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ABSTRACT Accurate and stable natural gas price forecasts are essential for effective management of energy
systems. However, due to themixed frequency of data and the inherent nonlinear fluctuation characteristics of
natural gas price changes, it is difficult to achieve satisfactory forecasting performance. In order to effectively
improve the forecasting results of mixed frequency data. In this study, the MIDAS regression model and the
machine learningMIDASmodels are successfully combined to form a novel combination forecasting model.
Moreover, the extreme learning machine with the multi-objective grey-wolf algorithm is used to combine
univariate MIDAS results and further improve the forecasting accuracy. In the empirical analysis, the weekly
natural gas futures prices of the Intercontinental Exchange UK NBP are used to generate real-time forecasts
to evaluate the forecasting performance of the proposed combination model. The experimental results show
that the comprehensive forecasting accuracy of the novel combination MIDAS model is 26.35%, 8.82% and
12.91% higher than that of the benchmark MIDAS regression models, the combination MIDAS models and
the multivariateMIDASmodels, respectively. Based on the forecasting results, the non-linear, non-stationary
and irregular natural gas futures prices can be effectively managed, which provides better investment and
management tools.

INDEX TERMS Natural gas price forecasting, mixed data sampling model, combination-MIDAS-
MOGWO-ELM model, forecasting accuracy.

I. INTRODUCTION
In this section, the background of natural gas energy and the
mixed data sampling model (MIDAS), the literature review
and our research innovation will be discussed in detail.

A. BACKGROUND
Over the past two decades, governments and scientists have
been discussing alternative sources and global applications of
clean and efficient energy. Global primary energy consump-
tion is increasing at an alarming rate, and human production
activities are becoming more urgent for energy needs, which
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has environmental implications. Natural gas has gained much
attention. As the only low-carbon and clean energy among
fossil fuels, natural gas is becoming a major force in promot-
ing the global energy transition. In this endeavour, natural gas
has become increasingly important as an alternative energy
source throughout Europe.

Currently, the EU’s main sources of energy are still mainly
coal, natural gas and oil. In 2020, the EU’s primary energy
pattern will still be dominant, with fossil fuels such as oil,
natural gas and coal accounting for about 75% [1]. Improv-
ing renewable energy and energy efficiency will promote
a fair environmental transition to reduce associated CO2
emissions. To meet Paris Agreement in 2015, efforts have
been made worldwide to significantly reduce greenhouse gas
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emissions [2]. The EU is addressing the ‘‘European Green
Agreement’’, which aims to transform the EU into a modern,
resource-efficient and competitive economy. In 2050, the net
greenhouse gas emissions should stop increasing and decou-
ple economic growth from resources [3].

In view of a future where renewable energy dominates in
the EU, natural gas-to-gas technology play an important role.
The green transition is promoted to curb the carbon emissions
related to fossil fuels to be in line with the Paris Agreement
and the European Green Agreement. As the earliest and most
mature virtual natural gas trading point in Europe, the UK
National Balancing Point (NBP) has become the benchmark
for European natural gas market transactions in Europe.
Through marketisation, policy makers have created incen-
tives for companies to switch to green energy production
mechanism. An important reference issue in the natural gas
market is accurate price forecasts. First, the results of natural
gas price forecasts and the understanding of determinants
are important for market participants who use price informa-
tion to make investment decisions. Second, information on
changes in natural gas prices is conducive to establishing rea-
sonable market orientation, enabling government managers
to comprehensively evaluate green energy policies and make
timely adjustments [4], [5]. Therefore, more accurate forecast
of natural gas prices is essential for establishing an effective
natural gas market and adjusting energy information poli-
cies. This article focuses on the natural gas price forecasting
model, because researchers still need to solve many problems
through experience, especially in terms of adjusting natural
gas prices to the energy market and economic environment.

B. LITERATURE REVIEW
With the rapid changes in the natural gas price market, multi-
source heterogeneous and mixed frequency data modeling
has become desirable and challenging [6]. The forecasting of
natural gas model formed by the discussion mainly focuses
on two aspects. First, the natural gas forecastingmodel judges
the trend of natural gas prices based on regression methods.
Second, the natural gas forecasting model is evaluated by the
machine learning model.

The statistical models for natural gas mainly include time
seriesmodels and regressionmodels. In the time seriesmodel,
Erdogdu fitted the ARIMA model to forecast Turkey’s nat-
ural gas demand and compared the results with the official
forecasts to find that the elasticity of Turkey’s natural gas
consumption was low [7]. Dilaver established a structural
time series technique to investigate the influence of income,
current natural gas prices and potential energy demand trends
on European natural gas consumption [8]. Khani proposed an
online calibrated time series model from historical tempera-
tures similar to autoregressive model to effectively improve
the accuracy of natural gas forecasting [9]. In the regression
model, Zhang proposed the combined method to forecast the
regression model of natural gas consumption by Bayesian
model averaging theory to improve the accuracy of prediction
[10]. Chen proposed a novel natural gas demand forecasting

model and developed exogenous variables into functional
autoregressive model to produce high-resolution forecasts of
natural gas flow [11]. Sen used socioeconomic indicators as
descriptive variables and predicted future natural gas con-
sumption through various multiple regression models [12].
Despite the popularity of statistical models, the model essen-
tially assumes linear time correlation, which is inconsistent,
especially for natural gas data with nonlinear properties.

In machine learning theory on natural gas forecasting,
neural networks have been used to study the dependence
of nonlinear features on energy information, including
short-term natural gas forecasts. The multilayer perceptron
(MLP), a special form of neural networks, is widely used and
considered as a benchmark for various analyzes of energy
forecasts. Szoplik proposed to use the MLP model for fore-
casting daily natural gas consumption in Szczecin (Poland)
[13]. Dombayci developed an MLP model for forecasting
the hourly heating energy consumption of a model house in
Denizli (Turkey) and compared it with the recently devel-
oped Deep Neural Network (DNN) algorithm [14]. Afshin
adapted the multilayer perceptron (MLP) and Radial Basis
Function Neural Network (RBFNN) to predict the equilib-
rium dew point in a natural gas stream [15]. Qiao integrated
the functions of BPNN, GRNN and ELM and forecasted
the consumption of natural gas after integration to obtain
good forecasting results [16]. It is worth mentioning that the
artificial neural network can better deal with the problem
of nonlinear characteristic data, but some shortcomings are
still existed. For example, the generalization ability of MLP
is insufficient, and difficult to effectively deal with multi-
dimensional data. BPNN is easy to fall into local optimum,
resulting in slow convergence speed.

In addition, support vector regression in machine learning
models the principles of structural risk minimization and ker-
nel function, effectively avoiding the shortcomings of artifi-
cial neural networks [17], [18]. Han considered the effects of
temperature and holidays on consumption and adjusted SVM
and LS-SVM to forecast daily natural gas consumption in
Xi’an. The results show that the support vector machine fore-
casting method is better than the neural network method [19].
Zhu proposed an improved SVR to forecast the short-term
consumption of British National Natural Gas Pipeline and
proved that the error of the model is lower than that of
ARIMA and ANN [20].

