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ABSTRACT In this paper, a new robust adaptive nonlinear teleoperation system using an improved extended
active observer (IEAOB), adaptive Smith predictor (ASP) and sliding mode control is developed to address
the time delay in the communication channels and the nonlinear robot model uncertainties. Firstly, an ASP
based on Padé approximation and active observer is designed to compensate for the time delay effect.
Specifically, the total network time delay is modelled by Padé approximation, and then an active observer
is deployed to estimate the time delay. To ensure the time-varying delay effect is completely suppressed,
a sliding mode control algorithm is further developed. The main added value of this teleoperation approach
is that it requires neither specific mathematic delay-time model, nor strict assumptions on time delay from a
practical point of view. Finally, the stability of the designed teleoperation system is theoretically studied and
the system effectiveness is demonstrated by applying it to a pair of Phantom Omni haptic devices connected
via a communication channel with time-varying delays.

INDEX TERMS Delay compensation, disturbance suppression, adaptive Smith predictor, sliding mode
control, improved extended active observer.

I. INTRODUCTION
Bilateral teleoperation systems, which render human oper-
ators the capability to achieve complex tasks over a long
distance, have been a hot research topic in the control and
robotics fields. Applications of teleoperation are numerous
ranging from space operation, underwater exploration and
mining, to handling toxic or nuclear materials, as well as,
robotic-assisted surgical interventions [1]. The ultimate goal
of teleoperation is to convey to the operator a sense of direct
interaction with the environment. These systems offer great
potential, but ensuring that the master and slave stations
are connected in a coherent manner is a challenging task.
Prominent among the most scientific challenges in bilateral
teleoperation are the time delay in the communication chan-
nels and the largely unknown dynamics of master and slave
robots, which significantly deteriorate system performance
and even jeopardize system stability.
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Various control methods have been developed in the liter-
ature to handle the destabilization problem caused by time
delay. At the early stage, the scattering theory was employed
in teleoperation systems to develop controllers ensuring sta-
bility by making the communication channel a passive loss-
less transmission line [2]. The time-domain passivity control
method [3] was proposed by implementing a time-domain
passivity observer to identify the period where artificial
damping was required to guarantee the passivity of the tele-
operation system. The wave-variable-based control approach
[4], [5] was designed to guarantee the system’s stability by
the enrolment of wave transform, where power signals were
transformed into wave variables in the communication chan-
nels. However, these above passivity-based methods focus
on system stability. When the time delay increases, it would
cause wave reflection and position drift, and the practicality
of the teleoperation system decreases due to the reduced
transparency. Hence, many modifications [6]–[9] have been
proposed for the wave-variable-based approaches to reinforce
the system performance. There are other control methods
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developed to address the time delay issue as well, such
as Smith predictor-based control [10], [11], communication
disturbance observer (CDOB) based control [12], [13], etc.
The adaptive fuzzy Smith predictor-based controller [11] was
employed to compensate for the time-varying delay effect
to achieve the desired tracking performance, a virtual slave
model was utilized at the master side to enhance the stability.
The principle of the CDOB-based approach [13] is to lump
all undesired effects of time delay into an entity called net-
work disturbance, deploy the disturbance observer to estimate
it and then feedback on the estimated network disturbance
to compensate for the time delay effects. In addition, var-
ious nonlinearities and uncertainties, essentially existing in
robot manipulators, have to be considered as more complex
teleoperation tasks are increasing in recent years. Lots of
control strategies have been proposed in the engineering
community to cope with these problems, such as adaptive
control [14]–[21], robust control [22]–[25], and neural net-
work and fuzzy logic technique [11], [23]–[31], etc. The
radial basis function neural network (RBFNN) based adaptive
robust control method for time-varying delay teleoperation
systems in [26] and [27] were proposed to identify teleopera-
tion system dynamical parameters, and accordingly improved
the system tracking performance.

Although many efforts have been made to fight against
the time delay and nonlinear robot model uncertainties, most
of the proposed methods in the literature require some con-
servative assumptions, such as a small upper bound on time
delay, the upper limit on the time delay changing rate, and the
accurate dynamic system model. Hence, it becomes impor-
tant and necessary to develop new control methods with
relaxed assumptions on communication time delays and sys-
tem model for teleoperation systems.

In this paper, a robust adaptive observer-based predic-
tive control scheme is developed to achieve the best perfor-
mance in terms of transparency in a bilateral teleoperation
system with eased assumptions about the time delay and
robot dynamic model. By adopting IEAOB in our previous
work [14], [15], [32], the human/environment force and robot
dynamic model can be accurately estimated in the presence
of various disturbances. On this basis, the work offers the
following contributions:

The proposed robust adaptive observer-based predictive
control scheme can compensate for large time-varying delays
and suppress various disturbances from nonlinear dynamics,
modelling uncertainties and measurement noises.

An adaptive Smith predictor (ASP) based on Padé approxi-
mation and active observer is developed to achieve great time
delay effect cancellation performance. The Padé approxima-
tion is utilized to model the round-trip time-varying delay,
and there is no assumption about the upper limit of time delay
changing rate.

In order to fully suppress the undesired effect of the time
delay, the sliding mode control is further designed on the
master side.

The remainder of this paper is organized as follows. The
nonlinear dynamics of the master and slave devices and prob-
lem formulation are presented in Section II. In Section III,
the proposed robust adaptive nonlinear teleoperation sys-
tem is introduced, and its stability is theoretically studied.
Section IV presents the application of the proposed teleopera-
tion system to a nonlinear teleoperation system built by a pair
of phantom haptic devices. Finally, conclusions are drawn
in Section V.

