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ABSTRACT It has always been an important and arduous task to detect the complex dynamic traffic
environment, especially for unmanned driving. Although the existing advanced detection models have
reached the speed requirements for detection, the detection accuracy needs to be further elevated to improve
the unmanned driving’s safety. How to balance the accuracy and speed of detecting the complex dynamic
traffic environment is still the primary problem to be solved for unmanned vehicles. Therefore, this article
proposes a detection model of the complex dynamic traffic environment for unmanned vehicles by following
the framework idea of YOLOv3. Firstly, we regard MobileNetv3 as the backbone and replace the traditional
convolution with the depthwise separable convolution in the wholemodel to reduce the number of parameters
and calculations. Secondly, in enhanced feature fusion layers, we perform the multi-scale fusion of four
feature maps by the compress-and-expandmodule, the SPPmodule, and the cross-layer bidirectional module
of feature fusion to improve the locating accuracy and reduce false detections. Thirdly, we add an IoU loss to
improve the accuracy of model regression. Then, we employ the improved clustering algorithm to re-cluster
anchor boxes, reducing the time overhead while improving the clustering accuracy. Finally, we compare
the proposed model with other advanced detection models in the processed BDD dataset and the KITTI
dataset. We verify that the mAP of the proposed model improves notably without loss of detection speed,
the number of parameters and calculations decreases dramatically, and the proposed model exhibits a more
superior performance.

INDEX TERMS Complex dynamic traffic environment, detection model, unmanned vehicles, YOLOv3.

I. INTRODUCTION
For unmanned vehicles, the complex dynamic traffic envi-
ronment is composed of all the moving elements that may
affect the driving of the unmanned vehicles themselves, just
like various types of vehicles in the lane, pedestrians, and rid-
ers [1]–[3]. It has always been an important and arduous task
to detect the complex dynamic traffic environment. It affects
the planning decision, control execution of unmanned driv-
ing, and ultimately the safety of unmanned driving.

Contrasted with other sensors, machine vision has an
excellent performance in classifying different vehicles,
pedestrians, and riders [4]. Therefore, target detection tech-
nology based on machine vision is widely used to classify
and locate moving elements in the complex dynamic traffic
environment [5]–[7]. However, the target detection based on
machine vision has many problems in practical situations.
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For the classification and locating of moving elements (tar-
gets) in the complex dynamic traffic environment, the dif-
ficulties of target detection technology based on machine
vision mainly focus on the impact of the characteristics’
diversity of pedestrians and riders, scales’ diversity of vehi-
cles, pedestrians, and riders, environmental factors, and the
mutual occlusion between targets. In order to solve the above-
mentioned difficulties, many scientific research institutions
and scholars have conducted extensive and in-depth research
in recent years.

With the development of machine vision technology, the
target detection technology has successively undergone the
frame difference method, the optical flow method, the back-
ground difference method [8]–[10], the template match-
ing method [11], and the statistical learning method [12],
[13]. Whereas the seemingly well-developed detection model
based on statistical learning faces the inability to balance
the relationship between high-quality detection and a large
volume of time-consuming calculations, it cannot meet the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 51873

https://orcid.org/0000-0002-0604-6419
https://orcid.org/0000-0002-5549-5798
https://orcid.org/0000-0001-5176-4762


S. Yang et al.: Detection Model of Complex Dynamic Traffic Environment for Unmanned Vehicles

detection needs of unmanned driving for accuracy and speed.
Development and application of deep learning break through
the bottleneck of the target detection based on statistical
learning [14]–[16]. At present, the mainstream general target
detection technologies based on deep learning mainly consist
of the method based on region proposal generation such as
R-CNN series and the methods based on regression such as
YOLO series and SSD series.

The detection speed of the detection model based on the
regressionmethod is generally faster than the detectionmodel
based on region proposal generation. However, the detection
accuracy is worse than that of the detection model based on
region proposal generation [17]. In order to improve accuracy,
neural network models gradually deepen and widen, such
as YOLOv3 [18] and YOLOv4 [19]. Although the detec-
tion accuracy of YOLOv3 and YOLOv4 is comparable to
or even better than the detection accuracy of models based
on region proposal generation, they still need to be further
improved. As the network models deepen and widen, the
number of parameters and calculations is considerable, which
is extremely unfavorable for the detection models. How to
balance the detection accuracy and speed of the complex
dynamic traffic environment is still the primary problem to
be solved for the realization of unmanned vehicles [20].
Moreover, the YOLOv3 model also has some problems that
include poor network clustering, inaccurate target locating,
and false detection, which seriously threaten the safe driving
of unmanned vehicles [21], [22].

In response to the above-mentioned problems, we choose
the framework of YOLOv3 that is a typical representative
of the current advanced target detection models to build a
detection model of the complex dynamic traffic environment
for unmanned vehicles. Firstly, MobileNetv3 that introduces
the attention mechanism to the inverted residual block is in
place of the backbone network of YOLOv3. Furthermore,
we employ the depthwise separable convolution instead of
the traditional convolution to reduce the number of param-
eters and calculations. Secondly, in enhanced feature fusion
layers, the top feature map extracted by the backbone passes
through the designed compress-and-expand module and the
SPP module to enhance the fusion of features and reduce the
number of parameters and calculations continuously. In order
to improve the accuracy of the target locating and avoid
false detection in a complex dynamic traffic environment,
we design the cross-layer bidirectional module of feature
fusion to realize the multi-scale fusion of four effective fea-
ture maps and make full use of shallow-layer and deep-layer
information. Thirdly, we add an IoU loss in the loss function
and take advantage of the form of binary cross-entropy to
predict the center offset loss of the bounding box to improve
the regression accuracy of the detection model. Moreover,
we improve the k-means clustering algorithm in YOLOv3
and adopt the improved clustering algorithm to re-cluster
the anchor boxes. The improved clustering algorithm enables
to avoid the selection randomness of the initial clustering
center, the influence of noise and interference from external

factors, and a lot of run-time overhead. Finally, we conduct
the experiments in the processed BDD dataset and the KITTI
dataset and compare the proposed detection model with other
models to verify the superior performance of the proposed
detection model.