The above forecast model represents the forecast tech-
nology system for natural gas. Some forecasting technology
models ignore relevant factors, which leads to the decrease of
forecasting accuracy. The energy factor is the main determi-
nant of natural gas prices due to energy and fuel competition
in the market. The existing literature on the relationship
between natural gas prices and energy factors mainly focuses
on coal and oil factors. Coal and oil, as the main energy
sources for consumption, have a great influence on natu-
ral gas price consumption. Sen believed that coal and oil
prices have a greater impact on natural gas price [12]. Destek
believed that the consumption of natural gas, coal and oil

52076 VOLUME 10, 2022



L. Li et al.: Variable Weights Combination MIDAS Model Based on ELM for Natural Gas Price Forecasting

were related to each other and any shocks from natural gas,
coal, and oil are long-lasting effects on most OECD countries
[21]. Yang evaluated the relationship between natural gas,
coal and oil by studying ethylene glycol and concluded that
the technical and environmental performance of natural gas
route is superior to oil and coal route [22]. Political factors
also determine the price of natural gas. For example, the
aforementioned ‘‘Paris Agreement’’ and ‘‘European Green
Deal’’ call for continuous reduction of carbon emissions in
the environment. Brehm believed in the negative correlation
between natural gas consumption and carbon emissions [23].
In addition to energy factors, economic factors are important
to natural gas consumption. When the economy is boom-
ing, the industry faces an increase in demand and provides
more production. Bildirici compared the relationship between
national economic change and the consumption of coal, oil
and natural gas [24].Wu studied that natural gas consumption
provides the opportunity to achieve the double dividend of
economic growth and CO2 emission reduction [25]. Magazz-
ino developed the direction from dependency algorithm for
natural gas consumption and economic growth, which used
artificial neural network methods in Japan and Germany [26].

In view of the above, the importance of the related influ-
ences contained in energy factors and economic factors for
the evaluation and forecast of natural gas has been pointed
out. The above-mentioned forecasting model requires the
identification of relevant driving factors when forecasting
natural gas in order to improve the accuracy of the forecast.
The multifactor forecasting model does consider the influ-
ence of exogenous variables. However, the above works are
all based on the premise that the exogenous variables in fore-
casting natural gas are performed with the same frequency,
which inevitably leads to the problem of error accumulation
and inaccurate natural gas forecasting. In fact, relevant data
are published with different frequencies and accompanied
by non-linear and non-stationary characteristics. The current
research shows that natural gas forecasting ignores high fre-
quency data and non-linear information carried by the data.
Therefore, new methods need to be explored to improve the
accuracy of natural gas by using high-frequency exogenous
variables.

Mixed data sampling (MIDAS) can forecast the corre-
sponding low-frequency data by high-frequency exogenous
variables. The MIDAS regression model has a wide range
of applications in the financial market [27]–[31]. The uni-
variate MIDAS model was proposed by Ghysels et al [32],
[33]. For the MIDAS model, the volatility forecasting of the
MIDAS model is performed by the GARCH class [34]–[39].
GARCH-MIDAS type models mostly study the influence of
univariate mixed frequency data and multivariate MIDAS are
processed by combination univariate to forecast. It is difficult
to deal with the problems of multivariate MIDAS model.
Xu proposed to apply the artificial neural network model to
the univariate and multivariate MIDAS model, which proved
that MIDAS-BPNN is an effective tool for processing non-
linear mixed data [40]. Xu proposed to use MIDAS-SVR

to process the multivariate mixed data forecasting model
withmultiple emotional factors [41]. Pan constructedMIDAS
and multi-output models and proposed a multi-output model
MIDAS-MSVM to obtain the results of multiple consecu-
tive points simultaneously [42]. Li combined the univari-
ate and multivariate MIDAS with the Extreme Learning
Machine to propose the MIDAS-ELM model and process
incomplete data that demonstrated the effectiveness of the
proposed MIDAS-ELM model [43]. The MIDAS-GRNN
and MIDAS-ENN models used in this paper have not been
proposed in the existing literature, but they can still be
constructed according to the properties of the multivariate
MIDAS theory and neural network structure.

Accounting for non-linearity, non-stationary and irregu-
lar data in the multivariate MIDAS model and actual nat-
ural gas market conditions. Different from the traditional
univariate MIDAS regression model and the multivariate
MIDAS regression model, this paper develops a novel
combination-MIDAS forecasting model. Then, we utilize
the novel combination-MIDAS-ELM model to conduct an
empirical analysis of natural gas prices and compare them
with three types of competitive models. (1) Benchmark
types: ARIMA and GARCH; (2) Combination-MIDAS
model: combination-MIDAS-regressionmodel, combination-
MIDAS-SVR model, combination-MIDAS-BPNN model,
combination-MIDAS-GRNN model, combination-MIDAS-
ELM model and combination-MIDAS-ENN model;
(3)MultivariateMIDASmachine learningmodels:MMIDAS-
SVR, MMIDAS-BPNN, MMIDAS-GRNN,MMIDAS-ELM
and MMIDAS-ENN.

C. INNOVATIONS AND FRAMEWORK
In general, the setting of the fixed weight coefficient and
the variable weight coefficient are two forms of the weight
of the combination forecasting model [44], [45]. Consid-
ering the multivariate influence factors and the reparable
advantages of the combination model, we have gradually
proposed a novel variable weight forecasting model of the
mixed frequency data, which can overcome the shortcomings
of the estimated weight coefficients of the combination in the
original forecasting of the mixed frequency data combination
and achieve higher forecasting accuracy. In this research,
a variable weight combination-MIDAS forecasting model is
proposed to perform weekly natural gas price forecasting.
The novel variable weight combination model proves to be
effective in short-term weekly forecasting due to its excellent
performance and improves the overall forecasting effect.

The contribution of the novel combination-MIDAS-ELM
model is summarized as follows:
(1) The research method of the combination-MIDAS fore-
casting model was extended. Each univariate forecasting
result of traditional MIDAS forecasting model is based on
regression methods. This paper combined machine learning
MIDAS models processing nonlinear data, the integra-
tion of regression MIDAS model and machine learning
MIDASmodels, which expanded the research scope of mixed
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frequency data combination model and improved the fore-
casting results accuracy.
(2) The combination-MIDAS forecast model is combined
with the extreme learning machine model to improve
the accuracy. By constructing the combination-MIDAS
forecasting model with novel variable weights, the
combination forecasting results are improved. In particular,
the combination-MIDAS forecasting model integrated by
the extreme learning machine and multi-objective grey wolf
optimization algorithm greatly improves the short-term fore-
casting performance.
(3) The extreme learning machine model is combined
with the multi-objective grey wolf optimization algorithm.
In the proposed combination-MIDAS forecasting model,
the multi-objective grey wolf optimization algorithm is
constructed to optimize the coefficients in the extreme
learning machine, which overcomes the shortcomings of the
single-objective optimization adjustment coefficient method.
The proposed multi-objective optimization method effec-
tively takes advantage of the component system while avoid-
ing the low accuracy and instability of the single objective
system.
(4) The combination-MIDAS-ELM model is constructed to
forecast the weekly natural gas price in real time using the
latest daily available factors. The forecast of weekly natural
gas price is more informative for large traders in the energy
market to optimize short-term trading strategies (e.g., natural
gas companies).

The rest of the paper is organized as follows. In Section 2,
the research on MIDAS regression and combination-MIDAS
are reviewed and the newly proposed model is introduced
in detail. In Section 3, the empirical and predictive value
analysis is described, and the results of the empirical research
are discussed and comparative analysis is performed. And
summarize research in Section 4.