II. PROBLEM FORMULATION
A nonlinear teleoperation system in the joint space can be
formulated as

Mm (qm, θm) q̈m + Vm (qm, q̇m, θm) q̇m + gm (qm, θm)+ Tfm
= Tm + Th, (1a)

Ms (qs, θs) q̈s + Vs (qs, q̇s, θs) q̇s + gs (qs, θs)+ Tfs
= Ts − Te, (1b)

where q̈∗, q̇∗, q∗(∗ =m/s) are angular acceleration, angular
velocity and angular position signals,M∗(q∗, θ∗) is the inertia
matrix, V∗(q∗, q̇∗, θ∗) is the vector of Coriolis and centripetal
terms, g∗(q∗, θ∗) is the gravity torque,Tf∗ are the friction
torques, T∗ are input torques of the controllers, θ∗ repre-
sent inertial robotic parameters, and Th,Te correspond to
the torques exerted by the human operator and environment,
respectively. In this work, Tf∗ is modeled as a simplified
version of the LuGre model [33], by considering viscous and
Coulomb friction,

Tf∗ = vc∗ ∗ sgn (q̇∗)+ vv∗ ∗ q̇∗, (2)

where vc∗ ∈ R
n is the coefficient vector of Coulomb friction,

and vv∗ ∈ R
n is the coefficient vector of viscous friction.

When one treats the external human/environment force
acting on a manipulator as an unknown input and models
it as a random walk process, and also considers that the
master and slave robot dynamics are nonlinear with parameter
variations, by defining the state vector X∗(∗ =m/s) as X∗ =
[ q∗ q̇∗ θ∗ vv∗ vc∗ Th/e ]

′, the teleoperation systemmodel in
(1) can be extended as follows:

Ẋ∗ = f∗ (X∗,T∗)+ G∗ξX∗

=


q̇∗

M−1∗
(
−V∗q̇∗ − g∗ − Tf∗ + T∗ ± Th/e

)
0
0
0
0



+G∗


ξq∗
ξq̇∗
ξθ∗
ξvv∗
ξvc∗
ξTh/e

 , (3a)
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Y∗ = H∗X∗ + ηX∗ =
[
I 0 0 0 0 0

]


q∗
q̇∗
θ∗
vv∗
vc∗
Th/e

+ ηX∗ ,
(3b)

where Y∗ is the output of the system, G∗ is a unit matrix, and
the state observation matrix H∗ =

[
I 0 0 0 0 0

]
, and ξq∗ ,

ξq̇∗ and ηX∗ represent the process noises and measurement
noises, respectively, ξTh/e , ξvv∗ , ξvc∗ and ξθ∗ represent the rates
at which the vectors of external torques, friction coefficients
and robot parameters are estimated to vary.

Assume that the dynamic parameters of teleoperation
manipulators are unknown but bounded, some important
properties of the above nonlinear robot dynamic model are
recalled as follows [30]:

Property 1: The inertia matrixM∗ (q∗) for a manipulator is
symmetric positive-definite which verifies:

0 < σmin (M∗ (q∗)) I ≤ M∗ (q∗) ≤ σmax (M∗ (q∗)) I ≤ ∞,

(4)

where I ∈Rn×n is the identity matrix. σmin and σmax denote
the strictly positive minimum and maximum eigenvalue of
M∗ for all configurations q∗(∗ =m/s).
Property 2: For a manipulator with revolute joints,

there exists a positive Z bounding the Coriolis/centrifugal
matrix as:

C∗ (q∗ (t) , q̇∗ (t)) q̇∗ (t) ≤ Z ‖q̇∗ (t)‖22 . (5)

In this paper, some assumptions are stated as:
Assumption 1: t (t) = t1 (t) + t2(t) represents the

round-trip time delay, t1(t) is the forward communication
channel-induced delay, t2(t) is the feedback communication
channel-induced delay. It is assumed that the variable time-
delays t∗ (t) have known upper bounds, i.e., 0 ≤ t∗ (t) ≤
Tmax<∞, ∗ = 1, 2. It is reasonable to assume that the time-
varying delay in the communication channel is bounded from
a practical point of view. Infinite time delays imply that the
connection between the master side and the slave side is
broken.

Assumption 2: we assume that the operational torque and
environmental torque are passive and satisfy [34]: there exist
positive constants ρ such that∥∥∥∥[ ThTe

]∥∥∥∥
2
≤ ρ, (6)

where ‖X‖2 stands for the Euclidian 2-norm of a vector
X ∈Rn.
The control objective is to force the slave manipulator to

greatly track the delayed master trajectory in the presence
of time-varying delay and bounded parameter variation and
external disturbances with an acceptable bounded tracking
error.

III. DESIGN OF A ROBUST ADAPTIVE OBSERVER-BASED
PREDICTIVE CONTROL SCHEME
A. THE PROPOSED TELEOPERATION ARCHITECTURE
Figure 1. shows the proposed control architecture for a
nonlinear time-delayed bilateral teleoperation system. The
master position signal qm(t) is transmitted to the slave in
the forward communication channel e−t1s, and the IEAOB
is designed at the slave side to estimate the robot model
parameters (θ̂s, v̂cs , v̂vs ) and environment torque T̂e. The PD
controller Ts based on the estimated torque and robot model
parameters (θ̂s, v̂cs , v̂vs ) is designed for the nonlinear slave
manipulator to achieve great tracking performance under var-
ious disturbances and uncertainties. The estimated environ-
ment torque T̂e is transmitted to the master via the feedback
communication channel e−t2s to design the force controller
at the master side. Based on the Padé approximation of the
round-trip delay e−ts, the active observer is employed on the
master side to obtain the estimated time delay t̂ (t) , which is
then used in the ASP design. As the ASP design relies on an
accurate plant model, an IEAOB-based virtual slave model
is built at the master side to generate the virtual estimated
environment torque T̂ev. Considering that there is a small
estimation error et = t (t) − t̂ (t) for the time delay when
designing the ASP, in order to further suppress the time delay
effect, a sliding mode controller is developed. Meanwhile,
the IEAOB is designed on the master side as well for the
master robot to identify the dynamical model

(
θ̂m, v̂cm , v̂vm

)
and estimate the human operator torque T̂h, which is then used
in the force controller design Tm under various disturbances
and uncertainties. The master control design is simplified
to let T̂h track T̂e as closely as possible. Therefore, good
transparency performance can be obtained with the satisfied
tracking performance for the slave robot and the actual feeling
of estimated environmental torque provided for the human
operator.