II. RELATED WORKS
A. TRAFFIC TARGET DETECTION BASED ON DEEP
LEARNING
After 2010, the field of target detection has entered a freez-
ing period, and there has hardly been any innovative devel-
opment. The success of the AlexNet [23] allows many
researchers to see new opportunities and marks the advent of
the era of deep learning [24], [25].

As a two-stage model, the detection model based on region
proposal generation first selects a proposal box for the input
image and then classifies and locates the proposal box to
get the final detection results [26]. R-CNN [27] regarding
AlexNet as the backbone network pioneers the application of
CNN in target detection. Although the detection accuracy of
the R-CNN model is better than that of the traditional target
detection method, the recurring proposal boxes increase a
lot of calculations and cause the detection speed to slow
down. To overcome this problem, He et al. propose the SPP-
Net (spatial pyramid pooling network) [28]. The SPP-Net
only performs feature mapping once for the entire detection
target, thereby reducing the detection time. Fast R-CNN [29]
combines the idea of the SPP-Net and improves the detection
speed and accuracy once again. The Faster R-CNN [30]
generates candidate regions by using the Region Proposal
Network (RPN), which truly realizes the end-to-end training
of the target detection. R-FCN [31] takes ResNet [32] as a
feature extraction network to improve the effect of feature
extraction and classification. Subsequently, theMask R-CNN
[33] and the Cascade R-CNN [34] also continue to solve the
shortcomings of the previous models, but they also bring new
problems. The problems such as large model scale and slow
detection speed have still existed.

As a single-stage model, the detection model based on
regression omits the generation stage of the candidate region
and can directly obtain the target’s classification and position
coordinates. In response to the widespread problem of poor
real-time performance in two-stage models, Redmon et al.
propose the YOLOv1 model that is the first single-stage
network [35]. The YOLOv1 model treats the target detection
task as a regression problem. As long as it processes the input
image once, it can get the position and the class of targets
simultaneously. Since YOLOv1 does not generate candidate
regions, it has a fast detection speed where YOLOv1 greatly
exceeds the two-stage models. Nevertheless, YOLOv1 pro-
duces more locating errors that result in low overall detection
accuracy. Basing on YOLOv1, W. Liu et al. propose the
SSD (Single Shot MultiBox Detector) [36]. SSD applies an
RPN-based mechanism and end-to-end regression to improve
the detection accuracy, but the detection speed is slightly
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slower than that of the YOLOv1 model. YOLOv2 [37] pre-
dicts the bounding box by anchor boxes and takes the more
efficient Darknet-19 as the backbone network.

YOLOv3 regards the better Darknet-53 as the backbone
network to realize a faster detection speed. By means of FPN
[38], it performs the detection task on the feature maps with
three different scales at three different positions to improve
the detection effect of the network effectively. YOLOv3 is
a typical representative in the YOLO series as well as the
most widely used anchor-based one-stage detection model.
Later YOLOv4 continuously improves on the framework of
YOLOv3 by adopting CSPDarknet53 and PAN [39]. Conse-
quently, we choose the framework of YOLOv3 as the basis
to build a detection model of the complex dynamic traffic
environment for unmanned vehicles.

For target detection, a dataset with strong applicability is
also an indispensable requirement as support in addition to a
powerful network framework. Aiming at the traffic environ-
ment, some core autonomous driving companies and major
institutions, such as Alphabet-Waymo, Uber, Tencent Baidu,
etc., provide a large number of training and testing datasets
required for detection. Meanwhile, some non-profit organi-
zations and colleges also offer some marked training datasets
freely. Prevalent datasets about traffic targets include KITTI
[40], Cityscapes [41], ApolloScape [42], Mapillary [43], and
BDD100K [44]. The Berkeley Diverse Drive (BDD100K)
dataset is more diverse than several other public datasets in
terms of the number of images, city samples, backgrounds,
weather conditions, and lighting conditions [45]. Its samples
are more consistent with complex dynamic traffic scenes.
In the article, we choose the BDD100K dataset and the KITTI
dataset to train and evaluate the detection model of the com-
plex dynamic traffic environment for unmanned vehicles.

B. FRAMEWORK OF THE YOLOV3 MODEL
The framework of the YOLOv3 model mainly includes the
backbone, enhanced feature fusion layers, and YOLO heads.
Fig. 1 displays the main framework of the YOLOv3 model.

The backbone is responsible for extracting targets’ fea-
tures. The YOLOv3 model extracts targets’ features in
the image by the structure of Darknet-53. The images in
the dataset are normalized to a size of 416×416 and sent to the
detectionmodel. Darknet-53 contains a large volume of resid-
ual blocks composed of 1× 1 and 3× 3 convolution kernels
in the framework. The 3× 3 convolutional layer is in charge
of increasing the number of channels to extract features, and
the 1 × 1 convolutional layer is in charge of adjusting the
number of the channels. The backbone of the YOLOv3 has
52 convolutional layers. It enables to extract three effective
feature maps of 13× 13, 26× 26, and 52× 52 [68].

The YOLOv3 model regards FPN as the enhanced feature
fusion layers. FPN enlarges the small feature map to the same
size as the feature map of the previous layers by upsampling.
As the number and scale of the final feature maps change, the
size of the anchor boxes also needs to be adjusted accordingly.
The YOLOv3 model clusters the anchor boxes in the training

set by using the k-means clustering algorithm and selects
representative anchor boxes based on the clustering results.
It requires nine sizes of anchor boxes in total.

The YOLOv3 model includes three YOLO heads. YOLO
heads correspond to three effective feature maps of 13× 13,
26× 26, and 52× 52 to realize multi-scale target detection.