II. METHODOLOGY
A. THE MIDAS MODEL
MIDAS model is essentially a strictly parameterized form
of regression that uses highly parsimonious distributed lag
polynomials to model high frequency independent variables.
Ensure simplified model specifications while allowing the
use of data sampling at different frequencies. The influence
of the independent variable on the dependent variable may
have lag-order effect and the basic h-step-ahead regression
MIDAS model to forecast the dependent variable yt (low
frequency) from the univariate variable (high frequency) can
be expressed as MIDAS(m,K , h) :

yt = β0 + β1B
(
L1/m; θ

)
x(m)t−h + εt , (1)

where

B
(
L1/m;θ

)
x(m)t−h =

K∑
k=0

ω (k;θ)Lk/mx(m)t−h

=

K∑
k=0

ω (k;θ) x(m)t−k/m.

The parsimonious lagged coefficients of ω (k;θ) is a key
weight function. The MIDAS regression model depends on
the polynomial weight ω (k;θ) to connect the relationship of
different frequency data. Lk/m denotes the lag operator on
x(m)t−h .m is the multiple of the high frequency variable data rel-
ative to the low frequency variable which appears in the same
basic time unit and k = 0, 1, 2, . . . ,K is the lag-order of the
high-frequency variable. The appropriate parameter function
structure of the MIDAS model is very critical and six parsi-
monious polynomial specificationsω (k;θ) in this paper: beta
density function with zero lag (Beta), beta density function
with non-zero lag (BetaNN), exponential Almon lag poly-
nomial (ExpAlmon), Almon lag polynomial (Almon), step
function (Step) and unrestricted weight function (UMIDAS)
have been considered [27]–[31].

In addition to building univariate MIDAS models with
parsimonious parameter function ω (k;θ), univariate MIDAS
models can also be built by machine learning methods, such
as MIDAS-SVR [41], MIDAS-BPNN [40], MIDAS-GRNN,
MIDAS-ELM [43] and MIDAS-ENN. Machine learning
learns and trains by constructing ordered number pairs. The
following converts the basic MIDAS model formula (1) into
ordered number pairs structure:

yt
= β0 + β1 × [b(0; θ )xmt−0/m + b(1; θ )x

m
t−1/m

+ . . .+ b(K ; θ )xmt−K/m]+ εt

= β0 + β1×

(b(0; θ ), b(1; θ ), . . . , b(K ; θ ))

xmt−0/m
xmt−1/m
...

xmt−K/m




+ εt (2)

If let b(K ;θ) = (b(0; θ ), b(1; θ ), . . . , b(K ; θ )), xt =
(xmt−0/m, x

m
t−1/m, . . . , x

m
t−K/m)

T , Equation (2) turns

yt = α0 + α1b(K ;θ)xt + εt (3)

In this way, the ordinal pair relationship of the MIDASmodel
for year t is established. Next, we establish theMIDASmodel
corresponding to differentM years

yt1 = αt1,0 + αt1,1bt1(K ;θ)xt1 + εt1
yt2 = αt2,0 + αt2,1bt2(K ;θ)xt2 + εt2
. . .

ytM = αtM ,0 + αtM ,1btM (K ;θ)xtM + εtM

(4)

Further formula (4) can be written as

Yt = αt,0 + αt,1Bt(K ;θ)Xt + εt (5)

where Yt = (yt1 , yt2 , . . . , ytM )
T , αt,0 = (αt1,0, αt2,0, . . . ,

αtQ,0)
T , αt,1 = (αt1,1, αt2,1, . . . , αtQ,1)

T , Bt(K ;θ) =

(bt1(K ;θ), bt2(K ;θ), . . . ,btQ(K ;θ)xtQ),Xt=(xt1, xt2, . . . ,
xtQ)

T , εt = (εt1 , εt2 , . . . , εtQ )
T . Equation (5) establishes an
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ordinal pair (Xt, Yt) relation about time division for MIDAS
model. Therefore, machine learning methods such as SVR,
BPNN, GRNN, ELM and ENN can be used to learn and train
on mixed frequency data.

The MIDAS regression model directly converts the mixed
frequency data into the same frequency data through par-
simonious parameter function ω (k;θ) and further uses the
regression model to forecast. The MIDAS machine learning
model fully considers the nonlinear relationship between dif-
ferent frequency data. The following experiments show that
the effect of theMIDASmachine learningmodel is better than
that of the MIDAS regression model.

B. THE COMBINATION-MIDAS FORECASTING MODEL
Section A refers to the forecasting model as univariate
MIDAS regression model and machine learning MIDAS
model, so the best forecasting results are determined by
the single independent variable. However, there is evidence
that forecasting with multiple independent variables provides
more accurate results and more stable performance [46],
[47]. The combination forecasting method adjusts univariate
MIDAS with different independent variables to construct
the weighted average of the forecasting model, which can
solve a variety of influencing factors and obtain more stable
forecasts. The following formula gives the combination of N
forecasting results from the univariate MIDAS model:

∧

f CM ,T+h|T =
N∑
j=1

∧
w j,T

∧
y j,T+h|T (6)

where
∧
w j,T are the combination weight coefficients of the

forecasting results of univariate MIDAS method, j repre-
sents the corresponding univariate forecasting index number,
T represents the last observed value of univariate MIDAS

model, h = 1, 2, . . . ,H and
∧
y j,T+h|T represents the H th

forecasting result obtained after univariate MIDAS model
sample estimation. This article considers three types of

∧
w j,T .

The mathematical expressions of three weight types are as
follows:

1) FIXED EQUAL WEIGHT COEFFICIENT
The coefficients of the equal-weight combination model are
considered as fixedweight coefficients. Considering the aver-
age comprehensive prediction results after each univariate
prediction, the effects of the different univariate prediction
results are averaged.

∧
w j,T = 1/N (7)

2) MSFE WEIGHT COEFFICIENT
The mean square forecast error (MSFE) combination method
utilizes the mean square error to calculate the weight coef-
ficient, and the formula to calculate the weight coefficient
realizes the effect that the data contribute the near large part

and the far small part in the weight distribution.

∧
w j,T = m−1j,T /

n∑
j=1

m−1j,T (8)

where mj,T =
t∑

i=T0
(δi−T0 (yj,T+s −

∧
y j,T+s|T ))2/(t − T0 + 1).

If δ=1, yj,T+s represents the actual true value. mj,T is the
MSFE of jth factor univariate MIDAS.

3) DMSFE WEIGHT COEFFICIENT
When δ=0.9 in the MSFE weighted forecast model dis-
cussed above, which becomes the DMSFE weight coefficient
(Discounted Mean Square Forecast Error). δ weighs recent
forecasts more heavily than distant ones through using a
discounting factor [32], [33].

