
Received April 19, 2022, accepted May 7, 2022, date of publication May 13, 2022, date of current version May 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3174855

On the Performance of Cloud-Based mHealth
Applications: A Methodology on Measuring
Service Response Time and a Case Study
DEVASENA INUPAKUTIKA 1, (Graduate Student Member, IEEE), GERSON RODRIGUEZ 2,
DAVID AKOPIAN 1, (Senior Member, IEEE), PALDEN LAMA3,
PATRICIA CHALELA4, AND AMELIE G. RAMIREZ4
1Electrical and Computer Engineering Department, University of Texas at San Antonio, San Antonio, TX 78249, USA
2Google, Mountain View, CA 94043, USA
3Computer Science Department, University of Texas at San Antonio, San Antonio, TX 78249, USA
4University of Texas Health Science Center, San Antonio, TX 78229, USA

Corresponding author: Devasena Inupakutika (devasena.inupakutika@gmail.com)

This work was supported in part by the Susan G. Komen under Award SAB160005, in part by the Mays Cancer Center under Grant
P30 CA054174, and in part by the Redes En Acción under Grant U54 CA153511.

ABSTRACT With the increasing use of smartphones, performance monitoring and the analysis of mobile
applications (apps) are gaining momentum. Smartphones are resource-constrained devices. Thus, mobile
apps typically rely on cloud services for the execution of resource-intensive functionalities, storage, and
computation power. Measuring the user experience is crucial for the development and maintenance of
mobile apps. Such characterization requires testing specific traits such as network connectivity, battery
levels, server loads, and operating conditions. This paper presents a technique for the measurement-based
performance assessment of cloud backend and mobile networks that support mobile app services. The
feasibility of the technique is demonstrated through a representative case study of an app developed for
medication adherence management among breast cancer patients undergoing endocrine hormone therapy
(EHT). The app leverages cloud technologies to provide a portable, cost-effective, and convenient monitoring
environment. Nonfunctional performance and load testing is performed by modeling third-party cloud
backend services. The experimental results of the case study demonstrate the feasibility of the approach for
monitoring and analyzing the backend service response times with different mobile device configurations,
such as regular or power-saving battery modes and LTE or Wi-Fi mobile network connectivity, under server
loading. The methodology is validated through statistical analyses of the experimental performance data
involving confidence intervals, tail latencies, and analysis of variance. The results address the occurrence
of server loading and its impact on the response times which relates to the quality of the user experience.
We establish the effect of server loading on the responsiveness of the user interface (UI) of the mobile app
considered in this case study. The proposed technique will allow developers to conduct similar measurement-
based performance studies for various mobile apps leveraging cloud-based backend services.

INDEX TERMS Application behavior, cloud databases, healthcare, mobile applications, performance
measures, testing.

I. INTRODUCTION
In recent years, there has been an exponential proliferation
of mobile devices and an increase in the transition to
mobile applications (apps). The number of smartphone users
worldwide is expected to reach 7.074 billion by 2024 [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Abdur Razzaque .

Mobile devices facilitate ubiquitous responsive services
such as push-notifications, and messaging, along with rich
audiovisual content. Mobile apps elevate their competitive-
ness by facilitating economic resource consumption and
the provision of key functionalities to users. Most mobile
apps for everyday use (e.g., Fitbit, and Uber) depend on
network connectivity, external web services, and sensors,
which continuously interact with each other. The rapid

53208 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-9121-2775
https://orcid.org/0000-0001-9813-1225
https://orcid.org/0000-0001-5977-9969
https://orcid.org/0000-0002-2542-1923


D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

growth, feature richness, and augmented network traffic of
such apps creates considerable overhead in terms of the
consumption of device resources consumption—including
power, CPU, and bandwidth—as well as the mobile network
resources. These issues have attracted attention from both
mobile app developers and full-stack developers who aspire
to comprehend mobile apps’ resource usage and its effects
on interaction with a backend database. Here, challenges
regarding software correctness also arise. In addition to
functional accuracy, response time and resource consumption
are becoming critical specifications for ensuring a better user
experience. Context awareness, mobile device fragmenta-
tion, event-driven programming paradigms, and constantly
evolving mobile technologies and frameworks have added
further challenges. Given the time and effort required to
consolidate different possible test scenarios and generate
relevant test cases, automated testing [2] has become crucial
for performance assessment and the delivery of high-quality
apps.

Automated testing tools help validate both functional and
non-functional requirements [30], [31]. Functional testing
verifies the operations and actions of an app. Test automation
in functional testing further helps to automate test cases
and features that are constantly regressing. Non-functional
testing also known as quality of service (QoS) testing,
verifies the behavior of an app and checks its non-functional
parameters with the aim of improving the app’s usefulness,
portability, efficacy, maintainability, and collection of metric
data for research and app performance analysis. Crucial
non-functional parameters include performance, loading
capacity, usability, efficiency, reliability, stability, portability,
and security.