B. ADAPTIVE SMITH PREDICTOR BASED ON PADÉ
APPROXIMATION, ACTIVE OBSERVER AND IEAOB
Figure 2. shows the schematic diagram of the proposed ASP
for the teleoperation system. t1 (t) , t2(t) represent the time-
varying delays at the forward and feedback communication
channels, respectively. t (t) = t1 (t) + t2(t) is the round-
trip time delay. Gm(s) is the transfer function of the force
controller and robot model at the master side, Gs(s) is the
transfer function of the position controller and robot model at
the slave side. The transfer function of the ASP in the black
dotted part in Figure 2.is written as follows:

GASP (s) =
Gm(s)

1+ (1− e−t̂ s)Gm(s)Ĝs(s)
, (7)

where t̂ is the estimated round-trip time delay of t (t) .
The closed-loop transfer function for the teleoperation sys-

tem involving the ASP is obtained as (8), shown at the bottom
of the next page.
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FIGURE 1. The proposed control architecture for bilateral teleoperation manipulators.

FIGURE 2. Block diagram of the proposed ASP.

It is easy to see that the effect of the time delay can be
eliminated from the denominator and the system performance
will not be affected by the time delay if

Gm (s)Gs (s) e−(t1+t2)s − Gm (s) Ĝs (s) e−t̂ s = 0. (9)

In order to satisfy (9), one needs to make

Ĝs (s) = Gs (s) , (10a)

t̂ = t1 + t2, (10b)

which implies that the success of the ASP depends on the
accuracies of the estimations of both the slave model and the
round-trip time delay.

In the next subsections, the design of the estimated virtual
slave model with the IEAOB and the estimated round-trip
time delay with Padé approximation will be presented.

1) ESTIMATION OF THE VIRTUAL SLAVE MODEL
WITH THE IEAO
In order to provide the ASP with an accurate slave model,
a virtual internal model (VIM) is built at the master side and
the IEAOB is deployed to identify the nonlinear VIM and

estimate the environment torque, as shown in the red dotted
part of Figure. 1.
Specifically, let’s consider the dynamic of the VIM as:

Mv (qv, θv) q̈v + Vv (qv, q̇v, θv) q̇v + gv (qv, θv)+ Tvf
= Tv − Tve, (11)

where Mv (qv, θv) is the inertia matrix, Vv (qv, q̇v, θv) is the
vector of Coriolis and centrifugal terms, gv (qv, θv) is the
gravity vector,q̈v∈Rn, q̇v ∈ Rn, and qv ∈ Rn are the angular
acceleration, angular velocity, and angular position vectors,
respectively, Tv is the control torque vector, θv ∈ Rm repre-
sents a m-dimensional inertial robotic parameter vector, Tvf
is the friction torque vector and defined in (2).

According to (3), the dynamical model in (11) can be
re-written in state space form as:

Ẋv = fv (Xv,Tv)+ GvξXv

=


q̇v

M−1v
(
−Vvq̇v − gv − Tvf + Tv − Tve

)
0
0
0
0



+G∗


ξqv
ξq̇v
ξθv
ξvvv
ξvcv
ξTve

 , (12a)

O(s)
R(s)
=

Gm(s)Gs(s)e−t1s

1+ Gm (s) Ĝs (s)− Gm (s) Ĝs (s) e−t̂ s + Gm(s)Gs(s)e−(t1+t2)s
(8)
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Yv = HvXv + ηXv =
[
I 0 0 0 0 0

]


qv
q̇v
θv
vvv
vcv
Tve

+ ηXv
(12b)

where the state vector Xv = [ qv q̇v θv vvv vcv Tve ]
′

.
Let’s recall the design process of the IEAOB in [15], the

IEAOB for the VIM is as follows:
˙̂Xv = fv

(
X̂v,Tv

)
+ PvHT

v R
−1
v

(
Yv − HvX̂v

)
, (13a)

where

Ṗv =
∂fv
∂X̂v

Pv + Pv
∂f Tv
∂X̂v
+ GvQvGTv − PvH

T
v R
−1
v HvPv,

(13b)

and

Rv = cov
(
ηXv
)
,Qv = diag(cov

(
ξqv
)
, cov

(
ξq̇v
)
,

cov
(
ξθv
)
, cov

(
ξvvv

)
, cov

(
ξvcv

)
, cov

(
0ξTve

)
),

fv
(
X̂v,Tv

)
=



˙̂qv
¨̂qv
˙̂
θv
˙̂vvv
˙̂vcv
˙̂Tve



=



˙̂qv
M̂−1v

(
−V̂v ˙̂qv − ĝv + Tv − T̂ve − T̂vf

)
0
0
0
0


,

(14a)

where ˆmeans the corresponding estimated item, cov
(
ξqv
)
,

cov
(
ξq̇v
)
, cov

(
ξθv
)
, cov

(
ξvvv

)
, cov

(
ξvcv

)
,cov

(
0ξTve

)
and

cov (ηv) are, respectively, the covariance matrices of the
input stochastic, zero mean, and Gaussian noises ξqv , ξq̇v ,
ξθv , ξvvv , ξ vcv

, 0ξTve , and the output stochastic, zero mean, and
Gaussian noise ηXv , and

Fv (t) =
∂fv
∂X̂v

=


0 I 0 0 0 0

Fv21(t) Fv22(t) Fv23(t) Fv24(t) Fv25(t) Fv26(t)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(14b)

where

Fv21 (t) = −M̂−1v (
∂M̂v

∂ q̂v
¨̂qv +

∂V̂v ˙̂qv
∂ q̂v

+
∂ ĝv
∂ q̂v
+
∂T̂fv
∂ q̂v

),

Fv22 (t) = −M̂−1v

(
∂V̂v ˙̂qv
∂ ˙̂qv

+
∂T̂fv
∂ ˙̂qv

)
,

Fv23 (t) = −M̂−1v

(
∂M̂v

∂θ̂v

¨̂qv +
∂V̂v ˙̂qv
∂θ̂v

+
∂ ĝv
∂θ̂v

)
,

Fv24 (t) = −M̂−1v
∂T̂fv
∂ ˙̂vvv

,Fv25 (t)− M̂−1v
∂T̂fv
∂ ˙̂vcv

,

Fv26 (t) = −M̂−1v .

