switches, so it will introduce time-modulation parameter
errors. These errors in time-modulated arrays have also
been studied by some literature. Yurtsev et al. analyzed the
time interval random errors in the time-modulated array and
pointed out that the side-lobe level of the pattern increases
faster than that of the array without time-modulation [23].
Amjadian and Fakharzadeh studied the effect of non-ideal
time switches on the performance of time-modulated arrays,
and pointed out that time error has a little effect on beam
pointing and beam width, but more on main-lobe level [24].
However, there is still a lot of room for research on various
kinds of errors in time-modulated arrays.

Aiming at the time-modulation parameter errors in the
time-modulated array, this paper proposes an anti-error
robust pattern synthesis algorithm (AERPS) to optimize time-
modulation parameters and the excitation coefficients of
array elements, so as to minimize the influence of the errors
on the array pattern and further improve the low side-lobe
and robust performance. The structure of this paper is as
follows: Chapter II introduces the pattern synthesis model
of the time-modulated linear array under error conditions.
The proposed AERPS algorithm is discussed in detail in
Chapter III. Numerical simulation results are presented in
Chapter IV to demonstrate the effectiveness and robustness
of the proposed algorithm. Finally, conclusions are given in
Chapter V.

II. MATHEMATICAL MODEL OF TIME-MODULATED
LINEAR ARRAY PATTERN SYNTHESIS UNDER
ERROR CONDITIONS
Time-modulated linear array composed of N isotropic array
elements is shown in Fig 1 and the far-field radiation intensity
can be expressed as

E (θ, t) =
∑
n

w∗nun (t) e
jkxn sin θej2π f0t (1)

VOLUME 10, 2022 57193



Y. Tian et al.: Anti-Error Robust Pattern Synthesis Algorithm in Time-Modulated Array Antenna

where f0, xn and wn represent the center frequency of the
array, the position and complex excitation coefficient of the
n− th element in order. k = 2π f0

/
c is the carrier propagation

coefficient in free space, and c is the speed of light.
As shown in Fig 2, in the time-modulation repetition period

Tr , un (t) is the rectangular function, and its mathematical
expression is

un (t) =

{
1 tn ≤ t ≤ tn + τn
0 others

(2)

where tn and τn are the opening time and duration time, all
satisfying 0 ≤ tn, τn ≤ Tr . Expanding the Fourier series of
the un (t), we have

un (t) =
∑
m

anmej2πmfr t ,m = 0,±1,. . . (3)

where fr = 1/Tr , and anm is the expansion coefficient, whose
expression is

anm = τnfr sin c (πmτnfr ) e−jπmfr (2tn+τn) (4)

therefore formula (1) can be further expressed as

E (θ, t)

=

∑
n

∑
m

w∗nαn sin c(πmαn) e
jkxn sin θ−jπm(2βn+αn)ej2π(f0+mfr)t

(5)

where αn = τnfr and βn = tnfr are the normalized duration
time and opening time, respectively, satisfying 0 ≤ αn, βn ≤
1. The radiation intensity expressions of the array at the center
frequency f0 and the m− th sideband f0 + mfr are

E0 (θ, t) =
∑
n

w∗nαne
jkxn sin θej2π f0t (6)

Em (θ, t) =
∑
n

w∗nαnsinc (πmαn)

× ejkxn sin θ−jπm(2βn+αn)ej2π(f0+mfr )t (7)

Ignoring the common factor terms ej2π f0t and ej2π(f0+mfr )t , the
above expressions are rewritten as

E0 (θ) =
∑
n

w∗nαne
jkxn sin θ (8)

Em (θ) =
∑
n

w∗nαnsinc (πmαn) e
jkxn sin θ−jπm(2βn+αn) (9)

Next we will discuss the effect of errors on the radiation
intensity. Array errors usually contains the following types:
excitation errors of the array elements, position errors of
the array elements, and time-modulation parameter errors.
Only the time-modulation parameter errors are studied in this
paper, that is, the opening time error and duration time error
are studied.