Performance testing of mobile applications addresses two
primary aspects: 1) the performance of the services or servers
to which the app is connected [32] and 2) the performance
of the mobile app client on the host device [33]. Testing
of the former focuses on the application of load on the
servers that host mobile apps (including typical web servers
and serverless database backend-as-a-service). This type of
testing is very common, and a number of existing tools
have been adapted to conduct performance studies of web
mobile apps (for example, LoadStorm,1 Apache JMeter,2

and NeoLoad3). However, it is not easy to adapt for a
developer who either does not own a web server or leverages
a serverless architecture for mobile app development. The
latter type of testing focuses mostly on assessing the host
platform resource consumption of a mobile app. For example,
in the case of a medical reference mobile health (mHealth)
app, this type of testing will involve executing the ‘‘medical
educational reference content access’’ feature and evaluating
the corresponding memory consumption of the mobile app.
Such testing predominantly involves validating the app’s

1https://loadstorm.com/
2http://jmeter.apache.org/
3https://www.neotys.com/neoload/overview

performance through platform-specific performance tests
[34] [35]. In this work, we present a methodology for
conducting performance testing addressing both aforemen-
tioned primary aspects to study the performance of mobile
apps in the context of server loading and the effect on the
responsiveness of the UI based on response time.

This paper analyzes the non-functional parameters such
as the mobile network and battery modes affecting a
mobile app’s responsiveness and performance on Android
and iOS platforms under load on a cloud-based backend
database (DB) server. In general, many different performance
metrics exist that reflect non-functional requirements. In this
paper, we focus on the server response time (Tresponse)
because a large number of cloud applications and services are
delay sensitive, such as healthcare, file hosting, mobile cloud
sensing, and location-based mobile services. Thus, response
time is an important performance metric for the end-user
experience. To validate our technique, we first developed
a bilingual (English and Spanish), cross-platform hormone
therapy (HT) Patient Helper app that exploits the rich
existing resources and development tools offered by Google
and Apple. The app is designed for breast cancer patients
undergoing endocrine HT (EHT) [10]. Google Firebase
backend services are used to facilitate cloud storage and
to send notifications (Firebase Cloud Messaging4 (FCM))
to mobile devices through a cloud manager. We further
conducted a performance analysis of this case study app
from the perspective of the smartphone’s battery modes to
investigate resource usage under different mobile network
connectivity settings (Long Term Evolution (LTE) vs.
Wi-Fi) and its effect on the server response times for
service requests from a real-time cloud DB with varying
loads.

The main contributions of this paper are summarized as
follows:
• First, we propose a methodology for measuring
cloud DB or server response times as a metric for
non-functional performance and performing load testing
of mobile apps that leverage cloud technology by
modeling third-party cloud backend services.

• We report conduct a comprehensive study of the
effect of server loading on the responsiveness of a
mobile app’s user interface (UI), which influences the
end-user quality of experience (QoE), with the proposed
methodology for a case study mHealth app.

• We study and present a statistical analysis of the
response times under different configurations in terms
of mobile network connectivity and battery modes in the
presence of server loading.

Additionally, for ease of reading, Table 1 presents a
list of abbreviations that are used in the following discus-
sion. The structure of this paper is as follows. Section II
presents background information and related work on mobile
apps in general as well as on the use of cloud DBs

4https://firebase.google.com/docs/cloud-messaging

VOLUME 10, 2022 53209



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

TABLE 1. Comprehensive list of abbreviations for ease of reading.

as a service and introduces state-of-the-art performance
analyses utilizing cloud technology. Section III describes
the design of the proposed methodology for performance
testing. Section IV describes the case study app, with
a brief justification of the design choices and structure
of the project. Section V discusses the application of the
proposed testing methodology to assess the performance of
our developed case study prototype mHealth HT Patient
Helper app and summarizes the dataset representing our user
scenario. Section VI presents the experimental results with
the statistical analyses of the tests conducted under different
battery and network modes and discusses the threats to the
validity of the proposed approach. Section VII presents a
discussion and lessons learned. Finally, Section VIII presents
concluding remarks and suggests directions for future
work.

II. BACKGROUND AND RELATED WORKS
A. UI AUTOMATION FRAMEWORKS AND RELATED WORKS
Mobile apps are susceptible to performance issues. The
systemmay cause delayed loading of emergency app content,
stop the execution of an app, or throw a warning on the
app UI that the ‘‘Application is not responding’’. Several
contributions highlighting issues related to the performance
of Android apps, such as poor responsiveness [36]–[38],
have been presented in the literature. Furthermore, recent
work [39] on a systematic literature review of the automated
testing of Android apps offers a detailed analysis of the

key aspects of testing mobile apps and provides a taxonomy
for clearly summarizing test objectives (e.g., performance
and energy), test targets, levels, and testing methods, with
corresponding frameworks in each category (e.g., model-
based, search-based, random, A/B, fuzzing, and mutation).
Performance diagnosis often requires automatic execution of
the app under test (AUT). Hence, UI automation frameworks
are the most suitable option for testing mobile apps and
play an important role in performance assessment. They are
used for replicating user interactions and are used as part
of the overall experimental setup for system performance
testing. In particular, script-based testing is the most widely
used approach (e.g., UI Automator, MonkeyRunner, and
Robotium). Event sequences may also be recorded during
the manual operation of an app to generate replayable
scripts using record-and-replay tools (e.g., MobiPlay, Reran,
and SPAG-C). As an complement to these semiautomated
approaches, fuzz testing approaches (e.g., Monkey and Dyn-
odroid) generate random input sequences to exercise Android
apps. Model-based (MB) approaches (e.g., AndroidRipper,
SwiftHand, and PBGT) focus on generating a finite state
machine model and event sequences to traverse the model.
Other works have also used Calabash (suitable for both
Android and iOS) [40] and graphical user interface (GUI)
ripping methods for regression tests to exercise the target
AUT.