It is easy to see that the relation between T̂ve and T̂e is

T̂ve = T̂eet1s. (15)

Based on the Theorem 1 in [15], the IEAOB is asymp-
totically stable and can accurately identify the VIM, the
estimated states X̂v asymptotically converge to the real values
Xv, accordingly one can get Ĝs (s) = Gs (s) .

2) ESTIMATION OF ROUND-TRIP DELAY WITH PADÉ
APPROXIMATION AND ACTIVE OBSERVER
In order to obtain the round-trip delay for the ASP, the Padé
approximation in [35] is utilized tomodel the round-trip time-
varying delay t as follows:

e−ts ≈

∑n
k=0 (−1)

k ck tksk∑n
k=0 ck t

ksk
, (16)

where

ck =
(2n− k)!n!
2n!k!(n− k)!

,k= 0, 1, 2, . . . ,n.

Let’s make the inverse Laplace transform of (16) and one
can get:

cntny(n) + · · · + c1ty(1) + c0y = (−1)n cntnu(n)

+ · · · − c1tu(1) + c0u, (17)

and its state-space equation can be written as{
Ẋ = AX + BU
Y = CX + DU

(18)

where

A =


0 1 0
0 0 1

· · ·
0
0

...
. . .

...

0 0 0
−

c0
cntn
−

c1
cntn−1

−
c2

cntn−2
· · ·

1
−
cn−1
cnt

 ,

B =


0
...

0
1

 ,CT
=


c0
cntn
− (−1)n c0

cntn

−
c1

cntn−1
− (−1)n c1

cntn−1

· · ·

(−1)n−1 cn−1
cnt
− (−1)n cn−1

cnt

 ,
D = (−1)n.

Using this system to estimate the time delay, we have to
add another system state pk into the state X to model the time
delay t with pk = t .
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In this work, the active observer in [14] and [16] is
employed to estimate the time delay. The active observer con-
cept relies on adopting an extra relationship (auxiliary input)
to estimate the time delay referred to as the system input.
The extra state pk describing the time delay is modelled as a
randomwalk process (a Gauss-Markov chain) and defined by

pk =
∑S

j=1
(−1)j+1

S!
j! (S − j)!

pk−j + S−1ξpk , (19)

where the Sth-order derivative of pk is randomly distributed.
S−1ξpk is a Gaussian variable with zero mean.
When S=1, the active observer for the state xk ,pk can be

formulated as[
x̂k+1
p̂k+1

]
=

[
AB
01

] [
x̂k
p̂k

]
+

[
B
0

]
Uk

+L
(
Yk − [C0]

[
x̂k
p̂k

]
−

[
D
0

]
Uk

)
, (20)

where L represents the observer gain.

C. IEAOB FOR MASTER/SLAVE MODEL IDENTIFICATION
AND EXTERNAL FORCE ESTIMATION
Let’s recall the dynamical model for master and slave robots
in (3), the IEAOB [15] is designed as follows:

˙̂X∗ = f∗
(
X̂∗,T∗

)
+ P∗HT

∗ R
−1
∗

(
Y∗ − H∗X̂∗

)
, (21a)

where

Ṗ∗ =
∂f∗
∂X̂∗

P∗ + P∗
∂f T∗
∂X̂∗
+ G∗Q∗GT∗ − P∗H

T
∗ R
−1
∗ H∗P∗,

R∗ = cov
(
ηX∗

)
,Q∗ = diag(cov

(
ξq∗
)
, cov

(
ξq̇∗
)
,

cov
(
ξθ∗
)
, cov

(
ξvv∗

)
, cov

(
ξvc∗

)
, cov

(
0ξTh/e

)
),

f∗
(
X̂∗,T∗

)

=



˙̂q∗
¨̂q∗
˙̂
θ∗
˙̂vv∗
˙̂vc∗
˙̂T h
e



=



˙̂q∗
M̂−1∗

(
−V̂∗ ˙̂q∗ − ĝ∗ + T∗ ± T̂h/e − T̂f∗

)
0
0
0
0


, (22a)

where ∗ = m/s,ˆ means the estimated item,cov
(
ξq∗
)
,

cov
(
ξq̇∗
)
, cov

(
ξθ∗
)
, cov

(
ξvv∗

)
, cov

(
ξvc∗

)
, cov

(
0ξTh/e

)
, and

cov (η∗) are, respectively, the covariance matrices of the
input stochastic, zero mean, and Gaussian noises ξq∗ , ξq̇∗ ,
ξθ∗ , ξvv∗ , ξ vc∗

, 0ξTh/e , and output stochastic, zero mean, and

Gaussian noise ηX∗ , and

F∗ (t) =
∂f∗
∂X̂∗

=


0 I 0 0 0 0

F∗21(t) F∗22(t) F∗23(t) F∗24(t) F∗25(t) F∗26(t)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(22b)

where

F∗21 (t) = −M̂−1∗ (
∂M̂∗
∂ q̂∗
¨̂q∗ +

∂V̂∗ ˙̂q∗
∂ q̂∗

+
∂ ĝ∗
∂ q̂∗
+
∂T̂f∗
∂ q̂∗

),

F∗22 (t) = −M̂−1∗

(
∂V̂∗ ˙̂q∗
∂ ˙̂q∗

+
∂T̂f∗
∂ ˙̂q∗

)
,

F∗23 (t) = −M̂−1∗

(
∂M̂∗
∂θ̂∗

¨̂q∗ +
∂V̂∗ ˙̂q∗
∂θ̂∗

+
∂ ĝ∗
∂θ̂∗

)
,

F∗24 (t) = −M̂−1∗
∂T̂f∗
∂ ˙̂vv∗

,F∗25 (t) = −M̂−1∗
∂T̂f∗
∂ ˙̂vc∗

,

F∗26 (t) = ±M̂−1∗ .