III. DETECTION MODEL OF THE COMPLEX DYNAMIC
TRAFFIC ENVIRONMENT FOR UNMANNED VEHICLES
Learning from the design ideas of the YOLOv3 framework,
we propose a detection model of the complex dynamic
traffic environment for unmanned vehicles. The proposed
detection model contains feature extraction layers (back-
bone), enhanced feature fusion layers, and YOLO heads.
The structure of the proposed detection model is visible
in Fig. 2.

A. BACKBONE
An excellent backbone directly refers to the accuracy of net-
work recognition subsequently. At present, neural networks
have be more and more complex and deeper and deeper.
Despite the accuracy of the network model has improved,
the number of parameters and calculations becomes more
and more. The considerable number of parameters and cal-
culations is unfriendly to detecting the complex dynamic
traffic environment for unmanned vehicles. In [46]–[48], the
MobileNetv3 is the lightweight network and makes the net-
work convolution process more efficient as the backbone.
It is able to reduce the number of model parameters and
calculations on the premise of a small decrease in accuracy.
Therefore, we extract features of dynamic environmental
targets by the MobileNetv3 [49] announced by Google in
2019. Table 1 shows the overall structure of the Mobilenetv3.
The MobileNetv3 continues to use the depthwise separa-
ble convolution, the inverted residual block, the linear bot-
tleneck structure, etc., while adopting the SE module and
h-swish function. Compared with previous MobileNetv1
[50] and MobileNetv2 [51], the performance and speed of
MobileNetv3 improve to an extent. In the proposed detection
model, we take the rest of MobileNetv3 as the backbone
network after removing the pooling layer and the convolu-
tional layers. Since the shallow-layer feature maps have rich
location information and the deep-layer feature maps have
rich semantic information, the backbone extracts four feature
maps to improve the detection accuracy.

1) DEPTHWISE SEPARABLE CONVOLUTION
The prominent advantage of the MobileNet series is the use
of the depthwise separable convolution to reduce the number
of parameters and calculations [53]. The depthwise separable
convolution is able to increase the detection rate without
significant changes in the detection accuracy. It defines two
independent layers in Fig. 3, the lightweight depthwise con-
volution for spatial filtering and the pointwise convolution
for feature generation. The characteristic of depthwise con-
volution is that the number of channels of the convolution

VOLUME 10, 2022 51875



S. Yang et al.: Detection Model of Complex Dynamic Traffic Environment for Unmanned Vehicles

FIGURE 1. Framework of theYOLOv3 model.

FIGURE 2. Structure of the proposed detection model.

FIGURE 3. Depthwise separable convolution.

kernel is 1. The pointwise convolution is essentially a 1 ×
1 convolution kernel, and the number of channels is equal to
that of the output feature map. As we know, a large number
of parameters come from the 3 × 3 convolution kernel in
YOLOv3. Taking a 3 × 3 convolution kernel as an example,
we compare the depthwise separable convolution with the
traditional convolution to illustrate that the number of param-
eters and calculations of the depthwise separable convolution
significantly decreases in Table 2. The feature map of the

input is M ×M × P, the stride is 1, the convolution kernel is
3× 3 × Q, and the feature map of the output is M×M × Q.
Basing on the advantages of the depthwise separable con-

volution, we replace the traditional convolution with the
depth separable convolution in the proposed detection model
of the complex dynamic traffic environment for unmanned
vehicles.

2) INVERTED RESIDUAL BLOCK WITH SE STRUCTURE
The main structural block of Mobilenetv3 is the inverted
residual block with the SE (Squeeze-and-Excite) structure.
For the usual residual block, it compresses the number of
channels of the feature map by a 1 × 1 convolution kernel
firstly. Then, it passes through a 3× 3 depthwise convolution
layer. Finally, the usual residual block expands the number
of channels by a 1× 1 pointwise convolution layer. In short,
the usual residual block expands to the previous number of
channels after compressing channels of the feature map. The
depthwise convolution layer extracts a few features in the
usual residual block because the number of input channels
restricts the network to extract features. In order to increase
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TABLE 1. Overall structure of the MobileNetv3. S is the stride. SE means
whether there is a Squeeze-and-Excite in that block. NL means whether
the block use HS (h-swish) or RE (ReLU).

TABLE 2. Number of parameters and calculations about the depthwise
separable convolution and the traditional convolution.

FIGURE 4. Inverted residual block with the SE structure.

the number of channels and obtain more features, the inverted
residual block first expands channels by a 1 × 1 convolu-
tion kernel. Moreover, the inverted residual block introduces
the SE structure in Fig. 4. The SE structure mainly learns
the correlation between channels to filter out the attention
to the channels. It processes the feature map to obtain a
one-dimensional vector with the same number of channels.
The one-dimensional vector is the evaluation score of each
channel. The SE structure applies the scores to the corre-
sponding channels afterward to stimulate the useful channels
and suppress the useless channels [54]. Despite the SE struc-
ture increases the number of calculations slightly, the effect
of the inverted residual block with the SE structure is better
than that of the usual residual block.

FIGURE 5. Structure of the compress-and-expand module.

B. ENHANCED FEATURE FUSION LAYERS
In YOLOv3, the structure of FPN can fuse the feature map
with strong low-resolution semantic information and the fea-
ture map with rich high-resolution spatial information from
top to bottom. In the proposed detection model, enhanced
feature fusion layers continuously strengthen the top features
extracted by the backbone through the compress-and-expand
module and the SPP module. After that, the obtained feature
map performs multi-scale fusion with the other three feature
maps from top to bottom and from bottom to top in the cross-
layer bidirectional module of feature fusion. The process is
able to solve the problems of insufficient use of shallow-
layer information and loss of deep-layer information, thereby
improving the accuracy of target position and reducing false
detections in the complex dynamic traffic environment.