The design and development of automated test suites is a
complicated task that should enable the examination of an
app’s smartphone resource usage and context in terms of the
network connectivity type, device and operating system (OS)
environment. Both the network resources and the function
calls of a mobile app both directly and indirectly impact its
usage of smartphone resources. These aspects are critical for
the testing and, consequently, QoE improvement of mobile
apps. Even for mobile apps, software testing is one of the
most widely used quality assurance techniques. It is thus
important to develop a relevant set of tools andmethodologies
for automated testing that focus on an app’s GUI, control
flow, overall functionality and performance-specific non-
functional aspects. The study presented in [4] discussed
the following aspects of automated mobile app testing:
1) testing frameworks for structuring the testing process and
2) GUI ripping tools for simulating real user events, which
fundamentally differ in the exploration strategies (including
reverse engineering approaches) used for building test
suites [5]–[8]. Regarding testing frameworks, [3] extensively
surveyed state-of-the-art tools and services for supporting
mobile app testing processes from both the academic and
industrial research perspectives. The focus was on 1) automa-
tion frameworks/application programming interfaces (APIs),
2) record-and-replay tools, 3) automated test GUI input
generation techniques, 4) bug and error reporting/monitoring
tools, and 5) mobile testing services, including cloud-based
and device streaming tools. Additionally, the study in [3]
proposed a conceptual, fully automated system architecture
for mobile app testing based on the continuous, evolutionary,

53210 VOLUME 10, 2022



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

and large-scale (CEL) principles. It was suggested that
automated testing tools for mobile apps should address
several development restrictions: 1) the restricted budget/time
available for testing, 2) the need for various types of testing
(e.g., UI responsiveness based on response times), and
3) the pressure from stakeholders and users for continuous
delivery. In recent research, a novel strategy has also been
implemented to explore app behavior using a static–dynamic
approach to UI model generation for MB testing (MBT)
called AMOGA [9] to understand mobile- or platform-
specific faults. Nevertheless, despite the availability of such
a comprehensive set of methods, techniques, and tools for
automated testing, none is suitable by itself for the assessment
of study of mobile app performance for several reasons,
including organizational and personal preferences, device
fragmentation, and the absence of a mobile-specific set of
conditions when a particular test case fails. To the best of
our knowledge, no single model to date can integrate all
of the various aspects of mobile app operation, such as OS
(Android or iOS), context, GUI, usage, and domain. Given
that the choice of a testing framework depends on specific
testing goals and research contexts, we devise a performance
methodology that focuses on the performance-based non-
functional aspects of testing and addresses tests to observe the
effect of server loading on UI responsiveness under various
mobile network and battery conditions based on response
times.

B. CLOUD DATABASE-AS-A-SERVICE
For researchers and practitioners, cloud computing is emerg-
ing as an alternative to grids, clusters, and production
environments [11]. As a service paradigm [12], cloud
DBs that can support multiple mobile apps based on the
internet are of great interest thanks to the advantages of
cloud computing—such as resource elasticity, pay-as-you-go
cost models, and scalability when deploying data-intensive
apps—which make it possible to achieve higher throughput
with computing resources, such as DB servers, in cases
of increased workload. [13] provided various options for
deploying the DB tier of software apps on cloud platforms.
Hence, the cloud is considered a viable alternative to on-
premises computing that ensures data safety and is easily
accessible on an as-needed basis [14]. However, several
concerns should be considered in terms of cloud DB
performance with respect to data retrieval and access. Several
studies have focused on a comparative analysis of cloud and
traditional DBs from the architectural perspective [15]–[17].
Reference [18] presented a quantitative analysis comparing
the performance of on-premises and Azure SQL Server DBs.
In this paper, we focus on the Tresponse of the cloud DB
as a metric of analysis, as in [18]. We leverage Google
Firebase as a cloud-hosted NoSQL DB for the current study.
Additionally, we report the statistical analyses including the
95th-percentile confidence intervals for the response times of
the requests.

C. EFFECTS OF MOBILE APPS’ PERFORMANCE
CHALLENGES ON HEALTHCARE
With the rapid growth of mHealth apps, an increased
need has arisen for app development processes to
include an assessment of the app’s performance. Previous
researchers [19]–[21] and mobile app designers have
made significant efforts to present developers with best
practices and guidelines for improving the performance
of mobile apps. However, they have not investigated the
cloud-based performance aspect. Even so, there is still a
noticeable gap between research and practical deployment in
terms of addressing performance bottlenecks by developers.
References [20] and [24] analyzed Android and iOS apps,
respectively, and found that unresponsiveness and significant
resource usage were themain causes of negative user reviews.
These factors are prime concerns that cannot be compromised
in mHealth apps that require users and patients to keep track
of their symptoms or issue reminders to take medication.
To reach the true potential of mHealth in presenting
unparalleled opportunities to increase patient engagement,
reduce healthcare costs, and improve outcomes [22], [23],
proper validation of the technical performance of the
relevant apps is needed. Furthermore, healthcare services
are highly time sensitive and require QoS guarantees in
terms of important parameters such as delay. Therefore,
the quantitative measurement of such parameters within an
mHealth system is useful.