C. THE NOVEL COMBINATION-MIDAS-ELM MODEL
The combination forecasting model has become a prominent
model in the field of forecasting, integrating the results of
different forecasting models. In the result of combination-
MIDAS forecasting obtained by the weight coefficient, the
coefficient of combination weight is very important, and dif-
ferent combination coefficients obtain different combination
forecasting results. As described above, in the three MIDAS
combination forecast weight coefficient acquisition meth-
ods, each combination weight coefficient model has its own
advantages and disadvantages. Generally, the combination
forecast weight coefficients MIDAS are determined by the
fixed weight coefficient structure and the variable weight
coefficient structure, after obtaining different forecast results,
the fixed weight coefficient and the variable weight coeffi-
cient structure of the different forecast results are directly
used for the combination forecast. In this paper, when deter-
mining the weight coefficients of the combination-MIDAS
forecast model, MOGWO-ELM is chosen to determine the
variable combination weight coefficients.
Select different S high-frequency multiple independent

variables influencing factors x1, x2, . . . , xi, . . . , xS (i = 1,
2, . . . , S), through formula (1) and the univariate MIDAS
machine learning method, according to the different lag
step x(m)i,t−k/m of high-frequency variables to generate
best M low-frequency forecasting results y∗i1, y

∗

i2, . . . , y
∗
iM

under different high-frequency multiple independent vari-
ables. The significance of this processing is that the
best lag step x∗,(m)i,t−k/m and the corresponding MIDAS
forecasting model can be obtained through different
high-frequency multiple independent variables. Next,
through S different high-frequency multiple independent
variables influencing factors x1, x2, . . . , xi, . . . , xS (i = 1,
2, . . . , S), the best corresponding lag step x∗,(m)i,t−k/m and
the best corresponding forecasting model, the scope of
forecasting results are expanded. The new forecasting
results y∗i,1, y

∗

i,2, . . . , y
∗
i,M , y

∗

i,M+1, . . . , y
∗
i,M+N is obtained,

wherein the data length ratio of y∗i,1, y
∗

i,2, . . . , y
∗
i,M and
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y∗i,M+1, . . . , y
∗
i,M+N is 4 :1. Then, the combination-MIDAS-

ELM model is constructed.

1) CONSTRUCTING THE COMBINATION-MIDAS-ELM MODEL
The extreme learning machine is the machine learning algo-
rithm based on a single hidden layer feedforward neural
network [48], [49]. The main feature of the extreme learn-
ing machine is to initialize the input weights randomly
and the hidden layer to generate deviations. The learn-
ing process only needs to calculate the output weights.
Extreme learning machine has the advantages of high
learning efficiency and strong generalization ability. Given
the mixed data for S forecasting results set contain-

ing
({
Yi,t
}M
t=1 ,

{
Y ′i,t
}M+N
t=M+1

)
, (i = 1, 2, . . . , S) training

samples, where Yi,t = (y∗i,1, y
∗

i,2, . . . , y
∗
i,M ), Y

′

i,t =

(y∗i,M+1, . . . , y
∗
i,M+N ), input Yi,t ∈ RM and corresponding

required output Yi,t
′

∈ RN , L is the number of hidden
nodes, and g(Y ) is the activation function. The Combination-
MIDAS-ELM expression can be written as:

L∑
j=1

βjg(υ j · Yi + bj) = Y ′i , i = 1, 2, . . . , S (9)

where υ j = [υj1, υj2, . . . , υjn]T is the input weight vector
connecting the jth hidden node and the input node, bj is the
deviation of the jth hidden node randomly selected, βj is the
output weight connecting the jth hidden neuron and the output
neuron, υ j·Yi is the vector inner product operation of υ j and Yi
that represents all the operations generated between the input
weight vector and the input vector, gj(Y ) is the activation
function of the jth hidden node.

The above equation (9) corresponding to S equations can
be written as:

Hβ = Y ′ (10)

where,

H(υ1, . . . , υL ,Y1, . . . ,YS , b1, . . . , bL)

=

 g(υ1 · Y1 + b1) . . . g(υL · Y1 + bL)... . . .
...

g(υ1 · YS + b1) . . . g(υL · YS + bL)


S×L

β =


βT1
βT2
...

βTL


L×N

and Y ′
=


y
′T
1

y
′T
2
...

y
′T
S


S×N

. (11)

The goal of Combination-MIDAS-ELM is to find the solu-
tion β of the output weight through the linear equation (10).
However, in most cases,H is not necessarily guaranteed to be
an invertiblematrix, and β may not exist. Theway to solve the
problem is to use the Moore-Penrose pseudo-inverse matrix
H†, which requires H† to be invertible [50].

The Combination-MIDAS-ELM has the advantages of
high learning efficiency and strong generalization ability, but

the input weight vector υj of the input node and the deviation
bj of the hidden node are randomly generated, which affects
the forecasting accuracy and stability. The multi-objective
grey wolf optimization algorithm is applied to determine the
optimal input weight vector and the deviation of the hidden
node of the Combination-MIDAS-ELM.

2) MULTI-OBJECTIVE GREY WOLF OPTIMIZATION
MOGWO is a multi-objective variant with respect to GWO
proposed byMirjalili et al [51]. InMOGWO, themain natural
source of inspiration is the behavior of grey wolves in the
population. Grey wolves belong to the group of canines that
strictly adhere to the supremacy of social hierarchy [51],
[52]. The first level of social hierarchy α-wolf: the α-wolf
is defined as the dominant wolf because the other wolves
must obey the commands of the α-wolf. The leading α-wolf
is mainly responsible for making decisions about predators,
habitat, working and resting hours, and other activities. The
second level of the social hierarchy is the β-wolf, who obeys
the α-wolf and assists him in making decisions. When the
α-wolf dies or ages, the β-wolf becomes the most important
candidate for the α-wolf. Although β-wolves obey α-wolves,
β-wolves may dominate wolves at other social levels. At the
third level of the social hierarchy, δ-wolves obey α- and
β-wolves while dominating other wolves. According to the
social dominance leadership hierarchy and the positional
relationship of each wolf, when the grey wolf is searching
for the prey target, it will gradually approach and surround
the prey target.

ED = | EC
−→
Xp(t) − EX (t)| (12)

EX (t + 1) =
−→
Xp(t) − EA ED (13)

EA = 2EaEr1 − Ea (14)
EC = 2−→r2 (15)

where t represents the current iteration, ED represents the
distance between the individual grey wolf and the prey;

−→
Xp(t)

and EX (t) respectively represent the location vector of the
search target and the individual grey wolf. EA and EC are
the coefficient vectors for the distance adjustment, where
elements of Ea decrease from 2 to 0 in the iterative process
and Er1, Er2 are random vectors in [0,1]. The EC parameter is
intentionally designed to provide a random value that can
guarantee that iteration continues when the local optimum
stagnates.

Grey wolves have the ability to identify the location
of potential prey (optimal solution). The search process is
mainly performed by leading (α, β, δ) grey wolves. However,
the properties of the solution space are unknown. Greywolves
cannot determine the exact location of their prey (optimal
solution). To simulate the search behavior of grey wolves
(proposed solutions), it is assumed that (α, β, δ) have a strong
ability to identify the location of potential prey. Therefore,
in each iteration, keep the best three greywolves in the current
population, then update the positions of the other search
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agents according to their position information.

EDα = | EC1 EXα − EX | (16)
EDβ = | EC2 EXβ − EX | (17)
EDδ = | EC3 EXδ − EX | (18)
EX1 = EXα − EA1 · ( EDα) (19)
EX2 = EXβ − EA2 · ( EDβ ) (20)
EX3 = EXδ − EA3 · ( EDδ) (21)

EX (t + 1) =
EX1 + EX2 + EX3

3
(22)

EXα , EXβ , EXδ respectively represent the position vector of
the current population, EX represents the position vector of
the grey wolf; EDα , EDβ , EDδ respectively represent the distance
between the current grey wolf candidate and the best three
wolves. When |A| > 1, the grey wolf will spread as far as
possible in different areas and search for prey. When |A| < 1,
the grey wolf will focus on hunting for prey in a specific area
or areas, forcing the search agent to deviate from the prey.

