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ABSTRACT Unmanned aerial vehicles (UAVs) extend the traditional ground-based Internet of Things (IoT)
into the air. UAV mobile edge computing (MEC) architectures have been proposed by integrating UAVs
into MEC networks during the current novel coronavirus disease (COVID-19) era. UAV mobile edge
computing (MEC) shares personal data with external parties (such as edge servers) during intelligent medical
analytics. However, this technique raises privacy concerns about patients’ health data. More recently, the
concept of federal learning (FL) has been set up to protect mobile user data privacy. Compared to traditional
machine learning, federated learning requires a decentralized distribution system to enhance trust for UAVs.
Blockchain technology provides a secure and reliable solution for FL settings between multiple untrusted
parties with anonymous, immutable, and distributed features. Therefore, blockchain-enabled FL provides
both theories and techniques to improve the performance of intelligent UAV edge computing networks from
various perspectives. This survey begins by discussing the current state of research on blockchain and FL.
Then, compare the leading technologies and limitations. Second, we will discuss how to integrate blockchain
and FL into UAV edge computing networks and the associated challenges and solutions. Finally, we discuss
the fundamental research challenges and future directions.

INDEX TERMS Unmanned aerial vehicles, mobile edge computing, federated learning, blockchain, privacy.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs), commonly known as
drones or remote-controlled aircraft, have been widely used
in the past few decades due to their excellent mobility and low
cost [1]. Furthermore, in recent years, advances in droneman-
ufacturing technology and lower manufacturing costs have
led to a surge in enthusiasm for both civilian and commercial
applications, making them more accessible for the public to
use [2].

The Internet of Things (IoT) network architecture is evolv-
ing rapidly to cover various fields and applications [3]. UAVs
have been deployed as air-ground equipment to address pro-
cessing and storage requirements at the IoT networks [4].
However, there are substantial disadvantages to using UAVs,
such as their inability to fly in inclement weather and the
controller’s requirement for visual line of sight (LOS) [5].
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Most significantly, limited battery capacity and computing
capabilities are viewed as their primary constraints. Further-
more, due to the UAV’s limited computational capability,
complicated algorithms requiring high CPU and GPU power
cannot be run onboard. Additionally, processing and mem-
ory management of this massive amount of data on UAVs
have been identified as critical issues, especially when utiliz-
ing artificial intelligence (AI) to extract and exploit helpful
information [6].

Mobile Edge Computing (MEC) is an emerging
technology proposed by the European Telecommunications
Standards Institute (ETSI) in 2014 [7].It is capable of resolv-
ing the aforementioned issues effectively. Mobile edge com-
puting can process complex data on the local side of the
ground base station, which is then forwarded to more capa-
ble marginal servers. [8]. As a result, UAVs can perform
more complex tasks while the compute-intensive tasks are
offloaded to the ground base station server. This will shorten
the task’s duration, but it will also reduce the drone’s energy
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consumption, allowing it to fly for longer. However, widely
used task offloading techniques such as matching theory
rely on precise knowledge of global state information (GSI),
which is incompatible with large-scale scenarios involving
incomplete information. [9].

Future UAV-assisted MEC networks require a distributed
learning approach that allows modeling without requiring
raw data publication. The federated learning (FL) framework
proposed by Google makes sense [10]. FL uses many mobile
devices and a central computing server to perform machine
learning. FL updates the parameters locally and then aggre-
gates the model to create a shared model. Thus, FL seems
like a promising solution for UAV-assisted MEC networks
that maintains privacy during data analysis. For example, the
author [11] designed an intelligent task offloading scheme
based on federated reinforce learning to cope with such a
rapidly changing scene. UAVs potentially provide many ser-
vices in modern IoT interconnection, such as smart cities,
smart farming, and intelligent transportation [12].

Despite the numerous benefits mentioned previously,
FL continues to face challenges [13]. On the one hand, a sin-
gle central node controls the entire algorithmic model due to
the gradient aggregation mechanism used in FL. As a result,
we must address data security concerns in order for all par-
ticipants to have confidence in the central node and provide
transparent information. Furthermore, FL systems currently
lack adequate and transparent procedures for evaluating con-
tributions and compensating training nodes to ensure contin-
uous active training. Finally, an efficient distributed system
must detect and prevent honest but curious training work-
ers. Combining the UAV network with cutting-edge tech-
nology, such as blockchain, significantly improves user data
security [14], [15].

Blockchain technology is a viable alternative solution
for addressing the security and privacy concerns associ-
ated with MEC networks assisted by UAVs. The author
provides a blockchain-based AI-empowered pandemic sce-
nario supervision scheme [16]. A swarm of AI-enabled
drones autonomously monitors pandemic outbreaks, reduc-
ing human involvement to the bare minimum. Blockchain
is a distributed ledger technology that enables unmanned
aerial vehicles to securely store data in the form of transac-
tions. Also, blockchain technology enables FL to overcome
the above issues. The blockchain combines consensus, and
incentive mechanisms to secure data storage and traceabil-
ity [17]. It can avoid single points of failure and extend
FL to large-scale untrusted users on the UAV network.
BCFL can also create an effective incentive mechanism by
offering rewards proportional to the data sample, allow-
ing mobile devices to provide large numbers of training
samples.

However, UAVs network are always scattered throughout
the UAV-assisted MEC networks. Due to the open nature
of UAV communication and the MEC paradigm, it will be
challenging to protect security during data analytics using
traditional blockchain and FL methods. Therefore, how to

protect data transmission security to the maximum extent
possible is a critical issue that must be resolved.

While numerous researchers address various aspects of
the data sharing problem in BCFL paradigms, there is no
systematic examination of UAV-assisted MEC networks.
This article discusses a novel paradigm for integrating
blockchain and federated learning technology. We exam-
ined related works focusing on network structure design,
performance enhancement, and consensus mechanisms in
order to provide a comprehensive picture of UBFL-related
research.