Thus, we study the performance of a case study HT Patient
Helper app by identifying the factors affecting app–cloud
communication. Using both Android and iOS versions of
the app, we analyze the impact of the device’s battery
conditions (full battery vs. power-saving mode) and network
connectivity (LTE cellular network vs. 802.11 Wi-Fi) on
response time with varying loads on the Firebase DB.

III. DESIGN OF THE PERFORMANCE STUDY
In this section, we present our devised methodology for
studying mobile app performance based on our testing goals
outlined in Section I. We model third-party cloud backend
services to examine the performance in a representative
testing scenario for end users accessing the app. The approach
is developed around a testbed that allows us to run a specific
test scenario. The testbed is used to measure the performance
implications of the test scenario under different server or
DB workloads. We conducted a study in which the server
response time (measured in milliseconds (ms)) was our
dependent variable, while the test scenario and DB loading
parameters (discussed in Section III.B) were the independent
variables.

A. PERFORMANCE MODULE
This section describes the experimental setup used to
automatically measure the service response times of mobile
apps. We considered that the AUT would be run in a
controlled environment. We instrumented a testbed in which

VOLUME 10, 2022 53211



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

FIGURE 1. Testbed and workflow of the performance module.

multiple test users were simulated running the AUT. The
complete performance module generated a workload — that
is, it loaded the entire server or DB based on a set of
passed input parameters (independent variables). The testbed
simultaneously collected the output response measurements
in an SQLite DB for further analysis of the complete
execution. We retained complete control of the AUT and
the DB, and all tests were repeatable and automatically
performed. The complete performance module and testing
methodology were run by varying the input parameters
specific to the DB load and the testing campaign, the details
of which are discussed in Sections III.C, IV and V. The
recorded measurements from all experiments were then post-
processed and analyzed. The results are further discussed in
Section VI.

Fig. 1 depicts our complete testbed. The core component
is the performance module, comprising four blocks, which
synthesizes the experiments and records the delay measure-
ments. (I). Database block: The cloud DB can be used as a
testing service if AUT data models are stored on the server
DB. P1, P2, P3, . . . , Pn denote one to n separate projects
created in the DB. Each of these projects has an associated
service account for authentication, and the credentials are
stored in the JavaScript Object Notation (JSON) format.
These service accounts can be used to call DB server APIs
from our test environment. The credentials obtained via such
a service account are used to authorize server requests. Load
can then be applied through these projects by querying their
entire DBs at different intervals. (II). Client Simulator block:
This block consists of a Java application that handles the
number of users or requests and queries the entire DB by
building testing artifacts, including databaseTranx.jar files
corresponding to the separate projects P1, P2, P3, . . . , Pn
in (I). These jar files are the Java executables that load the
entire backend DB and are automatically adapted to changes
in the AUT, usage patterns, and the available devices or
OSs. (III). Test Computer block: This block consists of a bash
script for test automation to simulate users, generate server
workloads from the artifacts generated from blocks I and II,

and test input parameters (loading parameters) corresponding
to server loading, the details of which are discussed in the
next subsection. It waits for input from block IV regarding the
type of test (test device settings, Wi-Fi vs. LTE, etc.) before
starting the simulation. (IV). Test Mobile block: This block
runs the AUT (e.g., the case study HT Patient Helper app)
based on the sequence of UI interactions defined in the test
scenario. The simulation is initiated based on the parameters
and depending on the load generated in block I. The input
parameters for block III change based on the test scenario
and the generated load or if the desired load corresponding
to the simulation is not achieved. The AUT consists of
delay analysis logic for recording Tresponse. Based on the Test
Mobile OS, we use a corresponding SQLite library to store
the recorded measurements from the simulations. We then
perform further postprocessing on block III to analyze the
results.

B. SIMULATION PARAMETERS AND ASSUMPTIONS
The developed methodology is characterized in terms of
various derived parameters. The parameters passed as
input to block III include the number of simultaneous
applications, called spawns, denoted by MAX_SPAWN; the
number of cycles for each spawn, called iterations, denoted
by MAX_ITERATIONS; the number of threads per spawn
(simultaneous users), denoted by NUM_THREADS; and
the number of requests per thread (requests), denoted by
NUM_REQ_PER_THREAD. The load parameter describes
the amount of load observed at the server during the
simulation based on the specified input parameters. These
simulation parameters enable the user to easily tune the
experiments for the required Database load. For a given
required load and a selected test scenario, the choice
of the values of MAX_SPAWN, NUM_THREADS, and
NUM_REQ_PER_THREAD depends on the Test Computer
machine power, the OS configuration, and the amount of
heap memory allocated. Thus, there are no standard values
for these parameters, and the maximum number of threads
that can be generated from the Test Computer depends on the