1) COMPRESS-AND-EXPAND MODULE
In Fig. 5, the compress-and-expand module compresses the
channels of the input M × M × P through a convolution
kernel with the size of 1 × 1 × s1 and then expands the
channels of the feature map by the 1× 1 convolution and the
3 × 3 depthwise separable convolution simultaneously. The
number of channels of the convolution kernels is a1 and a2
respectively. We obtain a feature map with a size of M×M×
(a1 + a2) after concatenation. At last, the compress-and-
expand module compresses, expands, and concatenates fea-
ture maps again. As shown in Fig. 5, a1 = a2 = 2s1 = 1/4P,
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FIGURE 6. Structure of the SPP module.

and b1 = b2 = 4s2 = 1/2P. The convolution kernels with
different sizes mean the receptive fields with different sizes,
and the final concatenation means the fusion of features with
different scales.Moreover, the number of channels has shrunk
exponentially before expanded, thus reducing the number of
parameters and calculations.

2) SPP MODULE
SPP (Spatial Pyramid Pooling) is one of the important mea-
sures for multi-scale pooling of high-level features in the tar-
get recognition algorithm to increase the receptive field. It can
flexibly obtain the output with any available dimension by
increasing the number of feature pyramid layers or changing
the window size. The SPP module is able to improve the
detection accuracy to a certain extent [55], [56]. Fig. 6 shows
the structure of the SPP module. The SPP module owns the
maximum pooling with a kernel size of 5×5, 9×9, 13×13,
and a skip link [57]. The size of the maximum pooling kernel
in the SPP module should be as close as possible or equal to
the size of the input feature map. The SPP module realizes
the fusion of local and global features, allows the neural
network to extract features with different scales, and enriches
the expressive ability of feature maps.

3) CROSS-LAYER BIDIRECTIONAL MODULE OF FEATURE
FUSION
In a deep neural network, the deeper the number of layers
is, the smaller the size of the feature map is, and the richer
semantic information contained is. Due to having a larger
resolution and retaining more spatial information of the orig-
inal image, the shallow-layer feature map is conducive to
determining the target position. The multi-scale feature net-
work makes use of the advantages of different feature maps
to realize the accurate detection of targets. In the proposed
detection model, we add a scale of the feature map to perform
multi-scale fusion and make full use of the shallow-layer
spatial information to improve the accuracy of target locating.
Fig. 7 presents the structure of the cross-layer bidirectional
module of feature fusion.

The cross-layer bidirectional module of feature fusion has
two kinds of connections from top to bottom and from bottom
to top. Simultaneously, it has a horizontal connection from
input nodes to output nodes to fuse more features. We add the
deep-layer feature map to the previous feature map through
upsampling. After an inverted residual block, we repeat the
above operations until the obtained feature map fuses with a
104×104 feature map from the backbone. The shallow-layer
feature information is transferred to the deep-layer feature
maps through down-sampling to strengthen the feature pyra-
mid. Furthermore, in the same size of feature maps, we add
an extra edge to fuse more features without increasing the
cost in the cross-layer bidirectional module of feature fusion.
In this way, the detection model is capable of utilizing the
shallow-layer information adequately and avoiding the loss of
the deep-layer information to improve the locating accuracy
and reduce the occurrence of false detection.

The use of the inverted residual block is to deepen the
network and reduce the parameters as shown in Fig. 8(a).
What is noteworthy is that we absorb the idea of residuals
when performing down-sampling as shown in Fig. 8(b). The
inverted residual block regards the Mish function as the acti-
vation function. The Mish function expression is:

Mish = x × tanh
(
ln
(
1+ ex

))
(1)

When the value of the Mish function is negative, the Mish
function allows a relatively small negative gradient to flow
in to ensure the flow of information. Compared to the per-
formance of different activation functions in Squeeze Excite
Net-18 for CIFAR 100 classification, the Mish activation
function performs a more accurate detection [58]. Despite
the computational complexity and time of the Mish function
have increased a little, they are worth for the improvement of
training stability and the improvement of final accuracy.

Different input features have different resolutions, and
their contribution to output features is usually unequal.
Hence, we introduce a simple fast attention mechanism to
each input feature map. That is to say, we add the weight to
achieve rapid normalization and fusion of the feature maps,
and this process makes the network understand the impor-
tance of each input feature. The output feature map is:

Pout =
∑

i
ωi/

(
ε +

∑
i
ωi

)
× Pini (2)

where Pini is the different input feature map and ωi is the
normalized weight of the input feature map. The simple atten-
tion mechanism is equivalent to assigning different weights
to each layer for fusion and allows the network to pay more
attention to important layers.

C. YOLO HEAD
The YOLO head is in charge of prediction and classification
of multi-scale targets. The proposed model also needs to add
the corresponding the YOLO head due to adding a scale of
the feature map. The sizes of the obtained YOLO heads are
104 × 104, 52 × 52, 26 × 26, and 13 × 13, respectively.
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FIGURE 7. Structure of the cross-layer bidirectional module of feature fusion.

FIGURE 8. (a) Inverted residual block; (b) Block for down-sampling
operation.

As shown in Fig. 9, we conduct the depthwise separable
convolution that aims at increasing the dimensionality of the
feature map and reducing the number of parameters in YOLO
heads. At last, the YOLO head adjusts the dimensionality that
the output needs by a 1× 1 convolution layer.

D. ANCHOR BOX
The anchor box is proposed and applied in Faster
R-CNN. The YOLOv2 takes the anchor box as a reference.
Afterward, the various versions of YOLO series both take
advantages of the anchor box. Different from the sliding

FIGURE 9. YOLO heads.

window and RPN (Regional Proposal Network), the anchor
box comes from the network. It can reduce the time cost
and make the network model easier to learn. The YOLOv3
clusters anchor boxes by the k-means clustering algorithm
and obtains three anchor boxes for each feature map.

The k-means clustering algorithm regards the distance
between data points as a similarity index in the process of
clustering iteration to find k classes in a given dataset. The
center of each class is the mean point of all data points in
the class. However, the random selection of the initial cluster
center increases the randomness of the clustering [59].