Then, one has

T̂f∗ = v̂c∗sgn
(
˙̂q∗
)
+ v̂v∗ ˙̂q∗. (23)

With the estimated robot models and the control design in
the above subsections, the controllers for the master and slave
manipulators are developed as follows:

Tm = Cf (s) ∗
(
T̂h − T̂ee−t2s − T̂ve

(
1− e−t̂ s

))
− T̂h

+ T̂fm + ĝm
(
q̂m, θ̂m

)
; (24a)

Ts = Cp (s) ∗
(
q̂me−t1s − q̂s

)
+ T̂e + T̂fs + ĝs

(
q̂s, θ̂s

)
;

(24b)

where Cf (s),Cp(s) are the force controller and position con-
troller, respectively, and the

Cf (s) = Kf ,Cp (s) = Kvs+ Kp (25)

D. STABILITY ANALYSIS
In this work, the human and environment for the stability
analysis are modeled as [8]:

Th (t) = −∅m (q̇m (t)+ ρqm (t)) , (26a)

Te (t) = ∅s (q̇s (t)+ ρqs (t)) , (26b)

where ρ,∅m and ∅s are positive constant matrices and are
properties of the human and the environment, respectively.

Theorem 1: In the teleoperation system described by equa-
tion (1) with the control laws (24) and the IEAOB (13), (21)
and the ASP (7), when the human and environmental forces
satisfy (26), the velocities q̇m (t) , q̇s (t) and position errors
are bounded, provided that
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1) Kv,Kp, and Kf are bounded and positive definite
matrices,

2) Th,Te are bounded and continuous,
3) α1I ≤ Qm(t) ≤α2I , β1I≤Qs(t) ≤β2I , γ1I ≤

Qv(t) ≤γ2I ,
4) α3I ≤ Rm(t) ≤α4I , β3I≤Rs(t) ≤β4I , γ3I ≤ Rv (t) ≤

γ4I ,
5) The following is true:

α5I ≤
∫ t+σ

t

[
Fm23 (τ ) Fm24 (τ ) Fm25 (τ ) Fm26 (τ )

]T
∗
[
Fm23 (τ ) Fm24 (τ ) Fm25 (τ ) Fm26 (τ )

]
dτ ≤ α6I ,

where Fm23 (τ ) ,Fm24 (τ ) ,Fm25 (τ ) and Fm26 (τ ) are evalu-
ated along X̂m and Ḟm23 (τ ) , Ḟm24 (τ ) , Ḟm25(τ ) and Ḟm26 (τ )
are bounded, with

Fm23 (t) = −M̂−1m

(
∂M̂m

∂θ̂m

¨̂qm +
∂V̂m ˙̂qm
∂θ̂m

+
∂ ĝm
∂θ̂m

)
,

Fm24 (t) = −M̂−1m
∂T̂fm
∂ ˙̂vvm

,Fm25 (t) = −M̂−1m
∂T̂fm
∂ ˙̂vcm

,

Fm26 (t) = M̂−1m ,

for some positive constants α1, α2, α3, α4, α5, α6, σ and all
t > t0,
6) The following is true:

β5I ≤
∫ t+σ

t

[
Fs23 (τ ) Fs24 (τ ) Fs25 (τ ) Fs26 (τ )

]T
∗
[
Fs23 (τ ) Fs24 (τ ) Fs25 (τ ) Fs26 (τ )

]
dτ ≤ β6I ,

where Fs23 (τ ) ,Fs24 (τ ) ,Fs25 (τ ) and Fs26 (τ ) are evaluated
along X̂s and Ḟs23 (τ ) , Ḟs24 (τ ) , Ḟs25(τ ) and Ḟs26 (τ ) are
bounded, with

Fs23 (t) = −M̂−1s

(
∂M̂s

∂θ̂s

¨̂qs +
∂V̂s ˙̂qs
∂θ̂s
+
∂ ĝs
∂θ̂s

)
,

Fs24 (t) = −M̂−1s
∂T̂fs
∂ ˙̂vvs

,Fs25 (t) = −M̂−1s
∂T̂fs
∂ ˙̂vcs

,

Fs26 (t) = −M̂−1s ,

for some positive constants β1, β2, β3, β4, β5, β6, σ and all
t > t0.
7) The following is true:

γ5I ≤
∫ t+σ

t

[
Fv23 (τ ) Fv24 (τ ) Fv25 (τ ) Fv26 (τ )

]T
∗
[
Fv23 (τ ) Fv24 (τ ) Fv25 (τ ) Fv26 (τ )

]
dτ ≤ γ6I ,

where Fv23 (τ ) ,Fv24 (τ ) ,Fv25 (τ ) , andFv26 (τ ) are evalu-
ated along X̂v and Ḟv23 (τ ) , Ḟv24 (τ ) , Ḟv25 (τ ) , andḞv26(τ )
are bounded, with

Fv23 (t) = −M̂−1v

(
∂M̂v

∂θ̂v

¨̂qv +
∂V̂v ˙̂qv
∂θ̂v

+
∂ ĝv
∂θ̂v

)
,

Fv24 (t) = −M̂−1v
∂T̂fv
∂ ˙̂vvv

,Fv25 (t) = −M̂−1v
∂T̂fv
∂ ˙̂vcv

,

Fv26 (t) = −M̂−1v ,

for some positive constants γ1, γ2, γ3, γ4, γ5, γ6, σ and all
t > t0.

Proof: The stability issue of the bilateral teleoperation
systems originates from time delay in the communication
channels, which is an inherent property often occurring in
the distant transmission for teleoperation systems and may
destabilize the system. Through the design of the ASP with
IEAOB, Padé approximation and the active observer, the
stability issue caused by communication time delay is well
addressed. Now we only need to separately consider the
stabilities at master and slave sides with the proposed control
architecture.