Assuming that the time switch of the n − th element has
normalized opening time error 1βn and normalized dura-
tion time error 1αn, the modified expression of the array
antenna’s m− th radiation intensity is

Fm (θ) =
∑
n

(
w∗n (αn +1αn) sinc [mπ (αn +1αn)]

× ejkxn sin θ−jmπ(2βn+αn+21βn+1αn)
)

=

∑
n

{[
w∗nαnsinc (mπαn) e

−jmπ(2βn+αn)
]

×

{(
1+

1αn

αn

)
·
sinc [mπ (αn +1αn)]

sinc (mπαn)

× e−jmπ(21βn+1αn)
}
×ejkxn sin θ

}
(10)

The part in {} is the sum of the error terms caused by the
time-modulation parameter errors 1αn,1βn.
For the pattern synthesis of the time-modulated linear

array affected by the errors, we have studied the follow-
ing problems: 1)Beamforming in the given direction at the
center frequency f0. 2)Beamforming with given parameters
on the first sideband f0 + fr . 3)Making the peak side-lobe
level (PSLL) as low as possible at the center frequency f0 and
first sideband f0 + fr .
In summary, the comprehensive optimization model of the

pattern synthesis is given below

min
α,β,w

ε1, ε2

s.t. F0 (θ0) = 1

F1 (θ1) = µ1

F0 (θs) ≤ ε1, θs ∈ �s

F1 (θs) ≤ ε2, θs ∈ �s

0 ≤ αn, βn ≤ 1 (11)

In the model, α=
[
α1 · · · αn

]T , β= [ β1 · · · βn ]T are the
time modulation parameter vectors that need to be optimized,
and they forms the optimal solution vectors of the optimiza-
tion problem together with the complex excitation coefficient
vector w =

[
w1 · · · wn

]T . F0 (θ0) represents the radiation
intensity in the beam direction θ0 at the center frequency f0.
F1 (θ1) represents the radiation intensity in the beam direction
θ1 at the first sideband f0 + fr , and µ1 is its maximum value.
F0 (θs) and F1 (θs) represent the radiation intensity of the
sampling direction θs in the side-lobe area �s at the center
frequency and first sideband, respectively, and ε1, ε2 are the
side-lobe constraint parameters.

III. ANTI-ERROR ROBUST PATTERN SYNTHESIS OF
TIME-MODULATED LINEAR ARRAY
The model (11) will be divided into two sub-models of the
center frequency f0 and first sideband f0 + fr .
At the center frequency m = 0, according to (10), we have

F0 (θ) =
∑
n

w∗n (αn +1αn) e
jkxn sin θ (12)

Defining a new parametric variable χn = w∗nαn and its
vector form χ =

[
χ1 · · · χn

]T
= w∗ · α which need to be

optimized. Denoting bθ =
[
ejkx1 sin θ · · · ejkxN sin θ

]T as the
steering vector at the sampling direction θ . At the same time

we define b1 =
[
1α1
α1

ejkx1 sin θ · · · 1αN
αN

ejkxN sin θ
]T

, so we
have

F0 (θ) = χTbθ + χTb1 (13)
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Assuming X is a random vector, and E (X), D (X) are
the expectation and variance of X , respectively. Under the

assumption of1αn
i.i.d .
∼ N

(
0, σ 2

1

)
, b1 is a complex Gaussian

random vector and the expectation and variance are E (b1) =
0N×1 and D (b1) = σ 2

1 · diag
(

1
α21
· · ·

1
α2N

)
, respectively.

According to (13),the error term in F0 (θ) is χTb1,whose
statistical average power is

P0 (θ) = E
{(
χTb1

) (
χTb1

)H}
= σ 2

1

∑
n

|χn|
2

α2n
(14)

therefore when the parametric vector χ remains unchanged,
increasing αn can reduce the error power. At the same time,
for further analysis, according to the triangle inequality in
vector form |X|−|Y| ≤ |X+ Y| ≤ |X|+|Y| and the Cauchy
inequality in vector form

∣∣XTY
∣∣ ≤ ‖X‖2 ‖Y‖2, there is∣∣∣χTbθ ∣∣∣− ‖χ‖2 ‖b1‖2 ≤ |F0 (θ)| ≤ ∣∣∣χTbθ ∣∣∣+‖χ‖2 ‖b1‖2

(15)

where ‖b1‖22 = bH1b1 =
∑
n

(
1αn
αn

)2
, ‖b1‖2 =√∑

n

(
1αn
αn

)2
.