Coupled with the interference of noise and external factors,
the approach causes the uncertainty of classification, the
mixing of different targets, and the same targets classified
into different classes. Meanwhile, the diversity of targets in
the complex dynamic traffic environment results in more
samples to learning for the detection model. For this rea-
son, the k-means clustering algorithm needs to adjust the
sample classification and calculate the new cluster centers
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TABLE 3. Detailed steps of the improved clustering algorithm.

continuously. When there is a vast volume of samples in the
dataset, the run-time overhead of the algorithm is expensive.

To solve these problems, we adopt the mini batch
k-means++ clustering algorithm to cluster anchor boxes.
The k-means ++ clustering algorithm is beneficial to initial
cluster centers and effectively decreases the randomness of
the clustering [60]. The mini batch k-means++ clustering
algorithm that is an improved k-means algorithm reduces the
run-time greatly as well as improves clustering accuracy as
much as possible. The advantage of the mini batch method is
that it does not employ all the data samples in the calculating
process but extracts a part of the samples from different
classes to represent their respective classes for clustering
[61]. Due to the small number of samples for calculation,
the mini batch method is capable of reducing the run-time
accordingly [62].

The k-means clustering algorithm uses the Euclidean dis-
tance, but this method leads big bounding boxes to produce
more errors than small bounding boxes. In the improved
clustering algorithm, we introduce the IoU (Intersection over
Union) to define the distance between the two bounding
boxes. The distance between the two bounding boxes is:

d(box, seed) = 1− IoU (box, seed) (3)

where IoU (box, seed) is the ratio of the intersection to the
union of the two boxes.

The detailed steps are shown as Table 3:
The clustering principle of the initial cluster centers is

to make the distance between the cluster centers as far as
possible. From step 8 to step 12 in Table 3, we take a random

value and calculate the next ‘‘seed point’’ in the weight way.
The implementation of this way is to take a random value
Random that can fall in Sum(d) and then calculate Random=
Random-d until Random <= 0. The bounding box at this
moment is the next ‘‘seed point.’’ Namely, when we take
the value of Sum(d)∗random where random is the weight
and Sum(d)∗random=Random, the value will fall into the
interval of d with a high probability. The corresponding point
is selected as the new ‘‘seed point’’ with a high probability.

In step 21, we set the cluster center as the point correspond-
ing to the median value of distances in the point group to
avoid the influence of noise points.

Actually, the process of clustering the cluster centers is one
of function optimization. Assuming that given the number of
classification groups K (K ≤ N and N is the number of data
points), we divide the original data into K classes which are
S = {S1, S2, . . . , SK}. The target function is optimized by:

min J = min
∑N

n=1

∑K

k=1
rnk ‖dn − µk‖2 (4)

where µk represents the median value of the classification
Sk . rnk is 1 when the nth data point is classified into the kth
cluster, otherwise, it is 0.

Differentiatingµk with fixed rnk and making the derivative
equal to 0, we can search for the minimum J and get the value
of µk . µk is:

µk =
∑

n
rnkdn/

∑
n
rnk (5)

In the proposed detection model of the complex dynamic
traffic environment for unmanned vehicles, we need to cluster
twelve anchor boxes corresponding to four feature maps with
different receptive fields.

E. LOSS FUNCTION
The purpose of choosing the various components of the loss
function is to make coordinates, class, and confidence of
predicted target achieve a good balance between the network
output and the effect of target detection. As the basis for the
deep neural network to judge the samples of false detection,
the loss function dramatically affects the convergence effect
of the neural network model [63]. The YOLOv3 model sup-
ports the form of the sum of squared errors (SSE) in the
process of predicting position and regression of the bounding
box, and it adopts the cross-entropy loss function in terms of
confidence and class. The final total loss is in the form of the
sum. Nevertheless, intuitively speaking, the center point of
the bounding box is a certain relationship with the width and
height. Therefore, we add an IOU loss in the loss function
of the proposed detection model. Meanwhile, we apply BCE
(binary cross-entropy) to the center offset loss of the predicted
bounding box. If we divide the feature map into S × S grids
and each grid generates B candidate boxes, we can obtain
S × S × B bounding boxes ultimately. Composition and
calculation of the loss function are:

Lbox = −
∑S2

i=0

∑B

j=0
Iobji,j (2− ŵ

j
i × ĥ

j
i)[x̂

j
i log(x

j
i )
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+(1− x̂ ji ) log(1− x
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i=0

∑B
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Iobji,j (2− ŵ

j
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j
i)[ŷ

j
i log(y

j
i)

+(1− ŷji) log(1− y
j
i)]

+

∑S2

i=0
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Iobji,j (2− ŵ

j
i × ĥ

j
i)[(w
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i

−ŵji)
2
+ (hji − ĥ
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i)
2] (6)

Lconf = −
∑S2

i=0

∑B

j=0
Iobji,j [Ĉ

j
i log(C

j
i )

+(1− Ĉ j
i ) log(1− C

j
i )]

−λnoobj
∑S2

i=0

∑B

j=0
Inoobji,j [Ĉ j

i log(C
j
i )

+(1− Ĉ j
i ) log(1− C

j
i )] (7)

Lcls = −
∑S2

i=0
Iobji,j

∑
c∈class

[P̂ji log(P
j
i)

+(1− P̂ji) log(1− P
j
i)] (8)

Liou =
∑S2

i=0

∑B

j=0
Iobji,j d

j
i (9)

Loss = λboxLbox + λconf Lconf + λclsLcls + λiouLiou (10)

where Lbox is the regression locating loss of the predicted
bounding box, Lconf is the confidence loss of the predicted
bounding box, Lcls is the class loss of the predicted bounding
box, and Liou is the IoU loss of the predicted bounding box.
Iobji,j indicates whether the jth anchor box of the ith grid is
responsible for this target. If the jth anchor box of the ith grid
is responsible, Iobji,j = 1, otherwise Iobji,j = 0. Inoobji,j indicates
whether the jth anchor box of the ith grid is responsible for
this target. If the jth anchor box of the ith grid is responsible,
Inoobji,j = 0, otherwise Inoobji,j = 1. λnoobj represents the weight
of the confidence loss where the bounding box excludes the
target. x jI , y

j
i,w

j
i, h

j
i,C

j
i , P

j
I , and d

j
i represent the center coordi-

nates, the width, the height, the class probability, and the con-
fidence of the jth bounding box of the ith grid, and distance
between the ground truth box and the predicted bounding
box, respectively. x̂ ji , ŷ

j
i, ŵ

j
i, ĥ

j
i, Ĉ

j
i , and P̂

j
i represent the center

coordinates, the width, the height, the class probability, and
the confidence of the ground truth box, respectively. λbox,
λconf, λcls, and λiou represent the weight of Lbox , Lconf , Lcls,
and Liou, respectively.