Define

ef = Th − Teet1s, es = qs − qme−t1s, ˜̈q∗ = q̈∗ − ˆ̈q∗,
˜̇q∗ = q̇∗ − ˆ̇q∗, q̃∗ = q∗ − q̂∗, θ̃∗ = θ∗ − θ̂∗,

ṽv∗ = vv∗ − v̂v∗ , ṽc∗ = vc∗ − v̂c∗ , T̃h/e = Th/e − T̂h/e,

where ∗ = m, v, s. If conditions 3,4,5,6,7 of the The-
orem are satisfied, according to Theorem 1 in [15],
q̃m, ˜̇qm, θ̃m, ṽvm , ṽcm , T̃h, q̃s, ˜̇qs, θ̃s, ṽvs , ṽcs , T̃e∈L2 ∩ L∞.
1) We first consider the master side, and show

q̈m, q̇m, ef ∈L2 ∩ L∞ under the proposed controller (24a).
Combining the master dynamical model in (1) and the

controller in (24a), the master system can be changed to

Tm = Mm (qm, θm) q̈m + Vm (qm, q̇m, θm) q̇m + gm (qm, θm)

+Tfm − Th

= Cf (s) ∗
(
T̂h − T̂eet1s

)
− T̂h + T̂fm + ĝm

(
q̂m, θ̂m

)
,

(27)

Then, one can get

Mm (qm, θm) q̈m + Vm (qm, q̇m, θm) q̇m

= Kf ∗ ef + T̃h − T̃fm − g̃m
(
q̃m, θ̃m

)
. (28)

Because q̃m, ˜̇qm, θ̃m, T̃h, ṽvs , ṽcs∈L2∩L∞,we have T̃fm ∈ L2∩

L∞, g̃m
(
q̃m, θ̃m

)
∈L2 ∩ L∞.

Now, if condition 2 of the Theorem is satisfied, according
to (26a) and (6), we have q̇m∈L2∩L∞, and because q̈m is uni-
formly continuous (

∫ t
0 q̈m (η) dη = q̇m (t)− q̇m (0)), it can be

concluded that q̈m ∈ L2∩L∞ based on Barbǎlat’s Lemma.
According to Property 1 and Property 2 in (4) and (5),

we have

Mm (qm, θm) q̈m + Vm (qm, q̇m, θm) q̇m
≤ σmax (Mm (qm)) q̈m + Z ‖q̇m (t)‖22 ∈ L2∩L∞.

As the time delay T1,T2 are assumed to be bounded and if
the conditions 1 of the Theorem are satisfied, we have T̂h −
T̂eet1s∈L2 ∩ L∞. Hence,

ef = Th − Teet1s

= T̂h − T̂eet1s + T̃h − T̃eet1s ∈ L2 ∩ L∞. (29)

Furthermore, we can conclude that from (26) and (30) the
force tracking error ef ∈ L2∩L∞.
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2) Similarly, we can consider the slave side, and show
that q̇s, q̈s, es = qs − qme−t1s∈L2 ∩ L∞ according to the
procedure in 1).

Therefore, the entire teleoperation system is proved to be
stable with the proposed teleoperation system.

E. SLIDING MODE CONTROL FOR FURTHER TIME DELAY
EFFECT SUPPRESSION
In practice, there are some constraints for the round-trip
delay estimation with Padé approximation and the active
observer in Subsection 3.B.2. For example, the round-trip
delay should have an upper and lower limit. The smallest
time delay should be bigger than the sampling time. The
accuracy of the estimation depends on the order of the Padé
approximation. In addition, the sampling time needs to be
chosen small enough so that this inaccuracy is small. Based
on this knowledge, one can get the round-trip time delay
estimation t̂ based on Padé approximation and the active
observer can obtain a reasonable result, but cannot represent
the actual value (t1+ t2), i.e., there is a small estimation error
et = t (t)−t̂ (t) .

Due to the imperfect estimation of the round-trip delay,
the time delay effect cannot be compensated for with the
ASP, which could cause perturbations and reduce the system
transparency. Hence, a sliding mode control algorithm at
the master side is proposed in this Subsection for further
suppression.

Let’s reconsider the dynamical model in (1a), and put (15)
and (24a) into (1a), the dynamical model can be re-written as

Mm (qm, θm) q̈m + Vm (qm, q̇m, θm) q̇m + gm (qm, θm)+ Tfm

= Cf (s) ∗
(
T̂h − T̂ee−t2s − T̂eet1s

(
1− e−t̂ s

))
− T̂h + Th

+ T̂fm + ĝm
(
q̂m, θ̂m

)
, (30)

According to the Theorem 1 in [15], (30) can be further
written as

Mm (qm, θm) q̈m + Vm (qm, q̇m, θm) q̇m
= Kf ∗ (T̂h − T̂eet1s + d) (31)

where d = T̂e∗(e−(t̂−t1)s−e−t2s) is the perturbation resulting
from the time delay due to the imperfect estimation of the
round-trip delay by the ASP.

By adding the sliding model compensation term Tsliding
into (31), the dynamical model becomes

Mm (qm, θm) q̈m + Vm (qm, q̇m, θm) q̇m
= Kf ∗ (T̂h − T̂ve + d + Tsliding). (32)

The aim is to design the sliding mode compensation term
Tsliding to omit d . The proposed algorithm sets the sliding
surface as:

σ =

∫ t

0

(
Mm (qm, θm) q̈m + Vm (qm, q̇m, θm) q̇m

Kf

−T̂h + T̂ve
)
dη. (33)

Based on (33), if the sliding surface σ converges to zero,
the perturbation term d can be compensated for by Tsliding.
Build a Lyapunov function for the sliding mode controller as

V = σ Tσ. (34)

Therefore, the derivative of (34) will result in:

V̇ = (Tsliding + d)Tσ + σ T
(
Tsliding + d

)
. (35)

The sliding control input is designed as:

Tsliding = −Klσ − Kssgn(σ ) (36)

where sgn() is the standard signum function,Kl,Ks> 0, the
term Kl in control removes chatter and makes it smooth.

Based on (35) and (36), by tuningKl andKs to large values,
V̇ is negative semi-definite and σ will converge to zero. The
proposed sliding control in (36) will omit the perturbation and
enhance the system transparency.