53212 VOLUME 10, 2022



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

Algorithm 1 Establishment of the Complete Simulation
Input: databaseTranx.jar files; initial values of
MAX_SPAWN, MAX_ITERATIONS, NUM_THREADS,
and NUM_REQ_PER_THREAD; step = 0
Output: Delay measurements in AUT’s SQLite DB,
Tresponse
repeat
Step 1: Backend DB loading:
while step < MAX_ITERATIONS do
Check for any open Java apps in the background
if not then
step← step + 1
spawn = 0
while spawn < MAX_SPAWN do
spawn← spawn + 1
nohup java –jar databaseTranx.jar
NUM_THREADS NUM_REQ_PER_THREAD

end while
else
sleep for 100 ms
end

end while
Step 2: Start simulation of AUT:
Enter title of experiment based on test campaign and
number of iterations
AUT steps through the UI based on test scripts
Store delay measurements in app.db
Step 3: Compute Tresponse from app.db using eq. 1
until end

computer’s hardware and the OS. For the case study analysis,
we found the desired combinations of these values during
the experiments by monitoring the CPU, RAM, disk I/O,
and network I/O of the Test Computer. Notably, although
different combinations of the simulation parameters can
theoretically result in the same amount of load, it affects
the server in a different manner depending on the values of
NUM_THREADS and iterations.
The following assumptions were adopted when running the

performance simulations:
• The AUT is running in an isolated environment with no
other apps in the background.

• Settings or modes from the same testing campaign
(detailed in Section V.D) are not switched while sim-
ulations for an experiment with a particular setting are
running—e.g., when experiments were running for the
AUT with the Test Mobile device in the full battery and
LTE modes, we did not switch to Wi-Fi mode in the
middle of this process.

C. SIMULATION ALGORITHM
In this section, we show the complete simulation process

flow of themethodology proposed in Sections III.A and III.B.
The processes and blocks in Fig. 1 follow one another
chronologically. As previously described, the process flow

starts with the generation of testing artifacts as input,
including loading specific files and setting parameters, and
proceeds to obtain the final results, including the delays
or Tresponse of the cloud backend service with respect to
requests from the AUT. Tresponse is calculated in units of ms as
follows:

Tresponse = Treceived − Tsent (1)

where Treceived is the timestamp of the response received from
the backend service and Tsent is the timestamp of the request
sent from the AUT to the service. The time needed to display
the result to the user via the UI of the AUT is not considered as
part of the response time calculation. Importantly, the delay
that occurs in app–cloud backend communication constitutes
a major portion of the overall app response time, and this
is a unique factor that separates the performance analysis
of cloud-based mHealth apps from that of traditional apps.
Algorithm 1 presents the pseudocode for running the full
simulation based on the performance module and generated
artifacts. Both Steps 1 and 3 are carried out on the Test
Computer, and Step 2 is carried out on real test mobile
devices. Step 1 is an automation script that runs a backend-
service-specific executable to generate load. As mentioned
in the algorithm, the input parameters need to be adjusted
in this step based on the required load, which depends on
the Test Computer hardware specifications and OS. Hence,
this step can be adapted to different backend services. The
Client Simulator generates a .jar executable that is a packaged
version of the project is specific to the project assets (backend
DB structure), which we assemble to pass as input to Step 1.
This file consists of the compilation output for the module in
the project, the libraries included in themodule dependencies,
and a collection of resources such as images, video URLs,
database nodes, individual files, directories, and archives.
For server or cloud run and debug configurations that accept
service account credentials and DB URLs, these artifacts can
be generated and utilized for generating load. In Step 2, for
the UI itself, we create automatic UI test scripts to mimic
user interactions with the AUT through step-by-step button
presses, taps, swipes and their order using Android- and
iOS-specific test automation frameworks, as mentioned in
Section V.

D. STATISTICAL ANALYSIS
For each experimental setting with varying load, device type,
battery mode, and network combinations (shown in Table 4),
the computed Tresponse values (equation (1)) are reported in
the form of the mean, standard deviation, confidence interval,
min–max statistics, median, and skewness for different
load factors (increments of 25%). Based on the results
of multiway analysis of variance (ANOVA) with Tukey’s
multiple comparison analysis, the statistical significance of
the eligible independent variables is examined. A statistical
significance threshold (α) of 0.05 was adopted and the
analyses were performed using R [47].

VOLUME 10, 2022 53213



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

FIGURE 2. User interaction sequences in the app.

IV. CASE STUDY: PROTOTYPE APP DETAILS
The methodology proposed in this paper, and hence the
evaluation process, requires the source code of the AUT.
To this end, this section describes the case study app,
with a brief justification of the design choices that led to
the implementation and the structure of the DB. For the
presentation of this case study, the adaptation of the testing
methodology based on the proposed technique, and the
reporting of the results, the current work has benefited from
the case study research guidelines in [46].