To use GWO for multi-objective optimization, the
Pareto-optimal solution is loaded into the archive and the
distribution of solutions in theMOGOAarchive is adjusted by
selecting the objective of each solution. Two important com-
ponents need to be considered. The first is the archive library,
which is responsible for storing the received non-dominated
Pareto-optimal solutions. The second component is the leader
selection strategy, which is used to select solutions from and
in the archive as the leader of the search process.

Loading the Pareto-optimal solution into the archive and
hope that the archive distribution of each Pareto solution is
as broad as possible to avoid the MOGWO search process
that concentrates each solution too much in the archive, and
to achieve a global multi-objective optimization solution.
Use the leader mechanism to obtain the best non-dominant
solution by roulette method in the archives. The probabilities
are as follows:

Pi =
c
Ni

(23)

where c is a constant greater than 1, and Ni is the number of
Pareto optimal solutions obtained in the ith segment. It can be
seen that if the current memory is not too full, the possibility
of selecting a new leader in the next iteration increases,
making the solution distribution of the Pareto-optimal front
in the archiver more extensive.

The limit of the archive controller is the maximummemory
size of the non-dominant Pareto-optimal solutions. An over-
sized archive controller increases the computational cost.
In the iterative process, the non-dominant solutions obtained
so far are compared with the solutions in the archive and
the archive update can be performed. Given three MOGWO
principles:
• If the new non-dominant solution does not dominate any of
the non-dominant solutions in the archive, the non-dominant
solution must not be included in the archive.

• If the new non-dominant solution is greater than or
equal to the non-dominant solution in an archive, the new
non-dominant solution should be selected as dominant, the
original non-dominant solution in the archive should be dis-
carded and the new non-dominant solution is included in the
archive.
• The new non-dominant solution and the non-dominant
solution in the archive do not dominate each other and the
new non-dominant solution should be included in the archive.

In short, MOGWO has the ability to search the Pareto-
optimal solution and maintain the optimal solution, which
greatly improves the distribution of the optimal multi-
objective solution.

3) THE STEPS OF NOVEL COMBINATION-MIDAS-ELM
FORECASTING MODEL
Step 1: Selecting the best mixed data forecasting model of
univariate influencing factors by MIDAS regression model
and machine learning MIDAS model.

The univariate MIDAS mixed frequency model is suitable
for forecasting low frequency variables under the influence of
high frequency univariate. Considering the nonlinear features
and some linear features in the mixed frequency data, differ-
ent types of models must be selected to deal with nonlinear
and linear problems, and then satisfactory performance can be
achieved in the subsequent combination forecasting. As men-
tioned in the literature review, MIDAS regression models
have excellent functions in linear forecasting, while machine
learning MIDAS models are good in nonlinear forecasting.
Therefore, six MIDAS regression models and five machine
learning MIDASmodels are constructed as the basic technol-
ogy formixed frequency data forecasting.Moreover, previous
studies have found that the univariate MIDAS regression
models [47], [53]–[55] and the machine learning MIDAS
models have good performance[40], [56], [57]. Six univari-
ate MIDAS regression models are suitable for capturing the
short-term correlation of mixed frequency time series and
have been widely used for short-term forecasting of mixed
frequency data. In addition, the machine learning MIDAS
models are suitable for establishing the nonlinear relationship
between input and output data, which can greatly reduce
the forecasting errors and provide excellent functions for
non-linear MIDAS forecasting. The specific method is select
various S high-frequency independent variables influencing
factors x1, x2, . . . , xi, . . . , xS (i = 1, 2, . . . , S), through the
univariate regression and machine learning MIDAS models,
according to the different lag step x(m)i,t−k/m of high-frequency
variables to generate best M low-frequency forecasting
results y∗i1, y

∗

i2, . . . , y
∗
iM (i = 1, 2, . . . , S).

Step 2: Constructing the novel Combination-MIDAS-ELM
forecasting model

Due to the complexity of the mixed frequency data and
the advantages and disadvantages of the univariate MIDAS
forecasting models, it is important to choose appropriate and
optimal weighting coefficients for the combination-MIDAS
forecasting model to compensate for the shortcomings of
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the various univariate MIDAS models. In this paper, ELM
is adopted as an important aspect of regression forecasting
for the final results after integrating the univariate mixed
frequency components. The specific method is based on the
first step, again through S different high-frequency indepen-
dent variables influencing factors x1, x2, . . . , xi, . . . , xS (i =
1, 2, . . . , S), and the corresponding best forecasting models,
expand the scope of the forecasting results, and the new result
as y∗i,1, y

∗

i,2, . . . , y
∗
i,M , y

∗

i,M+1, . . . , y
∗
i,M+N , where the ratio of

the data lengths of y∗i,1, y
∗

i,2, . . . , y
∗
i,M and y∗i,M+1, . . . , y

∗
i,M+N

are 4:1. The forecasting length ratio of mixed frequency data
is beneficial for extreme learning machine training. There-
fore, a set of ordinal pairs of forecasting outcomes for mixed
frequency data is constructed.

Furthermore, the combination-MIDAS-ELM coefficient
(υ, b) is used as the combination weight of the univari-
ate mixed frequency components. Considering that the
combination-MIDAS-ELM coefficients (υ, b) vary with the
data changes, the combination weight coefficients can be
considered as one variable. More importantly, combination-
MIDAS-ELM is good at determining the fitted variables
in the training set. Therefore, it is recommended to use
combination-MIDAS-ELM to complete the adaptive updat-
ing of the weight combination coefficients. In other words,
the theory based on ELM to forecast weight combinations
of mixed frequency variables can be better adapted to various
factors of the changes of mixed frequency data, and the inher-
ent law can be found based on the training of the previous high
frequency data and low frequency data. Thus, the processing
method can greatly improve the forecasting accuracy of the
mixed frequency data.

Combination-MIDAS-ELM forecasting results are impor-
tant, but it is difficult to determine parameters (υ, b).
Therefore, MOGWO is recommended to adjust parame-
ters (υ, b) to improve regression forecasting performance.
In order to comprehensively consider the accuracy and sta-
bility of the MIDAS forecasting effect, two objectives are
pursued to achieve the accuracy and stability of the mixed
frequency data results. The first objective is themean absolute
error (MAE), which represents the forecasting accuracy of the
model for mixed frequency data and is denoted by fun1(x) .
The second objective is the standard deviation (Std), which
can be used to evaluate the stability of the mixed frequency
data denoted as fun2(x) . Therefore, it is recommended that
the two objective function forecasting models that combine
the accuracy and stability of mixed frequency data are as
follows.

min


fun1(x) = MAE =

1
N

N∑
j=1

∣∣∣_yj − yj∣∣∣
fun2(x) = Std(_yj − yj) , j = 1, 2, . . . ,N

(24)

where N denotes the number of the data sample, yj and
_yj represent the real value and forecasting value, respec-
tively. Optimizing by multi-objective grey wolf optimization
algorithm to obtain the best weights and deviations of the

combination-MIDAS-ELM model. Thus, a novel variable
weighting combination-MIDAS-ELM forecasting model is
proposed by combining the integration of multivariate mixed
frequency data and MOGWO-ELM theory.
Step 3: Forecasting the weekly natural gas prices consider

h-step-ahead conditions
The novel combination-MIDAS-ELM model and

h-step-ahead conditions are implemented in the forecasting
framework. The principle is that the high-frequency indepen-
dent variable can have a lagged effect on the low-frequency
dependent variable. When h = 0, it means that the high fre-
quency data has no effect on the low frequency data without
lagged effect. When h = 1, it means that the high-frequency
data lag by one unit has an impact on the low-frequency data,
and so on. Take a positive integer h = 0, 1, 2, . . . ,H as the
lag time and consider the lag time effects to get the final

forecasting value
∧

f CM ,T+h|T . Figure 1 show the flow path
of Combination-MIDAS-ELM model.