We further introduce the positive real parameter η which
is the upper bound of the error term, and for the random
vector b1, P {‖b1‖2 ≤ η} = 1 statistically holds. We intend
to enhance the robustness of the pattern under the error con-
dition by setting the upper bound η. With (15), we have∣∣∣χTbθ ∣∣∣− η ‖χ‖2 ≤ |F0 (θ)| ≤ ∣∣∣χTbθ ∣∣∣+ η ‖χ‖2 (16)

The term χTbθ in the above formula is exactly the radi-
ation intensity without error, that is E0 (θ), therefore the
upper/lower bound of the radiation intensity under the error
condition is obtained

|E0 (θ)| − η ‖χ‖2 ≤ |F0 (θ)| ≤ |E0 (θ)| + η ‖χ‖2 (17)

because of the equation E
{
‖b1‖22

}
=

∑
n

E
{
(1αn)

2}
α2n

=

σ 2
1
∑
n

1
α2n
, η ≥

√
E
{
‖b1‖22

}
= σ1

√∑
n

1
α2n

can be selected

as a typical value. In summary, the anti-error robust pattern
synthesis problem at the center frequency can be solved by
two steps:

1)Enhance the robustness of the array pattern with the
parameter η introduced, whose model is

min
χ
ε1

s.t.
∣∣∣χTb0∣∣∣− η ‖χ‖2 ≥ 1∣∣∣χTbs∣∣∣+ η ‖χ‖2 ≤ ε1, θs ∈ �s (18)

where b0 =
[
ejkx1 sin θ0 · · · ejkxN sin θ0

]T is the steering
vector in the main radiation direction θ0, and bs =[
ejkx1 sin θs · · · ejkxN sin θs

]T is the steering vector in the sam-
pling direction θs in the side-lobe area.

2)In the case of keeping χ solved at the previous step
unchanged, increase αn to reduce the error power P0 (θ).
From above we solve the pattern synthesis problem of

the center frequency, and next we will focus on the pattern
synthesis problem of the first sideband. At the first sideband
m = 1, according to (10), we have

F1 (θ) =
∑
n

(
w∗n (αn +1αn) sinc [π (αn +1αn)]

× ejkxn sin θ−jπ(2βn+αn+21βn+1αn)
)

(19)

In the following of this part, with χ calculated, only the
influence of 1βn is considered, and similarly we assume

1βn
i.i.d .
∼ N

(
0, σ 2

2

)
, so

F1 (θ) =
∑
n

w∗nαnsinc (παn) e
jkxn sin θ−jπ(2βn+αn+21βn)

(20)

Denoting hn = w∗nαnsinc (παn) e
−jπ(2βn+αn), (20) can be

transformed into

F1 (θ) =
∑
n

hnejkxn sin θ +
∑
n

(
e−j2π1βn − 1

)
hnejkxn sin θ

(21)

Further writing (21) in vector form, we have

F1 (θ) = hTbθ + hTb′1 (22)

For the convenience of analysis, we define h =
[
h1 · · · hn

]T
and

b′1=
[(
e−j2π1β1−1

)
ejkx1 sin θ · · ·

(
e−j2π1βN−1

)
ejkxN sin θ

]T
which is the term related to the error. The steering vector is

also represented by bθ =
[
ejkx1 sin θ · · · ejkxN sin θ

]T . Analyz-
ing the error term b′1, we have

E
(
b′1

)
=

(
e−2π

2σ 22 − 1
)
bθ

D
(
b′1

)
=

(
1− e−4π

2σ 22

)
IN×N

E
(∥∥b′1∥∥22) = N

(
1− e−4π

2σ 22

)
(23)

where IN×N represents identity matrix.
It can be seen from (22) that the error term in F1 (θ) is

hTb′1, whose statistical average power is

P1 (θ) = E
{(

hTb′1
) (

hTb′1
)H}
=

(
1− e−4π

2σ 22

)
hHh

(24)