A. COMPARISON AND OUR CONTRIBUTIONS
Several federated learning systems have been proposed in
the literature. For example, the works in [19] present the
key FL concept and its enabling protocols and challenges in
FL design and implementation. The survey in [20] discusses
security and privacy in FL systems. It describes possible
solutions for evaluations of malicious threats in FL networks.
The integration of FL in mobile edge networks is investigated
in [21], where challenges in FL implementation are explored,
such as communication costs, resource allocation, and pri-
vacy and security. Meanwhile, FL and Internet-of-Things
(IoT) are explored in [22], by providing a survey on the tech-
nical issues in FL designs, such as sparsification, robustness,
privacy, scalability, and a brief discussion of FL applications
in the IoT. Moreover, researchers present an overview of the
FL applications in industrial IoT [23]. Although the focus
is based on the characteristics and fundamentals of FL, the
discussion of FL usage in UAV network is limited. The work
mainly discusses the FL architecture and models, with a brief
introduction to the FL in UAV informatics [24].

Although FL or blockchain in edge computing has been
extensively studied in the literature, there is currently no
review study on blockchain enabling federated learning
in UAV edge computing networks. In order to fill this
research gap, we conducted an extensive investigation of
the UAV-enabled edge computing network, which integrates
with FL and blockchain to achieve intelligence and security
as described in this paper. The UBFL (Blockchain-enabled
and Federated Learning MEC network supported by UAVs)
architecture is described. Then we focus on the critical design
issues and technical problems of UBFL in edge computing,
including communication cost, resource allocation, incentive
learning, security, and privacy protection. Finally, the pos-
sible research challenges and future research directions are
proposed. The comparison between the related works and
our paper is summarized in Table.1. To this end, the main
contributions of this paper are as follows:
• The basic principles of FL and blockchain are summa-
rized, and a UBFL architecture suitable for UAV edge
computing networks is proposed.

• We talked about technical issues in the UBFL archi-
tecture, like how to communicate, how to allocate
resources, how to learn, and how to protect privacy and
security.
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TABLE 1. Existing surveys on BCFL-related topics and our new contributions.

• We summarize the existing solutions to the problems of
UBFL in the UAV edge network.

• Finally, we outline the main research challenges and
discuss possible future directions for using UBFL in
mobile edge computing.

B. STRUCTURE OF THE SURVEY
The remainder of this paper is organized as follows: Section II
presents the structure of UAV mobile edge intelligence com-
puting. In Sections III and IV, we describe the research
status, advantages, and disadvantages of FL and blockchain.
A generic UBFL architecture is also proposed, where the
network components and working concepts are presented.
The design and some critical use cases of UFBL imple-
mentation in edge computing are discussed in Section V.
In contrast, technical issues in the UBFL architecture, such as
communication costs, resource allocation, incentive learning,
security, and privacy protection, are discussed in Section VI.
The key research challenges and future directions are dis-
cussed in Section VII. Finally, Section VIII concludes the
paper. Table.2 is the list of abbreviations in the paper. The
architecture of the survey is shown in Fig.1.

II. UAV EDGE INTELLIGENT COMPUTING NETWORK
TheUAV edge computing network combines edge computing
technology with unmanned aerial vehicles (UAVs) [25]. The
UAV can be a user node that submits computation-intensive
tasks to the ground base station’s edge server, or it can be
an aerial edge server that supports many ground user nodes,
as shown in Fig.2.

In contrast to conventional edge computing, UAV-assisted
edge intelligent computing uses intelligent methods to
address issues such as offloading strategy and resource

TABLE 2. List of abbreviations.

management in UAV networks. In addition, it provides com-
puting services for intelligent apps operated by UAV users
[26]. Combining machine learning with the UAV edge com-
puting network can give this architecture great power [27].
Based on the wireless channel state, ground node distribu-
tion, and onboard information about the vehicle, the UAV
can make the best decisions, such as where to land. On the
other hand, it can also provide computing and unloading
services for many people in one place quickly and easily with
its mobile ability. Its mobile capabilities can also provide
computing and offloading services for many people in one
place quickly and easily. As the user node, the ground base
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FIGURE 1. The structure of the survey.

station provides computing service support for the UAV; the
edge intelligent computing scenario is oriented to the UAV
network. Multiple UAVs jointly perform tasks and are con-
nected with the base station as a MEC server through an air-
to-air. The base station server is by UAVs that do not need
much power.

After completing task processing, the edge server will
return the results to the UAV. This way can reduce the energy
consumption of UAVs and task processing time delays,
thereby prolonging the life of the UAVs and improving the
user experience [28].

However, the edge server of the ground base station needs
to collect data from multiple UAV nodes, which increases the

data privacy league of UAV nodes. As users attach impor-
tance to privacy protection, such algorithms are facing signif-
icant privacy challenges [29]. Because of the increasing data
volume in the UAV-MEC network and the growing concern
about data privacy 5G beyondwireless networks [30], central-
ized artificial intelligence training on cloud-base server may
not be appropriate [31]. We will go through this in-depth in
the following section.

III. FEDERATED LEARNING FOR UAV EDGE COMPUTING
NETWORK
Current AI and deep learning technologies face two signifi-
cant challenges: data islands and privacy security [32]. Faced
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FIGURE 2. The architecture of UAV edge intelligent computing network.

with these obstacles, federated learning (FL) emerges as a
promising paradigm for protecting device privacy by enabling
devices to train AI models locally without transmitting raw
data to a server.

A. EXISTING RESEARCH STATUS OF FL
Federated learning, first proposed by Google in 2016 [10],
[33], establishes a sharing paradigm between mobile termi-
nals and servers to utilize large-scale data while protecting
user privacy effectively. Compared to traditional machine
learning techniques, federated learning improves learning
efficiency, addresses the issue of data islands, and protects
local data privacy. However, themajority of this disparate data
is unbalanced in reality. As a result, a practical and realis-
tic strategy for data distribution optimization was developed
in [34]. After that, many studies were conducted to improve
the federated learning model. For example, [35] offered two
strategies to reduce communication use during training. Fur-
thermore, [13] fixes the primary federated learning mecha-
nism by sharing the model’s bias towards some participants,
thus assuring fairness between participants in compressed
federated learning. Finally, in [36], the author presented the
single sample/small sample exploratory learning approach.