A. OVERVIEW OF THE APP
The HT Patient Helper app leverages Firebase as the cloud
DB server. User-specific information, symptoms, push noti-
fications and videos reside in Firebase as corresponding data
models. Firebase also simplifies storage and client–server
communication. The educational content of the app is
centrally deployed using GitHub pages for medical education
management to provide users access to broader information
about their symptoms and HT itself. Both the Android
and iOS versions of the app use the same centralized
Firebase DB nodes. Doctors, practical nurses (PNs) and
administrative personnel are provided with a web-based
interface to monitor the data received at the cloud DB.
The reader is directed to [10] for additional details and
features of and background information on the case study
app. The sequence of user interactions (control flow) in
both the Android and iOS versions of the app is shown
in Fig. 2, where the arrows indicate the sequence of user
taps in the test scenario. Fig. 2 shows a simple navigation
sequence between different activities in the app, with a
primary focus on the activities involved in a test scenario
for the current study on performance analysis. Overall, the
app supports 18 activities corresponding to different app
functionalities, as described in [10]. Numbers 1 to 5 indicate
the sequence. The Splash view appears momentarily at the
launch of the app and simply displays the app’s name and
the organizations involved. In the Login view, users can log
in to their accounts, following which they can see a list of
buttons on the Home view corresponding to each feature
of the app. The Learn More button offers further options
for opening educational content and videos. The Symptoms

button displays a list of breast cancer symptoms to track on
a regular basis and presents options for obtaining a summary
or more information about symptoms. The Calendar button
opens the phone’s calendar to make appointments and set
reminders. The PN button provides information about the
PNs and their contact information. The Tech Support button
puts the user in contact with the technical support team. The
test scenario consists of the sequence of button presses in the
GUI indicated by red arrows.

The choice of the Android and iOS platforms is driven
by the fact that they are the most dominant mobile OSs.
This helps us to use a broad range of instrumentation
tools associated with Android and iOS and understand
the underlying systems. However, the ideas and techniques
discussed in this paper can also be extended to other
platforms. The apps utilize the same backend cloud-based
DB Firebase (real-time), enabling developers to reduce
their app development efforts and time due to the use of
platform-specific services offered by each API. Firebase
further enables data syncing across all client apps, making it a
good choice for storing app-specific data models. Moreover,
we selected Firebase for the case study analysis because it is
easy to use and assists in deploying a framework suitable for
prototyping similar mobile apps. For the testbed (Fig. 1), the
choice of the components for blocks II (generation of testing
artifacts) and III (automation script) makes the tests and
analyses compatible across devices and generic for similar
performance studies.

B. STRUCTURE OF THE FIREBASE PROJECT
The current study leverages Firebase’s real-time DB core
service as a DB backend-as-a-service. To enable the use of
this service, the prototype Android and iOS mobile apps
were created using the Firebase Android and iOS software
development kits, respectively. The Firebase DB is a JSON
NoSQL DB; thus, all data are stored in JSON format
with a data structure consisting of a tree of hierarchical
key–value pairs. To leverage Firebase optimizations for
nonstructured data, the project DB was properly structured
based on how the feature-specific data were to be saved
and retrieved later. As an example, in Fig. 3, we show the
structure of the videos node specific to the test scenario
(Section V). Our goal was to maintain a balance between data
normalization (shallow structure) and denormalization (deep
structure) based on the usage of data corresponding to the app
features (Section IV.A). When designing the data structure,
we considered that querying information for one node in the
JSON hierarchy automatically implies fetching data for all of
its child nodes as well. It is hence more appropriate to keep
the data structure as flat as possible. Thus, Fig. 3 presents a
suitable way to store videos data, in which sections, videos,
and their metadata are separated. The sections child node
contains only metadata about each section or video category
stored under the section’s unique ID. The videolist child node
consists of video metadata stored under the video’s unique
ID. These video metadata also include corresponding section

53214 VOLUME 10, 2022



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

FIGURE 3. Firebase project JSON tree flattened structure (showing videos
node) that allows iterating through the list of videos.

FIGURE 4. Firebase DB structure for the prototype apps.

IDs. Additionally, Fig. 4 shows the overall DB structure with
other nodes corresponding to app features.

V. TESTING METHODOLOGY
This section presents the test scenario used to assess the
performance of the Android and iOS prototype AUTs by
approaching realistic and representative app usage patterns.
We conducted three assessment experiments to observe the
Firebase cloud performance and app capabilities in the test
scenario: 1) Firebase loading (emulating many devices to
add stress), 2) device battery mode effect on the network,
and 3) cellular (LTE) vs. Wi-Fi effect on the performance of
the apps’ connections to the Firebase DB. For improved and
seamless analysis of Firebase loading, we initially identified
performance bottlenecks in the AUT that were not evident
to the end user but affected overall performance. Brief
overviews of the test platform, automated UI testing, test
dataset, and test scenario are provided next.

A. TEST PLATFORM
The equipment used to conduct the experiments was as
follows:

1. Test Computer: 2015 MacBook Pro 15’’ (2.5 GHz i7
processor with 16 GB of 1600 MHz DDR3) running
macOS Mojave.

2. Test Mobile (Android): Nexus 6P octa-core (4 ×
1.55 GHz Cortex-A53 and 4 × 2.0 GHz Cortex-A57)
running Android 8.0 Oreo.