III. EMPIRICAL RESULTS AND ANALYSIS
In this part, we show that the proposed model is effec-
tive in forecasting mixed frequency data and recommend
the novel Combination-MIDAS-ELM model to forecast the
weekly natural gas futures price in UK NBP Intercontinental
Exchange.

A. SOURCE OF MIXED FREQUENCY DATA
The source of mixed frequency data includes futures prices
from UK Intercontinental Exchange retrieved at weekly fre-
quency, and daily energy and economic indicators retrieved at
higher frequency. Specifically, this paper considers the con-
tinuous futures contract settlement price of UK NBP natural
gas traded in Intercontinental Exchange. NBP natural gas
prices are referred to as British Intercontinental Exchange
for natural gas futures delivery and represent the direction
of changes in European natural gas prices. The daily data
of NBP natural gas futures prices are got from extending
the futures contract. The weekly natural gas futures price
is the average daily price during the week. By selecting
daily price data of carbon emissions, coal and crude oil as
energy interaction factors. The price of carbon emissions is
taken from the EU Emissions Trading Scheme. The European
Emissions Trading Scheme (EU-ETS) is the world’s largest
carbon emissions trading market. By regulating corporate
carbon emissions, the world has made a major contribution
to reducing carbon emissions. The price of coal is taken from
the price of the Newcastle coal futures contract. Newcastle
is a major city in the coal industry in the UK as well as
the largest coal port in the UK and a major coal exporter.
The crude oil price is the settlement price of Brent crude
oil futures and is the most commonly used reference price
for crude oil products in the European market. The economic
index used is the UK FTSE 100 Futures Index, which is the
leading European futures contract index. All data used can be
obtained from the Wind database.
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FIGURE 1. Flow path of combination-MIDAS-ELM model
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In order to eliminate the heteroscedasticity in the subse-
quent empirical analysis, all the research objects are trans-
formed into logarithmic rate of return growth rate variables,
the expression is as follows:

returni,t = ln(valuei,t/valuei,t−1)× 100% (25)

where returni,t represents the log return growth rate of the
indicator in the period representing the prices of NBP natural
gas, coal, crude oil and FTSE-100 respectively. In Figure 2,
the rate of return growth of all variables in this paper is drawn
by logarithmic transformation.

B. FORECASTING EVALUATION CRITERIA
A comprehensive forecast evaluation standard was pro-
posed, including RMSE, MAE and MAPE. The detailed
indicator expressions are shown in (26)-(29), and the opti-
mal results are selected through comprehensive calculation
expressions(CCE):

RMSE =

√√√√√ 1
N
×

N∑
j=1

(_yj − yj)
2

(26)

MAE =
1
N
×

N∑
j=1

∣∣∣(_yj − yj)∣∣∣ (27)

MAPE =
1
N
×

N∑
j=1

∣∣∣∣∣ (
_yj − yj)

y

∣∣∣∣∣× 100% (28)

CCE =
1
3
× (RMSE +MAE +MAPE) (29)

C. CHOOSING THE BEST UNIVARIATE MIDAS MODEL
The univariate model MIDAS uses the model shown in
Section I and the machine learning models to forecast weekly
natural gas prices. As the first step in constructing the
combination-MIDAS-ELM model for weekly natural gas
prices, selecting the best univariate MIDAS model directly
affects the accuracy of the final forecasting results, which is
an important step. Select the best univariateMIDASmodel by
comparing the CCE of different MIDAS regression models
and machine learning MIDAS models. At the same time, the
most sensitive natural gas forecast index is selected by the
best univariate MIDAS model. The period from August 15,
2011 to July 6, 2018 is used to train the daily energy and
economic data corresponding to the weekly natural gas price
under the different univariate influencing factors, and the
period from July 9, 2018 to March 29, 2020 is used to test the
sample set. By comparing the CCE between the forecasting
value and the true value, the best univariate MIDAS model is
selected.

The optimal lag length of MIDAS regression and machine
learning MIDAS parameters for daily indicators and weekly
natural gas prices are obtained using the fixed-window
regression method. In this paper, in order to reflect the change
trend of CCE, the maximum lag order of carbon emission
price, coal price, crude oil price and FTSE-100 index based

TABLE 1. The parameters setting of MIDAS regression models and
machine learning MIDAS models.

on daily influence factors is set to 30. At the same time, the
conditions of 0-step, 1-step, 2-step and 3-step ahead condi-
tions are considered. The main parameter settings of MIDAS
regression and machine learningMIDAS are listed in Table 1.
It should be noted that the number of nodes of the hidden layer
of machine learning MIDAS and the X lag step are set to be
the same to maintain the consistency of the structure of the
training set, and when the X lag step changes, the number of
nodes of the hidden layer also changes accordingly.

In this part, we discuss the MIDAS regression mod-
els and machine learning MIDAS models of natural gas
prices, and explain the mechanism for determining the best
lag order and parameters. Table 2 show the CCE of theweekly
natural gas forecast prices based on the univariate carbon
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FIGURE 2. Rate of return growth of weekly NBP natural gas and daily carbon prices, coal prices, crude oil prices and
FTSE-100 index
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TABLE 2. The CCE results of daily carbon prices versus weekly natural gas prices when h=0.

price MIDAS regression model and the machine learning
MIDAS models without step-ahead condition (h=0). When
the lag order of the daily carbon price is 5 and 10, the best
MIDAS models are ELM. It can be seen that the fitting and
forecast effects of the Extreme Learning Machine are best
when the high-frequency lag variables are short. When the
lag order of daily carbon price is 15 and 30, the best MIDAS
model is BPNN. When the lag of daily carbon price is 20,
the best MIDAS model is ENN. If the lag order of the daily
carbon price is 25, the best MIDAS polynomial is BetaNN.
The empirical results show that the effect of machine learning
MIDAS is generally better than the performance of MIDAS
regression under all conditions of different lags of natural
gas price, which indicates that the application of machine
learning can better capture the relationship between natural
gas prices and carbon prices when the lag of natural gas
price changes. Moreover, the BPNN neural network achieves
the best forecast performance when the lag order of car-
bon price is 30, namely BPNN-MIDAS (5, 30), which has
the highest out-of-sample forecast accuracy. MIDAS (5, 30)
represents the multiple of high frequency relative to low
frequency and the specific representation can be found in the
literature [56], [58].