B. THE WORKFLOW OF FL-ENABLED UAVS NETWORK
As shown in Fig.3, federated learning typically consists
of multiple participants and a server component. First,

FIGURE 3. A Cloud-based FL-enabled UAV network architecture.

participants train shared models aggregated by servers and
distributed to participants. The training process for federated
learning is divided into three steps [37]:

• Step 1: Task initialization
Before the training begins, the server determines the
training’s tasks and objectives, selects the devices to
participate in federated learning, and then sends the
shared model to the selected devices.
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• Step 2: Local training and upadates
Each device trains the local model using private data.
The purpose of training is to identify the best local
model. After training, upload the model parameters to
the server in preparation for the next step. Each client k
trains a local model on its own dataset dk and calculates
an update wk by minimizing a loss function F (wk):

w∗k = argminF (wk) , k ∈ K. (1)

Here, the loss function can be different for different FL
algorithms [28]. For example, with a set of input-output
pairs {xi, yi}Ki=1, the loss functionF of a linear regression
FL model can be defined as: F (wk) =

1
2

(
xTi wk− yi)2.

Then, each client k uploads its computed update wk to
the server for aggregation.

• Step 3: Global aggregation and download
The server collects data from all participants and aggre-
gates model parameters. By averaging the local model
parameters, the federated learning server obtains the
next round of shared global model. The goal is to iden-
tify the most effective global model. As a result, the
server computes a new version of the global model.
By solving the following optimization problem:

wG =
1∑

k∈K |Dk |

K∑
i=1

|Dk |wk (2)

(P1) : min
wi∈K

1
K

K∑
i=1

F (wi) (3)

Subject to (C1): w1 = w2 = · · ·wi = wG

Here, the loss function F reflects the accuracy of the FL
algorithm, the accuracy of an FL-based object classification
task. The constraint (C1) This ensures that all clients and
the server share the same learning model over the FL task
after each training. After the derivation of the model, the
server broadcasts the new global update wG to all clients for
optimizing the local models in the next learning round. The
FL process is iterated until the global loss function converges
or the desired accuracy is achieved.

While several of the FL benefits are addressed in [38],
we add the following after reviewing a collection of publi-
cations on numerous UAVs:

1) User privacy protection. Federated learning data is only
stored locally and is not shared among participants,
ensuring user data privacy and meeting the require-
ments of General Data Protection Regulations.

2) Model adaptation for large-scale data. Large-scale
training data can help to improve training model qual-
ity. Federated learning can ensure that the trained
model’s effect is not harmed. At the same time, it can
reduce the amount of equipment needed for training
while increasing the model’s training speed [39].

3) Improve the data source’s flexibility. With the technical
support of federated learning, some data sources that
cannot participate in training due to specific factors

can store data locally and participate in the overall
model’s training to improve the model’s generalization
effect [40].

C. PRIMARY CHALLENGES OF FL
Several studies in recent years have revealed that FL still has
issues [41]. This section discusses some of the challenges
that federated learning faces. The majority of prior research
indicates that the following critical issues must be addressed
in order to increase the efficiency of FL communication:

1) Single point of failure: Federated learning generally
requires a central server to aggregate local models.
If this central server fails, the local model update will
be inaccurate [42].

2) Communication performance: Federated learning
creates global models by combining local models on
a central server. Network latency is caused by com-
munication with the central server [10]. Concurrently,
federated learning must upload iterative transmission
parameters to a server. When multiple models are sent
at the same time, the central server may cause network
congestion due to bandwidth and other resource con-
straints like user count and training iterations.

3) Lack of rewards: Federated learning uses participant
resources to train a global model, potentially address-
ing the data privacy issue of machine learning. In such
a promising paradigm, a lack of training data and other
resources will decline performance. Thus, it is critical
to encourage more participants to contribute their valu-
able resources to federated learning [43].

Apart from communication efficiency, communication
security during local updates transmission is another problem
to be resolved. The authors provided various security and
privacy open issues in FL as below [34]:

1) Poisoning attack. Malicious participants can upload
failures of training samples or models for machine
learning failure prediction. Simultaneously, amalicious
client will upload an incorrect mask gradient to the
central server via the intervention of the local model,
which will harm the global model. The FL cannot
audit malicious trainers. If these false parameters are
aggregated into the entire model without verification,
it will have a direct impact on the model’s quality and
may even fail the entire federated learning process [44].

2) Malicious devices can pollute storage models.
An attacker can also extract data from a shared
model [45]. Even if training resources are held locally,
the FL framework can violate data privacy. There-
fore, the confidentiality of transmission and storage
parameters must be enhanced. Based on the changes of
federated learning gradient parameters in each round,
malevolent users can deduce sensitive data from users.
An intermediate gradient can also extract meaningful
information. Malicious center servers can also use
generative adversarial networks to steal data [46].

56596 VOLUME 10, 2022



C. Zhu et al.: Blockchain-Enabled FL for UAV Edge Computing Network: Issues and Solutions

3) There is a lack of trust between participants in federated
learning because they come from different organiza-
tions or institutions. In light of the lack of confidence,
how to develop a safe and dependable cooperation
mechanism is an urgent challenge that needs to be
solved in practice [47].

D. SUMMARIZED LESSONS
The majority of existing FL training algorithm use offline
learning protocols [48].

Before being selected as a worker by the server, the remote
device collects and stores training data. Therefore, it is aware
of the local data size Nlocal . When uploading the gradient,
data size Nlocal can be sent as a hyperparameter to the server
in a single communication round. Thus, the global model
gradient average can be calculated by Eq.(2).

Howerver, communication in UAVs network alway in real
time. Online federated training is a potential solution for
UAVs network in the futrue IoT networks [49].

IV. AN OVERVIEW OF BLOCKCHAIN
Blockchain, a distributed append-only public ledger technol-
ogy, was initially intended for cryptocurrencies. However, the
Genesis Block was released in January 2009, marking the
first application based on blockchain technology. The World
Economic Forum forecasted and studied the application of
blockchain in the financial scene in 2018 [50].

A. EXISTING RESEARCH STATUS OF BLOCKCHAIN
Blockchain technology has gained popularity for its capac-
ity to improve distributed systems’ security, reliability, and
robustness. This technology has profited in finance, remote
sensing, data analysis, and healthcare. The author surveys
blockchain protocols for IoT networks and presents an
overview of blockchain applications in IoT, such as Internet
of Vehicles, Internet of Energy, Internet of Cloud, and Edge
computing [51], [52].