3. Test Mobile (iOS): iPhone XS hexa-core (2 ×
2.5 GHz Vortex and 4 × 1.6 GHz Tempest) running
iOS 12.2.

B. UI AUTOMATION TESTING AND TEST SCENARIO
Scripting techniques for automated testing improve the
accuracy per test case. This section describes the Android-
and iOS-based mobile UI testing as part of the performance
analysis. Manual testing is one of the easiest ways to
perform UI testing. For the current work, however, manual
testing would be problematic because it does not allow
control over delays between views and is not consistent
across tests. In automated UI testing, sets of scripts are
defined to be rigorously executed in a quick, repeatable
way regardless of the diverse functionalities of the AUT
interface based on its features. Automated UI tests can reveal
the presence of software issues in the transitions between
consecutive releases of an app. Although the scope of our
work does not include solely functional UI testing as part
of the performance study process, automated tools for input
generation and UI recording and other open-source multiplat-
form automated testing tools (e.g., Calabash and Appium5)
often rely on underlying UI automation frameworks (e.g.,
UI Automator, Espresso, and XCTest (iOS)) [41]–[44].
Hence, we used the state-of-the-art vendor-provided UI
Automator6 testing framework along with Espresso7 and
XCTest8 for testing and generating repeatable test scripts
for Android and iOS, respectively. These frameworks are
specifically used to simulate user interactions with an AUT
and run UI tests in an automated and repeatable way. Each
test script includes a complete path from an initial to a
final state in the user interaction sequence. We used the
APIs offered by the abovementioned frameworks to build
the GUI tests and implemented test scripts emulating user
interactions such as button clicks and scroll. We manually
entered the series of actions (as shown in Fig. 5) to
be performed on different GUI components in the test
scripts.

C. TEST DATASET
For the test data, we used a massive video dataset for
Firebase loading. We adopted publicly available videos from
YouTube.com and other video sites and used the command
line tool youtube-dl9 to download the list of video URLs.
As previously noted, our video data reside in a Firebase
DB. We designed the data model to include videos based on
different sections. The videos node in Firebase has nested
sections and videos nodes. The sections node has section
names as keys, each of which is associated with videos in the
videos node. Videos can be identified by section names, and

5http://appium.io/
6https://developer.android.com/training/testing/ui-automator
7https://developer.android.com/training/testing/espresso/
8https://developer.apple.com/documentation/xctest
9https://github.com/ytdl-org/youtube-dl

VOLUME 10, 2022 53215



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

FIGURE 5. Test scenario for the retrieval of educational sections and
videos.

the entry for each video includes the thumbnail image, URL,
and video title as keys. Additional details about exporting the
dataset are presented in [25].

D. EXPERIMENTAL DESIGN
This section describes the three experiments conducted in the
aforementioned test scenario. The scenario consisted of users
signing into the app, accessing the AUT’s video view, and
retrieving sections.

1) FIREBASE LOADING
Since the sections are retrieved from the Firebase DB,
we hypothesized that as the Firebase load increases, the
response time will also increase. Therefore, we conducted
three sets of experiments to observe the response time
variations; these experiments are described next, followed by
Android and iOS comparisons. For the current app, we used
the free version of Firebase, which allows only 100 simul-
taneous users, 10 GB of bandwidth, and 10 GB of storage.
We started to load Firebase by querying the entire videos
DB at different time intervals. We created a separate Java
application as described in Section III.A to control different
threads to simulate a user submitting a request to Firebase.
A bash test automation script was then used to control
the numbers of spawns, iterations, simultaneous users, and
requests, as described in the simulation flow [Algorithm 1].
The Firebase console load graph shows only the DB usage
when processing app requests over a 1-minute interval,
representing the highest load in a given hour. As such, if the
target load is 25% and the test run displays a load of 30%,
there is a wait time of an hour before another test can be
executed. To accelerate this process, we created three separate
Firebase projects—P1, P2, and P3—for the app’s performance
module.

To enable proper control over the delays between views
and consistency between tests, the performance analysis of
the AUT’s section retrieval control flow from no load to full
load on the Firebase DB (0–100%) in increments of 25%

TABLE 2. Network specifications.

also models the delay on LTE and Wi-Fi connections while
considering energy characteristics (device battery mode).
Fig. 5 shows the sequence of user interactions performed by
the test scripts in detail. The simulations followed this path in
every iteration.

2) DEVICE BATTERY TEST
An increase in service response time with section retrieval
through the app directly affects the user experience. The
response time is affected by device resource utilization, i.e.,
the energy consumption of different system components.
The device battery also contributes to the response time.
We therefore performed a test by switching between the
regular and power-saving (PS) modes to analyze the effect
of the device battery mode in the presence of varying
loads.

3) CELLULAR LTE VS. WI-FI TEST
This test assessed the impact of the available mobile wireless
network connectivity on the app’s interactions and response
time for the test scenario, again in the presence of dynamic
Firebase loads. We conducted a study of these interactions
and their typical impact in terms of the 95th-percentile
response time for Android and iOS using a combination
of measurements in the regular and PS battery modes. The
uplink and downlink data rate specifications of the LTE
and Wi-Fi networks for each service provider are shown in
Table 2.

4) SIMULATING USERS
The Firebase loading test required simulating users and
their interactions based on the test scenario discussed in
Section V.B. Fig. 6 shows the complete listener lifecycle
(sections and videos). It utilizes a singleton pattern, a design
pattern that restricts the instantiation of a class to one object,
to maintain a list of video and section listeners. Each listener
holds a strong reference to the host fragment in Android or
a view controller in iOS and must be released from memory
to avoid memory leaks. The scenario is further specified as
follows:

1. Sections are paginated by 10 and are loaded when the
user first enters this view or is at the bottom of the view.
Each page contains a single listener object that is stored
in a singleton object.