So when the parametric vector h is unchanged, the greater
the variance σ 2

2 is, the greater the error power P1 (θ) is.
Furthermore

hHh =
∑
n

∣∣∣χ2
n

∣∣∣ sinc2 (παn) (25)

So we get

P1 (θ) =
(
1− e−4π

2σ 22

)∑
n

∣∣∣χ2
n

∣∣∣ sinc2 (παn) (26)
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FIGURE 3. The influence of different duration time errors on the center
frequency pattern.

With σ 2
2 and χn unchanged, increasing the normalized dura-

tion time of array elements can reduce the error power.
Defining a new parametric vector g =

[
g1 · · · gn

]T of
which the n−th entry is gn = sinc (παn) e−jπ(2βn+αn), so h =
χ · g holds. The robust pattern synthesis problem at the first
sideband can be solved through the following optimization
model.

max
g
µ1

s.t. |(χ · g)b1| ≥ µ1

|(χ · g)bs| ≤ ε2, θs ∈ �s

|g| ≤ µ2 (27)

where χ is a known parametric vector solved by (18), b1 =[
ejkx1 sin θ1 · · · ejkxN sin θ1

]T is the steering vector of the main
radiation direction of the first sideband, and g is the paramet-
ric vector we need to obtain. µ1 is the maximum radiation
intensity at the radiation direction of the first sideband, and
ε2 is the side-lobe constraint parameter. µ2 is the control
parameter, and the smaller µ2 is, the smaller sinc (παn) and
error power are obtained, so that the side-lobe performance
of the first sideband can be better.

Denoting the amplitude and phase of gn are agn and ϕgn,
respectively, after obtaining g by the convex optimization
method, we can calculate αn and βn through the following
relationship{

αn =
1
π
sinc−1

(
agn
)

βn = −
1
2π

(
ϕgn + sinc−1

(
agn
)
+ 2πp

) (28)

In the above formula, it’s necessary to take an appropriate
integer p to make 0 ≤ αn, βn ≤ 1 , and the complex excitation
coefficient of each element can be obtained by w∗n = χn

/
αn.

TABLE 1. 500 simulation results of different σ1(unit: dB).

FIGURE 4. The influence of different opening time errors on the first
sideband pattern.

TABLE 2. 500 simulation results of different σ2(unit: dB).

IV. SIMULATION
In order to verify the performance of the proposed algorithm,
we design a set of simulation experiments, and at the same
time provide corresponding figures and tables from four
aspects. The configuration of the experiment is listed as fol-
lows. The time-modulated array hasN = 30 elements and the
interval of each element is d = 0.5λ. The pattern synthesis
parameters are listed below: 1)The radiation direction of the
center frequency is θ0 = 0◦. 2)The radiation direction of the
first sideband is θ1 = 10◦. 3)the beam width of the center
frequency and first sideband are all 10◦.
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FIGURE 5. The influence of different η on the center frequency pattern
with σ1 = 0.05.

TABLE 3. 500 simulation results of statistical average of normalized
side-lobe levels under different parameters(unit: dB).

A. COMPREHENSIVE ANALYSIS OF DUAL-BAND PATTERN
UNDER TIME-MODULATION PARAMETER ERRORS
This section describes the effect of time-modulation param-
eter errors on the dual-band pattern. It can be seen from (12)
that the radiation intensity of the center frequency is only
related to the normalized duration time error 1αn and has
nothing to do with the normalized opening time error 1βn.
Fig 3 shows the influence of different normalized duration

time errors on the center frequency pattern. It can be seen that
due to the normalized duration time error 1αn, the side-lobe
performance deteriorates, and as the variance of the error σ 2

1
increases, the rise of the side-lobe level is more obvious.