The following blockchain technologies are mostly
employed in the current IoT application [53]:

1) Identity Management: Blockchain uses hash address
and permission authentication to secure participating
nodes.

2) Distributed Ledger: The Consensus Method and
Point-to-Point Transmission ensure the data consis-
tency of each node in a distributed ledger.

3) Data logging: The data on the blockchain is transpar-
ent, traceable, and tamper-proof thanks to asymmetric
encryption (such as the elliptic curve) and hash algo-
rithms.

4) Incentivemechanism:Blockchain employs incentives
like digital currency to keep participants motivated to
keep it running.

5) Consensus mechanism: The consensus mechanism
ensures data security and dependability among dis-
persed nodes in the blockchain. Using the consen-
sus technique, each participant authenticates the data,

reducing the danger of data tampering and ensuring
data consistency.

B. THE ARCHITECTURE OF BLOCKCHAIN
The structure of blockchain consists network layer, data layer,
consensus layer, control layer, and application layer as shown
in Fig.4.
• Network layer: The blockchain Network layer is
divided into two layers: data and network [54]. The
data layer is the system’s data structure design ledger.
It defines a blockchain’s components. The primary chain
is made up of identical blocks of the same size. Times-
tamps and hash algorithms connect blocks chronolog-
ically and secure transaction data. The network layer
decentralizes data exchange between blockchain and
accounting nodes [55]. A blockchain network is a peer-
to-peer network, meaning there is no central server and
users exchange information. Each node can receive and
transmit data.

• Protocol layer: Three critical components comprise
the protocol layer: consensus, incentive, and contract.
According to [56], the consensus layer distributes the
billing nodes’ workload. The incentive layer is responsi-
ble for developing a compensation system for account-
ing nodes, with the goal of encouraging them to
participate in blockchain security verification. The con-
tract layer is composed of scripting code, algorithmic
methods, and intelligent contracts [57].

• Application layer: The application layer is dedicated to
developing blockchain solutions for a variety of applica-
tions and industries. Numerous blockchain use cases and
scenarios are included in the application layer. Recently,
there are several works attempting to apply blockchain
into UAV-assisted MEC networks.

C. THE KEY TECHNOLOGY OF BLOCKCHAIN
A blockchain consists of four components: encryption,
distributed storage, a consensus mechanism, and a smart
contract. The consensus process is the principal technology
of Blockchain, and smart contracts are explored in depth
below [58]:

1) CONSENSUS ALGORITHM
Nodes in the blockchain system can join and depart at will.
Most systems employ P2P networks to transmit data to
better interact with the blockchain system. A P2P network
node performs network routing, block data validation, dis-
tribution, and node discovery. The blockchain’s consensus
algorithm includes a fine selection of specific packaging
nodes and an acceptable economic incentive mechanism [54].
Blockchain consensus algorithms include Proof of Work,
Proof of Stake, andDelegated Proof of Stake, Byzantine Fault
Tolerance Algorithm (BFT). Table.3 summary consensus in
Blockchain. The working principles and application domains
of each consensus method are described below.
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FIGURE 4. The architecture of blockchain.

TABLE 3. A comparative analysis of blockchain consensus algorithms.

• PoW (proof of work): The PoW mechanism was first
used in Bitcoin to choose packing nodes based on
processing capability. The SHA256 mathematical chal-
lenge is tough to solve but easy to verify. The first
node to solve the problem obtains the next block and
the bitcoin reward generated by the system. Pow-based
blockchains, like Bitcoin, are highly decentralized. Con-
sensus approaches using competing processing power
can sustain 50% attacks. PoW uses probabilistic blocks.
The more blocks a block has, the more definite it is. So,
a transaction must be confirmed for at least 1 hour to be
considered final by the Bitcoin system.

• PoS (proof of stake): The PoS algorithm is proposed as
a PoW solution to significant energy waste, and nodes

can quickly join or leave the blockchain system. In a PoS
system, block confirmation is still probabilistic, requir-
ing multiple nodes to validate the block. The authors
analyzed the complexity, contending that identifying
accounting rights based on rights and interests can effec-
tively reduce resource waste, block time, and transaction
processing time [56]. Experienced currency users are
more likely to choose the next block and earn the reward.
In this way, users with economic interests can ensure the
blockchain’s efficacy while avoiding PoW’s excessive
energy usage [65].

• BFT (Byzantine fault tolerance): The Byzantine gen-
eral problem can only be addressed using the BFT algo-
rithm if the number of Byzantine nodes does not exceed
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1/3 of the total number of nodes. An oral protocol and
a written protocol make up the original BFT algorithm.
In the oral protocol, the nodes must communicate the
received ‘‘command’’ to one another before determining
the outcome based on the information provided by each
node. Written protocols that demand signature verifica-
tion of sent data prevent Byzantine nodes from modi-
fying the received data arbitrarily, resulting in a more
reliable result [66].

• DPoS (Delegated proof of stake): Compared to the
accounting methods PoW and PoS consensus, DPoS
can be seen as a ‘‘democratic centralism’’ accounting
method that can better tackle problems like energy waste
andmining pools that threaten decentralization. The PoS
board decision is equivalent to the DPoS consensus.
Each node in the system can have rights and interests,
representing the vote to grant a wish before accounting.
In additonally, the node will enter the board based on
the defined schedule for package settlement and manu-
facturing new blocks. It can also compensate for the fact
that people interested in bookkeeping do not wish to par-
ticipate in bookkeeping: a consensus algorithm designed
to be efficient, decentralized, and customizable [67].

Since there is no optimal consensus algorithm for all aspects
of the blockchain system at the moment. Additionally, decen-
tralization application enables users to participate actively
in the consensus process, validate consensus, and ensuring
the system’s security and increasing its availability. There-
fore, a blockchain system can be stable only if the flow of
resources, user interaction, and participation are completely
guaranteed.