Considering the different relationships between natural gas
and carbon, coal, crude oil and FTSE-100, MIDAS regres-
sion and machine learning MIDAS models for natural gas
prices and influencing factors are used to determine the best
corresponding univariate MIDAS model. Select the best uni-
variate MIDAS model (minimum CCE) under all conditions
from the mechanism presented above. As shown in Table 3,
the most accurate univariate MIDAS regression model for
carbon price is the lag order of carbon price of 20 when the
step forward of h is 1, BPNN-MIDAS (5,20). For coal, the
most accurate univariateMIDAS regressionmodel has the lag
order of the coal price of 20 when the step ahead is 1, using
the step polynomial weight Step-MIDAS (5,20). For crude
oil, the univariate MIDAS regression model has the highest
accuracy. The most accurate univariate MIDAS regression
model is the lag order of crude oil at 10 when h is considered
2-step ahead, BPNN-MIDAS (5,10). For the FTSE-100, the
most accurate univariate MIDAS regression model is the lag
order of the FTSE-100 price at 20 when considered 1 step
ahead, ELM-MIDAS (5,20). Of the four univariate factors

affecting the analysis of natural gas price, natural gas is most
sensitive to crude oil. When the step ahead of h is 0 to 3, the
smallest CCE forecast effects are obtained because natural
gas and crude oil are basically the same mining methods and
then affect each other’s prices, which determines the effect
of crude oil on natural gas. From the results of the forecast
indexs RMSE, MAE, MAPE and CCE, the corresponding
machine learningmodel with a shorter lag step achieves better
forecast results. In other words, this means that when the
lag step size of the high-frequency independent variable is
shorter, the effect on the low-frequency dependent variable is
more obvious. This corresponds to the explanation that the
previous maximum lag step size is selected as 30.

D. THE NOVEL COMBINATION-MIDAS-ELM MODELS
RESULTS AND COMPARISON
The natural gas price driving factors considered have differ-
ent information content, and the results of the combination
forecast are usually better than the results of the single factor
forecast [45], [56], [59]. In this paper, we consider the univari-
ate MIDAS forecasting model, which is based on regression
and machine learning. It not only uses a combination method
to determine the weights of the individual forecast results of
the best univariateMIDASmodel, but also proposes the novel
Combination-MIDAS-ELM model of the variable weighting
scheme. Then select some competing models to evaluate the
progress of the new model compared with the benchmark
model.

1) FORECAST COMPARISON: THE NOVEL
COMBINATION-MIDAS-ELM MODELS VS.
ARIMA AND GARCH
In the first part of the comparison experiment, we com-
pared the Combination-MIDAS-ELM with some other tradi-
tional benchmark combination models (such as ARIMA and
GARCH). The detailed results of the forecast accuracy are
shown in Table 4. The most satisfactory results are shown in
bold in table 4.

Comparison of the experimental results showed that the
novel Combination-MIDAS-ELM model has the most satis-
factory evaluation standard. Specifically, the performance of
ARIMA andGARCH forecast models are similar and inferior
to that of novel Combination-MIDAS-ELM but not as good
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TABLE 3. The best univariate MIDAS model under all conditions.

TABLE 4. The novel combination-MIDAS-ELM models vs. ARIMA and GARCH.

as novel Combination-MIDAS-ELM. When h = 0, 1, 2, 3,
for ARIMA and GARCH models, among different forecast
evaluation indicators RMSE, MAE, MAPE and CCE, the
Combination-MIDAS-ELM proposed in this paper has the
best effect, while the ARIMA model performs relatively
better well. Notably, the mean MAPE values for ARIMA
and GARCH are 33.64% and 225.62%, respectively, while
the corresponding mean for Combination-MIDAS-ELM is
3.68%. It shows that the result of the ARIMA model is
reasonable, the GARCH model is incorrect, and the fore-
casting result of the Combination-MIDAS-ELMmodel is the
same excellent [60]. From the overall result CCE, the mean
CCE values of ARIMA and GARCH are 1.2247 and 7.2322,
respectively, while the corresponding mean of Combination-
MIDAS-ELM is 0.9020.Compared with the best traditional
ARIMA model, the average improvement is 26.35%. And
it can be seen that when h = 2, the best forecast effect is
obtained. This shows that in forecasting the weekly natural
gas price, the daily influencing factors have the most obvious
effect on the weekly natural gas price when the lag is two
days. In other words, for the five working days of weekly
data, the results of the third working day often have the most
significant influence on that week. Therefore, we can con-
clude that the proposed Combination-MIDAS-ELM model
outperforms the comparative benchmark model in terms

of forecast accuracy. Therefore, Combination-MIDAS-ELM
can improve the forecast performance of mixed frequency
data to different degrees, with high forecast stability and
accuracy.

2) FORECAST COMPARISON: THE NOVEL
COMBINATION-MIDAS-ELM MODELS VS.
THE REGRESSION AND MACHINE LEARNING
COMBINATION-MIDAS MODELS
In the second part of the comparison experiment, we com-
pared the novel Combination-MIDAS-ELMmodel with some
other combination forecasting models (such as combination-
MIDAS-Regression, combination-MIDAS-SVR, combinati
on-MIDAS-BPNN, combination-MIDAS-GRNN, combinati
on-MIDAS-ELM, combination-MIDAS-ENN). The detailed
forecasting accuracy results are shown in Table 5 and 6. The
most satisfactory results are also shown in bold.

The comparison of experimental results shows that the
combination of machine learning MIDAS models are bet-
ter than the combination regression MIDAS models. This
is due to the nonlinear properties of the univariate MIDAS
model data itself. The forecast effect of the univariate
MIDAS is better, and the combination effect is also bet-
ter. The model novel Combination-MIDAS-ELM developed

VOLUME 10, 2022 52087



L. Li et al.: Variable Weights Combination MIDAS Model Based on ELM for Natural Gas Price Forecasting

TABLE 5. The novel combination-MIDAS-ELM models vs. the regression and machine learning combination-MIDAS when H=0,1.

in this paper has the most satisfactory evaluation criteria.
Similar to the above comparison experiment 1, the novel
Combination-MIDAS-ELM model has the best forecasting
effect compared with other combination model. It is worth
noting that when h = 0, 1, 2, 3, the average MAPE val-
ues of MIDAS-Regression, MIDAS-SVR, MIDAS-BPNN,
MIDAS-GRNN,MIDAS-ELM andMIDAS-ENN are 4.07%,
4.86%, 6.51%, 4.33%, 5.76% and 6.75% respectively,
while the correspondingmean of Combination-MIDAS-ELM
is 3.68%. It shows that the forecasting results of these
seven combination models are all excellent [60]. From the
overall CCE results, the average CCE values of MIDAS-
Regression, MIDAS-SVR, MIDAS-BPNN, MIDAS-GRNN,

MIDAS-ELM and MIDAS-ENN are 1.0031, 1.0222, 1.1066,
0.9892, 1.1703 and 1.1754, respectively, while the corre-
sponding mean for combination-MIDAS-ELM is 0.9020.
Compared with the best combination MIDAS-GRNN, the
forecasting results have improved by 8.82% on average. It can
be concluded that the novel Combination-MIDAS-ELM
model outperforms the comparable combination MIDAS
models in forecasting accuracy.
Remark: Compared with some combination MIDAS mod-

els, the evaluation criteria for accuracy and stability of
the proposed model are the most satisfactory. In the
Combination-MIDAS-ELMmodel proposed in our work, the
univariate MIDAS regression models and machine learning
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TABLE 6. The novel combination-MIDAS-ELM models vs. the regression and machine learning combination-MIDAS when H=2,3.

models MIDAS are combined, which makes the univariate
forecast results more improved than before. Unlike the previ-
ous fixed weight and variable weight combination methods,
the combination MIDAS model uses novel variable weight
coefficient method based on ELM to determine the combina-
tion weights, which further improves the forecast accuracy of
the combination MIDAS model.