IV. EXPERIMENT AND DISCUSSION
Since the BDD100K dataset can reflect the complexity of the
dynamic traffic environment more truly than other datasets
and the KITTI dataset is commonly used in autonomous
driving research, we choose the BDD100K dataset and the
KITTI dataset for experiments. We verify the performance
of the proposed detection model by comparing it with other
advanced detection models. Training and deployment of
models are performed using a server equipped with Intel Core
i7-8700K CPU and NVIDIA GeForce GTX 1080Ti GPU
card. All models are trained on twoGPU cards. The validation
experiments and the clustering experiments are performed in

TABLE 4. Distribution of different classes in the BDD100K dataset.

TABLE 5. Distribution of different classes in the KITTI dataset.

a personal laptop equipped with Intel Core i5-7300H CPU
and NVIDIA GeForce GTX 1650 GPU card.

A. DATASET PROCESSING
The BDD100K dataset contains ten classes that are bus, light,
sign, person, bike, truck, motor, car, train, and rider. It has
100000 images used for target detection. The images are
divided into a training set of 70000, a test set of 20000,
and a validation set of 10000. In the BDD100K dataset, the
distribution of different classes is visible in Table 4.

The most number of the class is the car, and the fewest
number of the class is the train of which the number is more
than 5700 times different from that of the car. The second-
to-last number of the class is the motor with a difference
of more than 236 times from the number of the car. If the
number of classes is extremely uneven, the neural network
will differentiate the characteristics of the targets. For a large
number of the class, the network will strength the ability to
extract features. For a small number of the class, the network
will weaken the ability to extract features. To avoid this case,
we first remove labels of light, sign, and train that are not or
uncommon dynamic targets of the complex traffic environ-
ment in the training set and validation set. Then, we merge
the label information of the motor and the bike into the rider.
Finally, we extract images in the processed dataset. When
extracting images, we save all the images owning the bus and
the rider and get a total of 14202 images in the training set
and 1959 images in the validation set. Fig. 10 displays the
distribution of classes in the processed dataset. The processed
training dataset contains five classes: bus, car, person, rider,
and truck. The class owning the most number of the class is
the car with 142955, and the class owning the fewest number
of the class is the truck with 7679. The number of them differs
by 18 times, and the number of each class in the training set
is greater than the empirical value of 2000.

The KITTI dataset has a total of 7481 images with labels.
It contains eight classes, namely, car, vam, truck, pedestrain,
person, cyclist, tram, and misc. In order to facilitate training,
we merge the labels of vam, truck, and tram into the labels of
car, merge the labels of person into the labels of pedestrain,
and finally get three classes that are pedestrain, cyclist, and
car, as shown in Table 5. The training set and the validation
set are divided by 4:1.
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FIGURE 10. Distribution of classes in the processed dataset.

The training process is carried out for 120 epochs. The
batch size is 8. The training learning rate is set by the cosine
annealing algorithm, and the initial value is set to 0.001.
We select theAdamoptimizer to optimize the proposed detec-
tion model.

B. CLUSTERING OF ANCHOR BOXES
In order to cluster anchor boxes that conform to targets in the
complex dynamic traffic environment, we perform clustering
experiments in the datasets and compare the clustering effect
of the improved clustering algorithm with that of the k-means
clustering algorithm. We follow the routine of the original
setting in YOLOv3, and we need to cluster twelve anchor
boxes in the proposed detection model.

We employ the k-means clustering algorithm and the
improved clustering algorithm to conduct ten experiments
in the processed BDD dataset and record the run-time and
the average IoU. As shown in Fig. 11(a), the average IoU
obtained by using the k-means clustering algorithm stabi-
lizes at 68.51%. In comparison, the average IoU obtained by
using the improved clustering algorithm stabilizes at 70.15%,
an increase of 2.39%. The improvement of average IOU also
shows that the improved clustering algorithm reduces the
influence of noise and interference from external factors due
to using the medium value of distances in the point group.
As shown in Fig. 11(b), it takes an average of 457.00 seconds
to cluster the required anchor boxes by the k-means clustering
algorithm, while it takes an average of 65.92 seconds to
cluster the required anchor boxes by the improved clustering
algorithm, a difference of 6 times.

In brief, the improved clustering algorithm enables to
effectively reduce the impact of the randomness of the initial
cluster center on the clustering effect and cluster anchor
boxes that are more in line with the actual complex dynamic
traffic environment. At the same time, the run-time decreases
dramatically, which is very friendly to big data processing.

By the improved clustering algorithm, we get twelve
anchor boxes in the processed BDD dataset: (4,7), (5,16),
(6,27), (7,9), (9,16), (11,31), (15,20), (18,81), (23,35),
(40,52), (68,103), and (130,198). In a similar way, we get
twelve anchor boxes in the KITTI dataset: (5, 43), (9, 24),

FIGURE 11. (a) Average IoU obtained by the k-means clustering algorithm
and the improved clustering algorithm; (b) Run-time by the k-means
clustering algorithm and the improved clustering algorithm.

(12, 95), (13, 37), (18, 47), (25, 184), (26, 67), (28, 36), (42,
98), (43, 58), (68, 127), and (112, 209).