2) SMART CONTRACT
Smart contracts define the terms and conditions agreed
upon by all parties. The contracts’ events can only be exe-
cuted automatically when the relevant conditions are met,
overcoming the problem of single-point failure in the central-
ized group-buying pricing and reputation evaluation mecha-
nisms. On a blockchain, smart contracts are digital versions
of traditional contracts. Like traditional computer programs,
blockchain smart contracts have interfaces that can receive
and respond to external messages, as well as process and store
them [68]. As a result, smart contracts must be executed in
a sandbox. The environment effectively isolates the contract
working environment from the host system, improving intel-
ligent contract security. Most common blockchain platforms
use virtual machines and containers to create sandboxes
where contract code can be executed separately.

D. SUMMARIZED LESSONS
Blockchains require more computing power to maintain con-
sistent records among participants. Traditional consensus
authentication mechanisms like proof of work have improved
blockchain security, but their high computational overhead
has become a bottleneck, slowing down block output speed.

Improving blockchain transaction authentication efficiency
will improve computing efficiency and create an intelligent
blockchain. The idea of an intelligent contract expands the
use of blockchain, but its intelligence must be improved.
Further research is needed to realize a blockchain-based net-
work’s edge intelligence.

V. INTEGRATION OF BLOCKCHAIN AND FL FOR UAV
MOBILE EDGE COMPUTING
Federated learning aims to create new value by enabling
privacy protection technologies where data is available and
invisible and improving user service quality by utilizing data
from all parties. On the other hand, blockchain aims to ensure
that transaction records cannot be tampered with, use con-
sensus algorithms and distributed technologies to solve the
problem of double payments in a decentralized network, and
eventually achieve digital value representation and transfer.
Given the issues mentioned above with blockchain and fed-
erated learning, blockchain and federated learning character-
istics are examined. The following sections go over how to
integrate and supplement blockchain and federated learning.

A. COMPARISONS BETWEEN FEDERATED LEARNING AND
BLOCKCHAIN
Federated learning deals with the problem of data privacy
through computation. The issue of untrusted data storage
is addressed by blockchain. Both are complementary tech-
nologies that, like federated research, can be used to solve
the problem of witnesses. In the traditional federated study
framework, a trusted third-party server is used. For example,
privacy protection is critical to conducting a federated study
based on blockchain technology and realizing centralized
or weak decentralization. In-depth analysis revealed many
similarities and differences between the learning and chain
blocks; a detailed comparison of the two technologies is
provided below.

1) Similarities:
• Each node in the deployment structure is dis-
tributed independently.

• Each node’s status is equal, and there is no central-
ized node.

• There is a risk of data privacy leakage. As a result,
private data should be securely encrypted before
performing transactions in federated learning and
blockchain.

2) Difference:
• Category: The chain of blocks can be as simple as
a distributed database; FL is a distributed machine
learning modeling and training system.

• Mechanism for problem-solving: Federated learn-
ing can solve the challenges of data isolation and
data privacy to meet the goal of multi-party joint
modeling. Blockchain seeks to solve most of the
existing system’s centralized, trust, and tampering
problems.

VOLUME 10, 2022 56599



C. Zhu et al.: Blockchain-Enabled FL for UAV Edge Computing Network: Issues and Solutions

TABLE 4. Potential benefits of UBFL architecture compared to our work.

• Data storage: All nodes in the blockchain keep a
copy of the same data. Federated learning parties
only have their data, not that of other parties [79].

• Validation: The participants verify each new
transaction on the blockchain via a consensus
algorithm, ensuring trust and anonymity against
malicious attacks. Authentication is not required
for the client to update the gradient to the server
in FL [80].

B. BLOCKCHAIN COMPLEMENTS FEDERATED LEARNING
Both federated learning and blockchains require multiple
parties to participate in creating a trusted network based on
consensus. However, in terms of application goals, feder-
ated learning focuses on value creation, whereas Blockchain
focuses on value representation and transfer [81]. Table.4
summarizes the potential BCFL integration solutions in the
literature. Blockchain enables FL in two ways:

1) Blockchain is a reliable identity and identification sys-
tem. Using the Blockchain’s permission system and
identity management, untrusted users can join a secure
and trusted cooperation mechanism. Blockchain offers
data security sharing. It is visible, traceable, tamper-
proof, and forgery-proof. The distributed ledger feature
of Blockchain naturally maintains the consistency of
model parameter data among various participants in
federated learning.

2) Taking advantage of the tamper-proof and decentral-
ized qualities of Blockchain, rewards will be granted
to the active client who exchanges data information.
The more clients are involved in federated learning,
the more accurate the model findings become. Model

training is completed, and reward resources are written
into the Blockchain according to each participant’s
input amount and quality [82]. Using the open and
transparent nature of Blockchain will increase partic-
ipation and improve participant cooperation.

C. THE PROPOSED ARCHITECTURE: UBFL
A BC-based FL-enabled UAV MEC network (UBFL) is
presented in this subsection. We first introduce the UBFL
architecture, arising from the integration of Blockchain and
FL. Then, we present the training workflow of UBFL. Fig.5
presents the schematics of the proposed architectural design.

1) ARCHITECTURE OF UBFL
The client utilizes the Blockchain to establish a decentral-
ized, federated training platform and store private data in
a blockchain in the proposed architecture. It is considered
that the global server is MEC-assisted to address the com-
putational constraints of UAVs. The UBFL network is split
into two layers: the user layer and the edge service layer.
UAVmobile terminals make up the majority of the user layer.
Base stations with Mobile Edge Computing (MEC) servers
and specific storage and computing capabilities comprise the
edge service layer. The MEC server calculates and updates
the global model.

The first relevant research focused on the creation of
UBFL was proposed by [83]. The UBFL’s main idea is to
use Blockchain technology to solve problems like private
exchanges and reward mechanisms. However, as seen in
Fig.5, all subsequent research followed the same basic design
framework. To be more specific, the Blockchain serves as a
central database for the decentralized and private FL system.

56600 VOLUME 10, 2022



C. Zhu et al.: Blockchain-Enabled FL for UAV Edge Computing Network: Issues and Solutions

FIGURE 5. The conceptual of UBFL architecture.

TABLE 5. The potential solution for communication cost of UBFL.

As a result, the main goal is to recompense clients based on
the quality of their contributions while also protecting the
privacy of the underlying data set and warding off malevolent
attackers. Table.5 summarize existing solutions integrated
with Blockchain and federated learning in a UAV-assisted
MEC network. We will outline the main characteristics of the
architecture.