3) FORECAST COMPARISON: THE NOVEL
COMBINATION-MIDAS-ELM MODELS VS.
THE MULTIVARIATE MIDAS MODELS
In the third part of the comparison experiment, we com-
pared the novel Combination-MIDAS-ELM model with

some other benchmark multivariate machine learning mod-
els MIDAS (such as MMIDAS-SVR, MMIDAS-BPNN,
MMIDAS-GRNN, MMIDAS-ELM, and MMIDAS-ENN)
that are directly multivariate. The detailed prediction
accuracy results are shown in Table 7. The most satisfactory
results are also highlighted in bold.

Comparison of the experimental results shows that
the novel Combination-MIDAS-ELM model consistently
exhibits the most satisfactory standard of evaluation. Sim-
ilar to the comparison of experiment 1 and experiment 2
above, when compared with the multivariate machine learn-
ing MIDAS model, the novel Combination-MIDAS-ELM
model can achieve the best forecast performance. It is worth
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TABLE 7. The novel combination-MIDAS-ELM models vs. the multivariate MIDAS forecasting models.

noting that when h = 0, 1, 2, 3, the average MAPE values
of MMIDAS-SVR, MMIDAS-BPNN, MMIDAS-GRNN,
MMIDAS-ELM and MMIDAS-ENN are 8.08%, 22.84%,
6.15%, 7.85% and 19.79% respectively, while the corre-
sponding mean of Combination-MIDAS-ELM is 3.68%.
It can be explained that the results of the MMIDAS-SVR,
MMIDAS-GRNN and MMIDAS-ELM models are excel-
lent, the MMIDAS-BPNN and MMIDAS-ENN models are
good, and the forecast results of the Combination-MIDAS-
ELM model are also excellent [60]. From the overall
result CCE, The mean CCE values for MMIDAS-SVR,
MMIDAS-BPNN, MMIDAS-GRNN, MMIDAS-ELM and
MMIDAS-ENN are 1.0357, 2.6236, 1.0957, 1.1606 and
2.2614, respectively, while the corresponding mean for
Combination-MIDAS-ELM is 0.9020. Compared with the
best multivariate MMIDAS-SVR, which is an average
increase of 12.91%. Therefore, it can be concluded that
the proposed Combination-MIDAS-ELMmodel outperforms
the above models directly using the multivariate machine
learning MIDAS for comparison in terms of forecasting
accuracy.
Remark: Among themultivariateMIDAS benchmarkmod-

els, the novel Combination-MIDAS-ELMmodel has themost
satisfactory computational and evaluation criteria compared
with some currently popular machine learning MIDAS mod-
els. Due to the direct use of the multivariate machine learning
model MIDAS for forecasting, the increase of multivariate
influencing factors leads to an increase in the degree of non-
linearity of the training dataset, which reduces the forecast
accuracy and stability, especially for the MMIDAS-BPNN
and MMIDAS-ENN models.

4) DM TESTS
This study uses the Diebold-Mariano test [61], an important
hypothesis testing procedure, to compare the difference in
predictive power between the proposed combination model
and other comparison models. The theory of the DM test is
described below. First, we state hypotheses based on current
problems.

H0 : E[ψ(error1)] = E[ψ(error2)]

H1 : E[ψ(error1)] 6= E[ψ(error2)] (30)

where error1 and error2 are the difference between the real
data and the predicted data of the different models, and ψ
represents the loss function of the prediction error. We also
select appropriate statistics to complete the statistical infer-
ence process. The prediction section of this paper belongs to
the small sample test. Based on the DM test, the analysis of
Harbor, Leybourne and Newbold [62] is introduced to find

k =
√
n+ 1− 2h+ n−1h(h− 1) (31)

n indicates the range of forecast data. h indicates that the
length of the ahead step.

DM =

[∑n
i=1

(
ψ
(
error1

)
− ψ

(
error2

))
/n
]
∗ s2√

s2/n
∗ k (32)

The constructed DM test statistic, where s2 is the consistent
estimate of the variance and

∑n
i=1

(
ψ
(
error1

)
−ψ

(
error2

))
/

n is the average error of the loss functions of the two
models. The next comparison with the given significance
level determines whether the null hypothesis is acceptable.
If the significance level α is given and the statistic DM is
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TABLE 8. DM-test.

greater than the upper bound Zα/2 or less than the lower
bound −Zα/2, the null hypothesis is rejected. This situation
means that these combined and contrasting models have
significant differences in predictive performance. Conversely,
the alternative hypothesis is rejected as soon as α falls within
the range of [−Zα/2,Zα/2].
Table 8 lists the DM test results between the novel

Combination-MIDAS-ELM models and all comparison
methods. We can see that the novel Combination-MIDAS-
ELM models are significantly different from the other
forecast models at a confidence level of 1%, 5% or 10%.
In particular, for the 0-step to 3-step ahead prediction, the test
passed the 5% significance level, which means that the novel
Combination-MIDAS-ELM models are significantly differ-
ent from the other MIDAS models. As for the comparison
between the novel Combination-MIDAS-ELM models and
the traditional ARIMA, GARCH and multivariate MIDAS
models, most of the DM values are greater than the critical
value of the 1% confidence level. However, when h=0,3, the
DM values comparing the novel Combination-MIDAS-ELM
models and the MIDAS-GRNN based combination models
are−2.1225 and−2.1060, respectively, which means that the
forecast power of the novel Combination-MIDAS-ELMmod-
els is significantly different from the combination-MIDAS-
GRNN models, with a significance level of 5%. Overall, the
forecast ability of the proposed novel Combination-MIDAS-
ELMmodels is significantly different from other comparative
models.

IV. CONCLUSION
This work aims to make theMIDAS forecasting models more
effective. Therefore, we propose a Combination-MIDAS-
ELM model to overcome the weaknesses of natural gas price
forecasting. First, the univariate MIDAS regression models
and machine learning models MIDAS are analyzed based on
carbon prices, coal, crude oil and FTSE-100, and the best
univariate MIDAS model is selected based on CCE index.
Second, the best univariate MIDAS model is combined by
selecting the corresponding MIDAS model among the best
influencing factors to expand the forecast range to construct

a novel variable weight coefficient combination MIDAS
model based on ELM and the optimal initial parameters are
obtained by MOGWO. Third, the effectiveness and accuracy
of the Combination-MIDAS-ELM proposed is demonstrated
by comparison experiments with some relatively competitive
models.

In general, we can draw some conclusions from the
results of the empirical analysis. (1) The effect of the uni-
variate MIDAS model based on machine learning is bet-
ter than the univariate MIDAS model based on regression,
which is due to the nonlinear properties of the data itself.
(2) Natural gas prices are more responsive to crude oil
prices than carbon emissions, coal and the FTSE-100. (3) In
building the Combination-MIDAS-ELM model, the novel
type of variable combination is more robust as a reference
for determining the weighting of the forecast results of the
combination MIDAS model. (4) The forecast accuracy of
the Combination-MIDAS-ELM model is much higher than
that of some other competing MIDAS models. Therefore,
the proposed model can provide significant improvements in
forecasting natural gas prices and is competitive in forecast-
ing nonlinear and irregular natural gas prices.

In further research, we intend to choose other univariate
MIDAS models to fit the weighting coefficients of the com-
bination MIDAS model. Another challenge is to develop a
more comprehensive system of factors for forecasting natural
gas price, because there are other indicators that affect natural
gas price, such as some unexpected information or political
information.
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