Table 1 shows the statistical data of the 500 repeated
simulation results. It can be seen that the average value of the
PSLL has risen from the error-free −28.64dB to −13.80dB,
−19.00dB, −23.95dB, −26.06dB, and −27.28dB, respec-
tively, which is consistent with the above conclusion.

As for the first-order sideband, it can be seen from (20)
that when χ is determined, the radiation intensity is affected
by the normalized opening time error 1βn.
Fig 4 shows the influence of different normalized opening

time errors on the first sideband pattern. As the variance of the
error σ 2

2 increases, the side-lobe level rises more obviously.

TABLE 4. 500 simulation results of statistical root of variance of
normalized side-lobe levels under different parameters (unit: dB).

FIGURE 6. First sideband pattern with different maximum duration time.

Table 2 shows the statistical results of 500 experiments.
It can be seen from Table 2 that with the increase of σ2, the
maximum radiation intensity of the main-lobe is decreasing,
while the mean of PSLL is increasing.

B. ANALYSIS OF ANTI-ERROR ROBUST PATTERN
SYNTHESIS OF CENTER FREQUENCY
In this section, we will study the influence of the parameter η
on the performance of the center frequency pattern according
to (18).

Fig 5 shows the influence of different η on the center
frequency pattern with σ1 = 0.05. It can be seen that as η
increases, the maximum of the radiation intensity increases,
and the PSLL also increases. In order to further obtain the
statistical performance of the algorithm we proposed, we per-
formed 500 repeated simulations on multiple sets of parame-
ters, and the results are shown in Table 3 and Table 4.

Table 3 shows the statistical average of the normalized
side-lobe level in 500 random experiments under different σ1
conditions when η takes a specific value, from which we can
see: 1)When keeping η unchanged, such as the row of η = 3,
the normalized side-lobe level increases as the parameter σ1
increases. 2)When keeping σ1 unchanged, for example, in the
column of σ1 = 0.05, from a statistical point of view, the
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TABLE 5. 500 simulation results of different max (αn) (unit: dB).

FIGURE 7. The influence of µ2 on the maximum radiation intensity and
peak side-lobe level.

normalized side-lobe level increases with the increase of η,
which shows that setting the upper bound parameter η cannot
improve the deterioration of side-lobe level.

Table 4 shows the statistical root of variance of the nor-
malized side-lobe level, that is, the deviation degree of the
normalized side-lobe level in 500 random experiments under
the different σ1 conditions when η takes the specific values,
respectively. From this table we can see clearly: 1)When
keeping η unchanged, such as the row of η = 3, the degree of
deviation increases with the increase of σ1. 2)When keeping
σ1 unchanged, such as the column of σ1 = 0.05, the degree
of deviation decreases as η increases, which shows that set-
ting the upper bound parameter η can reduce the side-lobe
deterioration range.

Combining the conclusion of the Table 3 and Table 4, it can
be seen that although the upper bound parameter η cannot
lighten the uplift of the side-lobe caused by the error, it can
reduce the dynamic range of its fluctuation, which is exactly
the meaning of the so-called ‘robustness’ in the algorithm.

Furthermore, in order to make the side-lobe performance
better, we can reduce the statistical average and the statis-
tical root of variance of the normalized side-lobe level by
increasing max (αn). Table 5 shows the statistical results
of 500 repeated simulations of the center frequency pattern
when αn is increased proportionally under the setting of η =
3, σ1 = 0.02.
However, increasing αn proportionally will affect the radi-

ation characteristics of the first sideband. As shown in Fig 6,

TABLE 6. The statistical average value of the maximum radiation
intensity of the first sideband in 500 simulations under different
parameters(unit: dB).

TABLE 7. The statistical average value of peak side-lobe level of first
sideband in 500 simulations under different parameters (unit: dB).

the first sideband need to be further optimized for robust
pattern synthesis of dual frequency bands.