2) UBFL TRAINING WORKFLOW
The illustration of a single communication round of UBFL
systems is shown in Fig.6. In classical FL (see Fig.3), the
global model is calculated by the base station of the MEC
server and updated. However, in our UBFL architecture,
global model calculations are performed directly on theUAVs
in a decentralized manner via blockchain [84]. In the UBFL

network, local training is performed using UAVs, and the data
collected byUAVs can be used to trainmodel parameters. The
overall process is as follows:
• Local training: According to the data collected locally by
sensing, the participating UAV users searched for local
model parameters using an algorithm based on gradient
descent to minimize the loss function.

• Upload parameters: UAV transmits the model param-
eters and computing time T to MEC server through
wireless network. The MEC server stores them in the
form of transactions.

• Model broadcasting and verification: The MEC server
adds its digital signature to the model and broadcasts to
other MEC server.

• Mining and Block validation: Upon receiving the local
models from the other server, each MEC server uses
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FIGURE 6. Illustration of UBFL training workflow.

consensus algorithm to mine current block.The current
server block, if verified, is added to local ledgers of
MEC.

• Global model download and aggregation: UAV down-
loads the gradient updates from MEC server. Each UAV
aggregate the global model with other gradient upload
as follow function:

w(t,l)
i = w(t−1,l)

i −
β

Ni

([
∇fk

(
w(t−1,l)
i

)
−∇fk

(
w(l)

)]
+∇f

(
w(l)

))
(4)

In the UBFL architecture, each drone computes and
exchanges training updates via a blockchain ledger running
on the edge network, effectively performing global model
aggregation on a local device without the need for a cen-
tral server. The blockchain service runs on the MEC server,
receiving and storing model parameters uploaded by UAVs
and authenticating them via consensus protocols [85]. On the
other hand, UBFL eliminates network latency associated with
communicating with a central server.

D. SUMMARIZED LESSONS
To facilitate comprehension of the various UBFL structural
variants, we classify UBFL frameworks into three categories.
We leverage their organizational structure to develop cus-
tomized UBFL structures to meet specific requirements. The
UBFL makes use of blockchain and FL to bolster system
security and build a more intelligent mechanism. However,
its inefficiency impairs the overall performance of the system
and has an effect on future applications. The flexibly coupled
UBFL is recommended when the FL network is not suitable
for running on a blockchain but requires a blockchain to aid
in its learning process, such as for increased model accuracy
or data sharing. The following section discusses the major

UBFL technologies and solutions. We propose that UBFL’s
safety and dependability be evaluated in light of the comput-
ing requirements and environments in which it is used. If an
aggregator-free system is required, the fully connected UBFL
framework is recommended.

VI. OPEN ISSUES AND POTENTIAL SOLUTIONS FOR UBFL
In this section, we manipulate blockchain to do reputation
management to restrain participants’ behaviors. In this sit-
uation, the loosely coupled UBFL will be a good choice.
Resource constraints and communication latency are imped-
iments to the efficient operation of UBFL and must be
addressed regardless of the architecture. We introduce tech-
nical work related to the UBFL architecture in a UAV edge
computing network. We will introduce the key technolo-
gies of the UBFL architecture, including its communication
performance and secure privacy protection.

A. THE COMMUNICATION PERFORMANCE
1) COMMUNICATION COSTS
a: PROBLEM DEFINITION
Communication costs are vital issues that need attention in
a BCFL system. In most current BCFL system schemes,
transmission is analyzed by combining training delay, miner
communication delay, and mining delay. However, in the
application of edge computing, communication costs are con-
centrated on edge computation delay and parameter trans-
mission delay. Table.5 summarizes the communication cost
problem and solution.

b: SOLUTION
Some recent work has been involved to solve the problem.
In References [86], a new edge association algorithm for edge
networks based on digital twins is proposed. The authors
further discussed the impact of unreliable communication
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between the user and the MEC server may reduce com-
munication latency and improve the reliability of the edge
computing plane. A blockchain platform is used to run the
Delegated Proof of Stake (DPoS) consensus mechanism to
establish a decentralized training network for FLchain edge
computing.

When determining the optimum block arrival rate, both
communication and consensus latency are considered. These
findings and insights highlight significant results and insights
about adaptive BFL design. The online delay minimization
algorithm optimizes the delay by considering frame size,
block size, and block arrival rate. It is demonstrated that tak-
ing communication and consensus delays into account while
determining an acceptable FLchain training delay increases
overall model learning performance [85].

A gradient compression scheme was designed to gener-
ate sparse but significant gradients to reduce communica-
tion overhead without compromising accuracy, improving the
communication efficiency of the blockchain-enabled FL [87].
Moreover, it further strengthens the privacy preservation of
training data. The security analysis and numerical results
indicate that the proposed schemes can achieve decentralized
FEL security, scalable, and communication-efficient.

c: DISCUSSION
In the UBFL architecture, each drone user computes and
exchanges his training updates through a blockchain ledger
running on top of the edge network, performing global model
aggregation on a local devicewithout needing a central server.
While eliminating network costs (such as latency) associated
with communicating with a central server, the use of the
blockchain introduces new costs associated with block min-
ing. Therefore, the communication problem of UBFL needs
to consider the training delay, update communication delay,
and block mining delay on the equipment at the same time.

B. THE SECURITY AND PRIVACY PROTECTION
Establishing security and privacy protection mechanisms
is critical for blockchain-based federated learning systems.
Using blockchain technology to govern the data source
method of data information transmission between nodes can
eliminate a single point of failure. Moreover, they are incred-
ibly effective against attacks, especially in decentralized,
federated learning systems. The summary for security and
privacy protection of UBFL is shown in Table.6.

1) POISONING ATTACKS
a: PROBLEM DEFINITION
The UBFL design is vulnerable to data or model poisoning
threats [87]. An attacker manipulates the local training pro-
cess, hyper-parameters, and model weight before submitting
the aggregation. To compromise classifications, an attacker
can employ data poisoning to inject a backdoor into an aggre-
gate detection model. It was an attempt to poison the training
data by introducing malicious data into the ordinarily normal

training data set, which is more successful than just training
data poisoning.

b: SOLUTION
In References [99], a hybrid BCFl framework that uses smart
contracts to detect and punish attackers with fines automati-
cally. The authors analyzed the communication efficiency and
design am attacker detection algorithm.