IV. EXPERIMENT STUDY
A. EXPERIMENTAL SET-UP
The experiments are performed on two Phantom manipula-
tors: Phantom Omni and Phantom Desktop (Sensable Tech-
nologies, Inc., Wilmington, MA) as shown in Figure 3. Phan-
Torque toolkit is applied by two computers to control the two
robots. The PhanTorque toolkit enables the users to workwith
the Sensable Phantom haptic devices in the Matlab/Simulink
environment quickly and easily. In this experiment, only the
first actuated joints of the Omni and desktop robots are used
while the second and third actuated joints are locked at zero.
The manipulator motion of the first joint is governed as
follows:

M∗q̈∗ + Tf∗ = T∗ ± Th/e, (37)

where ∗ = m/s,M∗ is a moment of inertia, Tf∗ is
the friction torque calculated in (2), and T∗ is a torque
which the motor generates. The angle of the manipulator
is measured by an encoder with resolution of 0.055 mm.
The sample time in the experiment is set to 1.0 ms. The
actual values of the robot dynamical parameter and friction
coefficients are Mm/s= 5.0x10−3kgm2, vvm/s= −1.5x10

−3,

vcm/s= 1.0x10−3. The time-varying delays are simulated in
PC. The forward and feedback time delays are chosen as ran-
dom variables with a uniform distribution over [0.04, 0.2] s.
The random nature of these time delays makes it possible to
show the effectiveness of the proposed method for varying
time delays. In the experiments, human operator manipulates
the master manipulator and the slave manipulator makes
contact with the environment at around 0.25 rad.

In order to demonstrate the superiority of the proposed
approach, we assume that there is no parameter variation
(Mm, vvm , vcm are set to the actual values) for the master robot,
while 20% parameter variation (Ms, vvs , vcs are 20% smaller
than the actual values) is considered in slave robot. Three
approaches are implemented for fair comparison, as shown
in the following:
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FIGURE 3. Experiment set-up for teleoperation experiment.

A1: The robust adaptive observer-based predictive con-
trol proposed in this paper to improve the transparency per-
formance of both position tracking and force feedback for
nonlinear teleoperation manipulators. The parameters of the
PD position controllers are selected as Kp= 0.5 and Kv= 5.
The parameters of the P force controllers are selected as
Kf= 0.8. The parameters for the sliding mode controller are
chosen as Kl= 1.2,Ks= 1.2. From filtering theory, the initial
filtered state estimates are the expected values of these states
at the beginning of control. Hence, for the robotic manipu-
lator starting at rest and at origin, the initial filtered states:
qm0= 0,qs0= 0,q̇m0= 0,q̇s0= 0. Hence, the initial conditions
of IEAOB for master robot, slave robot and VIM are chosen
respectively as

X̂m0 =

(
0, 0, 5.0x10−3,−1.5x10−3, 1.0x10−3, 0

)′
,

Rm = 1.0x10−4,

Qm = diag{1.0x10−7, 1.0x10−7, 1.0x10−7,

1.0x10−7, 1.0x10−7, 1.0x10−6, }

Pm0 = diag{1.0x10−6, 1.0x10−6, 1.0x10−6,

1.0x10−6, 1.0x10−6, 1.0x10−4.}

X̂s0 = (0, 0, 4.0x10−3,−1.2x10−3, 0.8x10−3, 0)
′
,

Rs = 1.0x10−4,

Qs = diag{1.0x10−7, 1.0x10−7, 1.0x10−7,

1.0x10−7, 1.0x10−7, 1.0x10−6, }

Ps0 = diag{1.0x10−6, 1.0x10−6, 1.0x10−6,

1.0x10−6, 1.0x10−6, 1.0x10−4.}
X̂v0 = (0, 0, 4.0x10−3,−1.2x10−3, 0.8x10−3, 0)

′
,

Rv = 1.0x10−4,
Qv = diag{1.0x10−7, 1.0x10−7, 1.0x10−7,

1.0x10−7, 1.0x10−7, 1.0x10−6, }
Pv0 = diag{1.0x10−6, 1.0x10−6, 1.0x10−6,

1.0x10−6, 1.0x10−6, 1.0x10−4.}

In this experiment, time delay is modelled as two order
Padé approximation, and the first order AOB is used to esti-
mate the delay. The specific condition of AOB is chosen as

X̂t0 = (0, 0, 0)
′

,Rt= 1.0x10−4,
Qt = diag{1.0x10−7, 1.0x10−7, 1.0x10−6, }
Pt0 = diag{1.0x10−6, 1.0x10−6, 1.0x10−4.}

FIGURE 4. Experimental results with the proposed teleoperation
approach A1 (a) Position response. (b) Force response.

A2: The Smith predictor-based control in [13] to achieve
stability under time delay. The disturbance observer (DOB)
cut-off frequency is chosen as gd= 25rad/s, and the reac-
tion torque observer (RTOB) cut-off frequency is chosen
as greac= 50rad/s. The parameters of the PD position con-
trollers are selected as Kp= 0.5 and Kv= 5. The parameters
of the P force controllers are selected as Kf= 0.8.
A3: The neural network-based control in [27] for enhanced

position and force tracking performance in the presence of
time delay. The selection of the parameters can refer to [27],
specifically, kmv = ksv= 50,0m = 0s = 2.5,
km = ks= 0.01,3m = 3s = 5, γmN = γsN = 0.3, bmd =
bsd = 0.2,Dd = 1.8,Cd = 0,Gd = 19.6,Em = Es =
0.1 ∗

[
−1.5 −1 −0.5 0 0.5 1 1.5

]
5x7 .