C. PERFORMANCE COMPARISON WITH OTHER
ADVANCED DETECTION MADELS
Commonly used evaluation indicators for evaluating the
performance of the neural network include Precision(P),
AP (Average Precision), Recall (R), F1-score (F1), and mAP
(mean Average Precision). The calculation formulas of Pre-
cision, Recall, and F1 are respectively:

P = TP/(TP+ FP) (11)

R = TP/(TP+ FN ) (12)

F1 = 2PR/(P+ R) (13)

where TP is the true positive sample, FP is the false positive
sample, and FN is the false negative sample.
Precision refers to the proportion of true positive samples

in all predicted positive samples. Recall refers to the pro-
portion of the true positive samples in all true samples. Pre-
cision and Recall indicators are sometimes in contradictory
situations, so we need to consider them comprehensively.
F1 combines the results of Precision and Recall. The higher
F1 is, the more effective the detection model of the complex
dynamic traffic environment for unmanned vehicles is.
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TABLE 6. (a) AP values and mAP values of various targets in the
processed BDD dataset (IoU = 0.5); (b) F1 values of various targets and
FPS in the processed BDD dataset (IoU = 0.5, confidence threshold =

0.5); (c) AP values, F1 values, mAP values of various targets and FPS
about YOLOv5-l (IoU = 0.5, confidence threshold = 0.5).

TABLE 7. AP values and mAP values of various targets in the KITTI
dataset (IoU=0.5); (b) F1 values of various targets and FPS in the KITTI
dataset (IoU=0.5, confidence threshold=0.5).

The mAP is able to evaluate the overall performance of
the detection model. In the multi-target detection, the larger
the AP value of each class is, the better performance of the

TABLE 8. Various model parameters in the detection models.

detection model shows. The calculation formula is:

mAP =
∑N

i=1
(AP)i/N (14)

where (AP)i is the AP value of each class, and N represents
how many classes the dataset owns.

In order to demonstrate the advantages of the proposed
detection model, we compare its performance with that of
other advanced detection models in the experiments. The
input images in other detection models are all 416 × 416 in
size except for EfficientDet-B0. Table 6 and Table 7 show AP
values, F1 values, mAP values of various targets and FPS in
the processed BDD dataset and the KITTI dataset.

Considering the number of each class in the training set
and the validation set, we can summarize that the size trend
of the AP value of the class with a single color and shape is
generally positively correlated with the number of the class
in the proposed model. Nevertheless, the AP value of the
person is inconsistent with the summary in the proposed BDD
dataset. The number of the person in the validation set is 5456,
ranking second, but the AP value is 53.07%, ranking third.
This situation is related to the different postures, movements,
and clothes of person. The situation of the pedestrian in the
KITTI dataset is similar with that of the person.

In Table 6(a), the AP values in the proposed model are
higher than those in other advanced detection models. The
mAP value of the proposed model is 12.36% higher than
that of YOLOv3, 18.34% higher than that of YOLOv4 in
the processed BDD dataset. In Table 7(a), the mAP value
of the proposed model increases respectively by 10.78% and
13.77% compared with that of YOLOv3 and YOLOv4 in
the KITTI dataset. They mean that the proposed model has
higher accuracy for detecting the complex dynamic traffic
environment. Among the detection models, the F1 values of
targets in the proposed model have a respectable performance
as shown in Table 6(b) and Table 7(b). They illustrate that the
proposed model is more effective for detecting the complex
dynamic traffic environment in two datasets. For FPS, the
proposed model is similar with YOLOv3. The FPS of the
proposed model grows at 13.16% for that of YOLOv4 in
the processed BDD dataset. In the KITTI dataset, the FPS of
all the detection models improves slightly. The results show
that the accuracy of the proposed detection model rises up
significantly in two datasets by contrast, while the proposed
detection model has no loss of detection speed. It indicates
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FIGURE 12. (a)Performance of YOLOv3 and the proposed detection model;(b)Performance of YOLOv3 and the proposed detection model in rainy and at
night. The first line is the performance of YOLOv3, and the second line is the performance of the proposed detection model in (a)and (b).

the proposed detection model is conducive to the safety of
unmanned driving.

In Table 6(c), the evaluation indicators of YOLOv5-l are
obtained by training and validation after further handlingwith
the processed BDD dataset. We find YOLOv5-l is unable to
complete the training on the processed BDD dataset. It illus-
trates that YOLOv5-l is unfriendly to detecting complex
dynamic traffic environment for unmanned vehicles in the
article. We filter out the bounding boxes of targets that is
too small (the area ratio of the bounding boxes of targets to
the image is less than 0.001) in the processed BDD dataset
to obtain a new dataset. Nonetheless, the mAP value of the
proposed model is 18.05% higher than that of YOLOv5-l. For
the whole work process of unmanned driving, if the target
detection is not accurate enough, the faster the detection
speed is, the more dangerous the unmanned driving will be.

Therefore, although YOLOv5-l has faster detection speed,
it is still not suitable for the complex dynamic traffic envi-
ronment in the article. For this reason, we no longer verify
the performance of YOLOv5-l in the KITTI dataset.

Meanwhile, compared toMobileNext [52] as the backbone
of YOLOv3, mobilenetv3 performs better on speed with a
slight mAP loss.

Table 8 compares some model parameters of the proposed
model and other advanced detection models. Flops is the total
calculation amount of the model. The flops of the proposed
model decrease by 65.85% for that of YOLOv3, 62.67% for
that of YOLOv4, and 54.84% for that of YOLOv5-l. The
weight size of the proposed model is 82.98% lower than
that of YOLOv3, 83.61% lower than that of YOLOv4, and
16.67% lower than that of YOLOv5-l. In summary, the cal-
culations, the number of parameters, and the model size of the
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TABLE 9. AP values and mAP values of various targets in the processed BDD dataset.

proposed model decrease dramatically in comparison, which
is very beneficial to detect the complex dynamic environment
for unmanned vehicles.