The authors in Reference [107] analyzed a two-phase
learning stage. The first phase is a numerical evaluation,
preventing the malicious devices from being selected. For
the second phase, researchers devised a participant-selection
algorithm that enables the FL server to select the appro-
priate group of devices for each round of FL training. The
researchers believe that the study can shed new light on the
joint research of blockchain and federated learning.

c: DISCUSSION
To summarize, attackers can train local models to replace
global models and adjust parameter values to manipulate the
training outcome during model transmission. As a result,
many researchers are researching ways to detect attacks on
blockchain-based federated learning systems.

Adjusting mining difficulty without affecting training per-
formance also reduces the risk of poisoning attacks. As a
result, blockchain mining and local data training should con-
sider the attack model. An adversary miner, for example,
could manipulate data blocks. Defensive miners use witch
attacks to double trade, making mining inefficient.

2) SINGLE POINT FAILURE
a: PROBLEM DEFINITION
FL relies on a central server, which makes global model
updates problematic. So all local model updates are subject
to subsequent local model updates’ accuracy. Since band-
width constraints, sending multiple models simultaneously
may overload the central server [108].

b: SOLUTION
In order to improve Federated Learning security, the author
proposes a blockchain network called FLchain (FL) [109].
Each local model parameter is a block on the specific channel
ledger. In addition, the paper introduces the concept of ‘‘the
global model state trie,’’ which is stored and updated on
the blockchain network from mobile device updates. Quan-
titive Analysis FLchain outperforms traditional FL schemes
by ensuring provenance. Furthermore, they maintain the
auditable characteristics of the FL model.

FLChain replaces the traditional FL parameter server,
requiring on-chain consensus. It is not easy to motivate
and deter distributed trainers. An honest trainer can profit
proportionally from a well-trained model, while the mali-
cious can be quickly detected and severely punished [93].
The author created DDCBF to speed up the querying of
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TABLE 6. Summary for security and privacy protection in UBFL.

blockchain-documented data. Finally, the author builds a
model of our work and calculates its costs.

In References [110], Consortium chains typically use con-
sensus mechanisms to keep the chain from beingmanipulated
by a small number of malicious nodes. In the case of PBFT
(Practical Byzantine Fault Tolerance), as long as the number
of misbehaving nodes is less than 1/3 of the total number
of nodes, the regular operation of the blockchain will not be
affected.

c: DISCUSSION
The FL center server can be replaced with distributed
blockchain nodes to resolve single-point failures. In addition,
miner nodes can exchange the model updates of a local
device. The qualitative evaluation shows that FLchain is
robust. Traditional FL schemes are preferred as they ensure
provenance and maintain auditable aspects of the FL model
in an immutable manner.

3) PRIVACY LEAKAGE
a: PROBLEM DEFINITION
Although all participants exchange gradient information and
will not expose their original data to the outside world, there
is still a risk that the original data will be counter derived only
based on the open gradient update process.

b: SOLUTION
A blockchain-based decentralized, federated learning frame-
work can avoid the centralized structure’s privacy and fail-
ure risks. An open-source deep learning framework named
DeepChain was created to address these issues. DeepChain
also provides a blockchain-based value-driven incentive
mechanism to force participants to behave appropriately [96].

Meanwhile, DeepChain ensures participant data privacy
and training process suitability. The article implements a
DeepChain prototype and tests it on a real dataset in various
settings, with promising results.

We also note that secure multi-party computation and
homomorphic encryption show good promise without seeing
each other’s plaintext. [111]. The UAV can match encrypted
cipher-text operations with plaintext operations using homo-
morphic encryption. However, there is no third-party author-
ity to manage the private key in the system, making homo-
morphic encryption challenging to use directly. Furthermore,
using the same homomorphic encryption key across all nodes
does not protect privacy. However, it solves the problem
of key distribution and management without a central node
and enables the use of homomorphic encryption in gradient
operation and privacy protection. [108].

c: DISCUSSION
Differential privacy, homomorphic encryption, and other
technologies are still the most beneficial for BCFL. With
Laplacian noise, for example, the possibility of noise removal
is greatly reduced, and differential privacy is achieved.
Homomorphic encryption improves the security of out-
sourced storage and computing in federated learning. It is
possible to effectively encrypt data before sharing it on the
blockchain, which is important when dealing with personal
and private data.

C. RESOURCE OPTIMIZATION
1) PROBLEM DEFINITION
Since the UAV network having constrained computing and
communication resources, incorporating blockchain and FL
into the UAV edge computing application presents new
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TABLE 7. The comparison of some prominent incentive mechanisms for BCFL.

challenges. Although MEC computational offloading strate-
gies can improve UAV computing performance, the com-
munication efficiency of UBFL becomes a key challenge in
large-scale IoT scenario [117]. Given the future application,
one can use optimization theory to optimize the task alloca-
tion and resource allocation.

2) SOLUTION
A potential solution to this difficult problem could involve
in [118]. The author proposes a decentralized FL framework
by integrating blockchain into FL, namely BLADE-FL. In a
round of the proposed BLADE-FL, each client broadcasts its
trained model to other clients, competes to generate a block
based on the received models, and then aggregates the models
from the generated block before its local training in the
next round. The work considers the learning performance of
BLADE-FL and develops an upper bound on the global loss
function. A lightweight blockchain platform based on DPoS
consensus has beenwidely used to support model updates and
block mining in federated learning [119]. Additionally, con-
sidering the rate at which local devices learn, the rate at which
models arrive, and the rate at which blocks are generated
across the entire blockchain-based federated learning system
is an effective way to address future resource allocation issues
between miners and local devices.

3) DISCUSSION
Resource allocation is critical in UBFL systems to ensure
optimal data training resource use. Deep reinforcement learn-
ing is widely used to implement resource allocation strategies
for blockchain-based federated learning systems. In partic-
ular, the deep neural network model is used to decompose
the problem and solve the sub-problems. To improve the effi-
ciency of the integration scheme, the literature [120] proposes
an asynchronous aggregation scheme and uses reinforcement
learning authorized by digital twin to schedule relay users and
allocate spectrum resources.