C. ANALYSIS OF ANTI-ERROR ROBUST PATTERN
SYNTHESIS OF FIRST SIDEBAND
It can be seen from the previous part that increasing αn will
worsen the radiation characteristics of the first sideband. So it
is necessary to adjust the parameter µ2, according to (27),
to further control the value of αn to improve the radiation
characteristics of the first sideband f0 + fr . This part shows
the influence of µ2 on the first sideband pattern.

Fig 7 shows that as µ2 takes the value 0.5, 0.6, 0.7, 0.8, 0.9
and 0.99 in turn with σ2 = 0.05, the statistical average value
of the maximum radiation intensity of the main-lobe and
PSLL are increasing. Furthermore, in order to obtain the sta-
tistical results of the maximum radiation intensity and PSLL
of the first sideband under different parameters, we perform
500 repeated experiments on multiple sets of parameters. The
results are shown in Table 6 and Table 7.

Table 6 and Table 7 respectively give the statistical average
values of the maximum first sideband radiation intensity and
PSLL in 500 repeated experiments when the specific values
of the parameter µ2 are taken respectively under the different
values of σ2, from which we can find : 1)When keeping the
parameter µ2 unchanged with the increase of σ2, the maxi-
mum radiation intensity decreases along with the increase of
the PSLL.

2)When keeping σ2 unchanged, as the parameter µ2
increases, the maximum radiation intensity increases, and the
PSLL also increases.
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FIGURE 8. Results of the maximum radiation intensity and peak side-lobe
level of the two algorithms.

TABLE 8. Comparison of 500 simulation results of two algorithms
(unit: dB).

It can be concluded that adjusting parameterµ2 can control
the performance of the main-lobe and side-lobe under the
error condition, but the performance improvement of the
main-lobe and side-lobe are often contradictory. Therefore,
it’s necessary to select the appropriate µ2 based on the prior
knowledge of the error variance σ 2

2 to achieve a better trade-
off between the main-lobe and side-lobe performance.

D. ANALYSIS OF ANTI-ERROR ROBUST PATTERN
SYNTHESIS OF DUAL-BAND
Combining the analysis results of above parts, we will take
a specific setting of the parameters η = 3, µ2 = 0.7 to
verify the performance of the algorithm we proposed(another
setting of the parameters can also reflect the performance
of the algorithm to vary degrees), and compare with the
algorithm of η = 0, µ2 = 1 (that is, the CVX algorithm
without processing).

Fig 8 shows the dual-band normalized pattern under two
algorithms. It can be seen that the proposed algorithm can
make the side-lobe performance better. In order to further
give the performance of the algorithm in a statistical sense,
we have done 500 repeated experiments, and the results are
shown in Table 8.

Table 8 shows the performance comparison between the
unprocessed CVX algorithm and AERPS algorithm under the
specific setting of σ1 = 0.05, σ2 = 0.05. It can be seen
that the radiation intensity of the proposed AERPS algorithm
in the direction of the center frequency θ0 = 0◦and first
sideband θ1 = 10◦ all increases, and the statistical variance
is significantly reduced.

The statistical variance of the maximum radiation intensity
at the center frequency is reduced from 0.18dB to 0.03dB,
and the statistical variance of the maximum first sideband
radiation intensity is reduced from 0.17dB to 0.02dB, which
embodies the significant improvement of the robustness of
the pattern synthesis.

V. CONCLUSION
Aiming at the dual-band time-modulated linear array pattern
synthesis model with errors, this paper proposes an AERPS
algorithm, which can reduce the side-lobe lift caused by
errors and improve the robustness of the pattern synthesis.
Our basic idea is to divide the model into two sub-models
and further solve the revised model step by step through
making reasonable assumptions about the distribution of the
time-modulation parameter errors. We first perform convex
optimization solution for the center frequency band, and then
perform convex optimization solution for the first sideband
after obtaining the intermediate parametric variables, and
finally obtain the complex excitation coefficient, opening
time and duration time of each element. This paper shows
the effectiveness and robustness of the algorithm through the
simulation results of 30-element linear array. It can be seen
from the results that the algorithm proposed in this paper can
reduce the normalized side-lobe level in a statistical sense,
and reduce the dynamic range of the normalized side-lobe
level.
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