B. EXPERIMENT RESULTS
Figure 4a, 7a and 8a show the position tracking and
estimation performance for three approaches, respectively.
Figure 4a depicts the performance of the proposed approach
A1. As expected, the actual position tracks the desired posi-
tion when in free motion at around [0s, 1.5s], [4.2s, 6.3s],
[11s, 12.9s] and [16.5s, 18s], but not when in contact with the
environment. Meanwhile, the estimated position obtained by
IEAOB matches the actual position. Figure 7a shows that the
Smith predictor-based approach A2 can only attain approxi-
mate position tracking during free motion at [0s, 0.7s], [3.4s,
6.4s], [8.9s, 11.7s] and [14.3s, 18s], but there is still some
chattering during the tracking process. Meanwhile, Figure 8a
illustrates the position estimation and tracking performance
of the neural network-based approach A3. As observed in
Figure 8a, the position tracking happens during free motion
at around [0s, 1.3 s], [5.4s, 7.1s], [10.3s, 12.5s], and [15.6s,
18 s], it is noticed that during the initial moment the transient
tracking performance is a little bit slow due to the neural net-
work online weight training for the approach A3, there is also
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FIGURE 5. Parameter and friction estimation performance of IEAOB for
the master and slave robots (Para-1 represents Mm/s, Para-2 represents
vvm/s , Para-3 represents vcm/s .)

FIGURE 6. Parameter and friction estimation performance of IEAOB for
VIM (Para-1 represents Mv, Para-2 represents vvv , Para-3 represents vcv .)

some chartering during the experiment because the online
weight updating laws based on the control errors sometimes
would suffer from the parameter drifting issue when a high
gain adaptation is used. The force tracking performances for
three approaches are given in Figures 4b, 7b and 8b, respec-
tively. The torques are estimated when the robot is in contact
with the environment. As illustrated in Figure 4b for the pro-
posed approachA1, when the position of the end effector does
not follow the desired position at the range of [1.5 s, 4.2 s],
[6.3 s, 11s], and [12.9 s, 16.5 s], indicating the end effector
is in contact with the environment, the estimated external
torques by IEAOB begin to increase, the result demonstrates
the effectiveness of the force estimation portion of the algo-
rithm. The non-zero torque estimate arises when the robot is
not in contact with the environment and results from running
the observers at a relatively large sampling interval. It is easy
to see that during contact, the environment rendered force is
well tracked by the operator. By contract, Figure 7b shows
the force tracking performance of the compared approach A2.
In [0.7 s, 3.4 s], [6.4 s, 8.9 s], and [11.7 s, 14.3 s], the estimated
external torques start to rise, but it is observed that there
is chattering in the estimated torques and the environment

FIGURE 7. Experimental results with the compared teleoperation
approach A2 (a) Position response. (b) Force response.

rendered force could not be accurately tracked by the operator
because of the inaccurate estimation of the environment force
at the slave side. Since 20% parameter variation (Ms, vvs , vcs
are 20% smaller than the actual values) for the slave robot is
assumed in the experiment, the estimated environment force
in the approach A2 is smaller than the actual environment
forces. Furthermore, Figure 8b demonstrates the force track-
ing performance of the neural network-based approach A3.
Although it shows fair force tracking capability, the number
of the neural network weights to be online updated for robot
dynamic model identification is very large, which makes it
computational demanding. Figures 5 and 6 explain why the
proposed approach A1 is superior to the others in terms of
position and force tracking. They demonstrate the dynamical
parameter and friction estimation performance of the pro-
posed approachA1 for themaster robot, slave robot andVIM,
respectively, which then are used in the adaptive controller
design, it only requires online updating of several dynamic
parameters for accurate control design, which is better than
the neural network-based approach A3. It is shown that all
of the estimation trajectories of robot parameters and friction
coefficients in these figures converge to around (5.0x10−3,
−1.5x10−3, 1.0x10−3), respectively.

C. COMPARISON AND ANALYSIS
The experimental results demonstrate the effectiveness of the
proposed robust adaptive observer-based predictive control
scheme for nonlinear delayed bilateral teleoperation systems
in the presence of system uncertainties and external dis-
turbances. The position and force tracking performance of
the Smith predictor-based approach shows the poor ability
of the slave manipulator to execute the precise command
from the human operator and master manipulator. Since the
proposed scheme has the improved ability to cope with the
dynamic uncertainties for nonlinear master and slave sys-
tems, when there is parameter variation and time delay in the
teleoperation system, the proposed teleoperation approach
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FIGURE 8. Experimental results with the compared teleoperation
approach A3 (a) Position response. (b) Force response.

works well in terms of position and force tracking perfor-
mances, because it can estimate the dynamical parameters
and friction coefficients in real time and make them converge
to the real values quickly. In comparison with the neural
network-based approach, the proposed method reduces less
computational cost and offers faster convergence. Since there
is no unique guideline to select the topology of neural network
and analyze the approximation accuracy, the number of the
neural network weights is usually very large, which imposes
high computational cost and makes it not competitive in real
world applications, and the online estimated weights some-
times suffers from the parameter drifting issue even though
theoretical stability is proven.

In summary, the experimental results show that the pro-
posed nonlinear teleoperation design can achieve simulta-
neous stability and good transparency under time-varying
delays, master and slave dynamic uncertainties and external
disturbances.

V. CONCLUSION
In this paper, the development and application of a new
robust adaptive observer-based predictive control algorithm
to achieve teleoperation with high transparency in the pres-
ence of communication time-varying delays and nonlin-
ear model uncertainties including robot inertial parameter
variations, friction, unmodeled dynamics, and measurement
noise was presented. In the proposed method, an adaptive
Smith predictor based on the Padé approximation and active
observer and sliding mode control is designed to ensure a
completed cancellation of the time delay effect. Meanwhile,
the IEAOB is deployed at both master and slave sides to
obtain accurate robot model estimation as well as external

force estimation. Through this control design, some conser-
vative assumptions, such as the upper limit on the time delay
changing rate, and the accurate dynamic system model are
eased. The stability analysis of the whole system is pro-
vided, and finally, experimental evaluation is carried out on
a nonlinear teleoperation system built by a pair of Phantom
haptic devices. The results demonstrate that the approaches
can guarantee simultaneous force and position tracking in
bilateral teleoperation systems in the presence of various
model uncertainties and time-varying time delay in the com-
munication channels.
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