D. LACK OF MOTIVATION
FL has no incentive to attract sufficient distributed training
data and computation power. A few of the techniques used
in FL incentive mechanisms are Stackelberg game [121].
Blockchain are used to improve FL traning node selection,
contribution evaluation, and robustness. We compare promi-
nent research on design goals andmain incentivemechanisms
in BCFL, shown in Table.7.

1) PROBLEM DEFINITION
FL has assumed that participants’ mobile devices are trust-
worthy volunteers. This assumption precludes the use of
traditional FLmethods in UAV networks. There are two types
of workers in the Fl training: self-interested individuals who
are hesitant to contribute their computing resources uncondi-
tionally in the absence of economic incentives, and malicious
individuals who send corrupt updates to disrupt the learn-
ing process [115]. Incentive mechanisms for participating in
training and worker selection schemes for reliable federated
learning have not been explored yet.

2) SOLUTION
The authors in Reference [93] presented FLChain replace
traditional FL parameter server. Furthermore, although
blockchain-enabled FL has been proposed to give workers
reward, any rigorous reward policy design has not been dis-
cussed. The author design a repeated competition schemes for
FL [122].

The scheme proposed in [113], the author design a
reputation-based worker selection scheme combining reputa-
tion with contract theory to motivate high-reputation mobile
devices with high-quality data to participate in model learn-
ing. The final goal of the incentive mechanism is to improve
FL performance. A incentive mechanism based on Bayesian
game theory used to address challenges in UAV-aided wire-
less networks is provided in Reference [114]. Model predicte
accuracy are also considered.
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3) DISCUSSION
Most of the incentive mechanisms proposed in this section
aim to increase model training participation and thus the
robustness of the entire blockchain-based federated learning
system. As well as model updating verified and audited by
blockchain, federated learning training now has some unique
functions for the incentive mechanism to achieve security.
However, the ledger network ensures fairness in the feder-
ated learning process by collecting gradients and updating
parameters. The cost of verifying gradient updating has not
been fully considered in existing studies. The future incen-
tive scheme should encourage more user to join FL, thus
improving its performance. The proposed incentive scheme
should also be lightweight, as resource-constrained nodes are
reluctant to perform expensive computations.

VII. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
In this section, we describe potential prospective research
directions that we believe would be fascinating to work on
and study in the future. The study directions are grouped
according to the high-level challenges that they are supposed
to address.

A. ENERGY-AWARE COMMUNICATION
Artificial intelligence techniques will be expanded in UAV
communication systems over the next decade. Using the
UBFL architecture, it is possible to perform global model
aggregation on a local device without the need for a central
server. While the blockchain does away with the need for a
central server, it does so at the expense of additional costs
associated with block mining. To reduce UBFL’s energy
consumption, two UBFL costs must be considered: train-
ing and block mining [123]. Due to the fact that the UAV
communication system is a more complex multi-dimensional
network than current terrestrial communication networks, it is
expected that energy-consumption, connectivity, and stable
operation will need to be improved in the future.

B. PRIVACY ENHANCEMENT MODEL AGGREGATION
The survey results indicate that privacy and secrecy strategies
are critical for UBFL interaction and proper functioning.
Scientific innovation will drive future inter- and intra-UAV
communication technology. There are significant security
and privacy concerns associated with ensuring FL conver-
gence. Numerous data aggregation strategies have been pro-
posed recently to maintain the UBFL network’s security and
privacy. However, the limited processing power of the intel-
ligent sensor renders the scheme unsuitable for the bright
UAV environment. In References [124], the author proposes
attack-proof stratege as a potential technology for UBFL in
model aggregation. However, how to devise the appropriate
Privacy enhancement data aggregation technique still needs
further exploration by the research community.

C. FULLY DECENTRALIZE AND ROBUSTNESS TRAINING
Traditional synchronous FL systems are centralized, which
may cause a straggler effect in the decentralized network.
The straggler effect occurs when wireless model updates are
delayed during FL training. Synchronization FL global aggre-
gation occurs following each worker’s parameter update.
UAV network and connectivity issues cause many worker
dropouts during training. A realistic technique to minimize
the straggler impact is to select a subset of participating UAVs
for each global iteration. Due to the decentralized nature
of UBFL, any device can act as an aggregator. After each
round, a portion of UAV dworker is chosen. UBFL uses a
mini-batch SGD optimizte algorithm to reduce the device
workload [78]. Asynchronous FL also allows participants to
join mid-way through a training round. This is more repre-
sentative of real-world FL settings and can help ensure FL
scalability. However, while many efforts have been made to
support centralized algorithms against the straggler problem,
decentralized algorithms have received little attention.Due
to the guaranteed convergence, synchronous FL remains the
most popular [34]. UAVs integrated with 5G and IoT tech-
nologies will have great economic and stability implications
for smart cities in the near future. It is critical to consider the
training strategy’s robustness in the presence of massive data
distributed according to decentralize application.

D. HETEROGENEITY DATA COLLECTTION
Communication between heterogeneous nodes with vary-
ing levels of computing power and bandwidth will become
the primary constraint on UAV-enabled Internet of Things.
Current research on UAV edge computing networks ignores
nodes from heterogeneous networks. As a result, how
to establishing a flexible coordination mechanism among
numerous heterogeneous nodes is worth exploring.

VIII. CONCLUSION
This survey outlines the UBFL architecture of blockchain-
enabled federated learning in UAV edge computing networks.
Wefirst introduced the latest developments in federated learn-
ing technology, especially blockchain technology.

To discover the UBFL architecture in UAV edge comput-
ing, we introduce how blockchain technology can enhance
and solve critical issues related to federated learning, i.e.,
communication cost, resource allocation, security, and pri-
vacy protection. Finally, we have outlined the key research
challenges and possible directions toward fully realizing the
UBFL architecture.

Our review shows that the basic architecture for feder-
ated learning using blockchain is still in its infancy. There
are many challenges in areas related to privacy protection,
security, smart contracts, scalability and performance issues,
and consensus protocols and incentive mechanism design.
This survey opens up a new way to realize UAVs’ scalable
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and secure edge intelligence in the next-generation wireless
network.
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