When IoU changes, the AP values, mAP values, and F1
values of the targets in the detection models change accord-
ingly in Table 9 and Table 10. When IoU gradually rises,
AP values, mAP values, and F1 values of the proposedmodels
still maintain the top by contrast. Moreover, the average
changes of AP values and the changes of mAP values of
the proposed model are the lowest in the three models. The
above data indicate that the predicted bounding boxes of the
proposed model have higher confidence and more accurate
locating. The lowest average changes of F1 values of the
proposed model illustrate that the proposed model is more
stable than YOLOv3 and YOLOv4 for detecting the complex
dynamic traffic environment.

D. ABLATION EXPERIMENT AND VISUALIZATION
Table 11 lists the results of the ablation experiments in
the processed BDD dataset. First of all, we replace the
Darknet-53 with the MobileNetv3 in the backbone of
YOLOv3, and we utilize the depthwise separable convolution
in the detection model instead of the traditional convolu-
tion. We find that the number of parameters and calculations
decreases notably in despite of the unsatisfactory accuracy.
Secondly, we add the SPP module to the detection model.
The mAP value rises up by 2.15 percentage points. Then,
we adopt the proposed cross-layer bidirectional module of
feature fusion and anchor boxes clustered by the improved
clustering algorithm. The mAP value and the average F1
value improve significantly. Finally, we add the IoU loss
to the loss function. The mAP value increases by 0.50 per-
centage points. The results in the ablation experiments show
that the improvement methods according to the framework of
YOLOv3 are effective.

In order to compare the performance of the proposedmodel
and YOLOv3 more intuitively, we conduct a visual test as

FIGURE 13. (a) Performance of YOLOv3 and the proposed detection
model about the person label; (b) Performance of YOLOv3 and the
proposed detection model about the person label and the rider label. The
first line is the performance of YOLOv3, and the second line is the
performance of the proposed detection model in (a)and (b).

shown in Fig. 12. The YOLOv3 model regards the truck on
the left as the bus in the first column of Fig. 12(a) and identi-
fies the bus in themiddle as the truck for the second time in the
second column, while the proposed model correctly detects
the target class in the complex dynamic traffic environment.
Obviously, the proposed model detects the targets ignored by
YOLOv3 in the third column of Fig. 12(a). Fig. 12(b) shows
some special scenes on rainy days at night. YOLOv3 detects
the truck on the left side of the first column, but there is no
truck. In the second column, YOLOv3 identifies the car on
the left as the rider on the rainy day. In the third column,
YOLOv3 does not recognize the person and the rider due
to the more complex traffic environment and blurry pictures.
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TABLE 10. F1 values of various targets in the processed BDD dataset.

TABLE 11. Results of the ablation experiments.

This is extremely detrimental to traffic safety. Experiments
reveal that the proposed model can effectively avoid this kind
of phenomenon. Fig. 13 shows performance of YOLOv3 and
the proposed detection model about the person label and the
rider label. YOLOv3 identifies five persons in Fig. 13(a), but
there are six in the image. The proposed model can identify
everyone. In Fig. 13(b), YOLOv3 detects the rider on the left
as a person label, while the proposed model recognizes the
rider with a red box correctly. Consequently, the proposed
detection model is able to reduce the occurrence of false
detections effectively and exhibits a better accuracy of target
locating and a more superior performance compared with
YOLOv3.

V. CONCLUSION AND FUTURE WORK
An excellent detection model of the complex dynamic traffic
environment for unmanned vehicles can successfully realize
the detection of the traffic environment for unmanned vehi-
cles and improve the safety of unmanned driving. In order
to balance the accuracy and speed of detecting the complex

dynamic traffic environment for unmanned vehicles, we fol-
low the framework idea of the YOLOv3 model and complete
the following work:

1) To extract targets’ features, we regard theMobileNetv3
that is on a foundation of inverted residual blocks with
the SE structure as the backbone network, and the.
depthwise separable convolution takes the place of the
traditional convolution in the entire network model
These works enable to reduce the number of parameters
and calculations dramatically in the entire detection
model.

2) In the enhanced feature fusion layers, the compress-
and-expand module and the SPP module are used to
continuously strengthen the feature fusion and reduce
the number of parameters and calculations. In the cross-
layer bidirectional module of feature fusion, we add a
scale of the feature map to achievemulti-scale fusion of
four feature maps, which avoids poor locating accuracy
caused by insufficient use of shallow-layer information
and the false detection caused by loss of deep-layer
information.

3) Since there is a certain relationship between the center
point and the width and height of the bounding box,
we add an IoU loss according to the composition of the
loss function of YOLOv3 and express the center offset
loss of the predicted bounding box in the form of binary
cross-entropy to realize the accurate regression of the
detection model.

4) We improve the clustering algorithm and re-cluster
anchor boxes by the improved clustering algorithm to
avoid the randomness of selecting the initial clustering
center and the influence of noise and interference from
external factors. The improved clustering algorithm
increases the clustering accuracy of bounding boxes
as well as greatly reduces the run-time overhead of
clustering.

5) According to the required detection targets in the com-
plex dynamic traffic environment, we reprocess the
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BDD100k dataset and theKITTI dataset. Subsequently,
we perform the clustering experiments of anchor boxes
and the comparison experiments among the proposed
detection model and other advanced detection models.

The comparison results show that the number of parame-
ters and calculations slows down dramatically, and the accu-
racy of the proposed detection model goes up significantly
while the proposed detection model has no loss of detection
speed. It means that the proposed detection model enables
to improve the safety of unmanned driving significantly.
Moreover, in contrast, the detection effect of the proposed
model further improves through the visualization of the detec-
tion results, indicating the more superior performance of the
proposed detection model of the complex dynamic traffic
environment for unmanned vehicles.

In the next work, we will try to reduce the model size
and the number of parameters and calculations by the prun-
ing method, making the proposed detection model easier to
deploy and more suitable for detecting the complex dynamic
environment in the field of unmanned driving.
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