2. When a section is clicked, the section key is used to
reference the associated videos in the node structure
from Firebase creating a new listener. Again, the
listener is stored in a singleton object.

53216 VOLUME 10, 2022



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

FIGURE 6. Listener lifecycle.

3. Sections and videos need to be indexed by loca-
tion and to avoid duplicate listeners for the video
list.

4. When a view is destroyed, the singleton object
releases all associated section and video listener
references to avoid strong references to the associated
objects.

We found that using automated UI testing frameworks to
simulate user interactions and conduct multiple repeatable
tests was slow and caused the app to crash after a few logins
due to memory leaks. Hence, we used the Android Profiler10

with the LeakCanary library11 and iOS Instruments12 to
track such leaks and found mostly Firebase-based leaks.
These leaks were due to strong references to an object
that were not eventually released in cases where a Firebase
listener was created. Such strong references [26] to an activity
or view controller must be removed through the garbage
collection (GC) and automatic reference counting (ARC)
memory management mechanisms in Android and iOS,
respectively, to provide a consistent load on Firebase and
simulate user actions. If an object is no longer in use, such
mechanisms recover the corresponding memory and allow
it to be reused for future object allocation. Such memory
management must be handled at compile time rather than
at runtime to avoid memory and performance overheads.
Each experiment involved fetching the section list from
Firebase in the presence of an applied load. The time taken
to retrieve the section was then recorded locally in an
SQLite DB and displayed after completion. These processes
were the same for both Android and iOS experiments
conducted in different battery and mobile wireless network
modes.

10https://developer.android.com/studio/profile/android-profiler

11https://github.com/square/leakcanary
12https://help.apple.com/instruments/mac/current/#dev7b09c84f5

TABLE 3. List of testing tools and APIs.

Information about the number of simultaneous connections
or users’ retrieval of videos is available by querying the
complete DB node, and a more accurate overview of the
DB’s overall performance is available through the Usage
tab on the Firebase console. However, this means of
gathering information is not suitable for troubleshooting
potential performance issues or understanding fine details.
Our proposed performance module provides the functionality
of observing performance metrics and the impact of different
AUT parameters and device settings over time. The real-
time DB integration with the performance module offers the
deepest level of granularity. The performance measurements
were completed over the course of 2 minutes for each test and
are discussed next.

VI. EXPERIMENTAL RESULTS
This section describes the measurement results from the
experiments conducted on real Android and iOS devices to
evaluate our proposed performance methodology. Table 3
[26] shows the categories of metrics, libraries, and testing
frameworks we used to monitor the app interactions, save
data to the SQLite DB, model delays, implement video
listeners for the test scenario, and visualize the effect of the
Firebase load on Tresponse for the Android and iOS versions
of the AUT. Both UI Automator and Espresso are part of the
official Android instrumentation framework. UI Automator
gives Espresso the ability to test the GUI of an AUT along
with the device status and performance. The combination
of these tools also provides the flexibility to test multiple
apps at the same time and perform operations on the AUT
GUI and the device, e.g., turning Wi-Fi or LTE on or off or
changing the battery mode to PS. To validate the performance
methodology, clarify the extent to which the experimental
performance data are indicative of representative behaviors
and analyze the impact of the operating conditions, we con-
ducted a 95% confidence interval and multiway ANOVA test.
The reliability metrics, such as confidence interval values,
and other statistics (Tables 5 and 6) indicated similar behavior
of the response time with respect to an increase in server load
under the considered operating conditions on both Android
and iOS devices. Thus, we show the trace plots for the
experiments in which we observed slight differences in the
pattern.

VOLUME 10, 2022 53217



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

FIGURE 7. iOS response time plot with LTE in PS mode.

A. LTE CONNECTION WITH REGULAR BATTERY MODE
In this subsection, we report simulations of the AUT run
in the test scenario with an LTE connection under the
regular device battery mode. The response times for Android
and iOS, respectively, for retrieving videos monotonically
increase with increasing load on the Firebase DB (no load,
25%, 50%, 75%, and full load), causing an immediate
effect on Tresponse and thus influencing the UI responsive-
ness experienced by the user. For most of the simulation
duration under each load, Android and iOS performed
similarly.

B. LTE CONNECTION WITH POWER SAVING MODE
In this subsection, we report experiments performed with
the Android and iOS versions of the AUT with an LTE
connection and the device battery in the PS mode. Overall,
we observed similar behavior as in Section VI.A, i.e.,
an increasing response time with an increase in the Firebase
load, with some anomalies under loads of 50 and 75% for a
short period of time [Fig. 7]. The reason could be inconsistent
network behavior leading to a rapid increase in the response
time under any load. These spikes were due to the load, and
the total duration of the spikes under each load occurred at
almost the same time during the simulation for each OS. For
the full-load case, themaximum peak response time and spike
duration occurred for 20 seconds for both the Android and
iOS AUTs.

C. WI-FI CONNECTION WITH REGULAR AND POWER
SAVING MODES
This subsection summarizes the experiments performed on
the AUT with a Wi-Fi connection and with the device battery
in the regular and PS modes on both Android and iOS.
Here, we again observed that the response time increased
with the Firebase load. However, due to noise and network
inconsistencies, the 50% load scenario showed a greater
Tresponse than the 75% load scenario for a short initial duration
(as shown in Fig. 8 for the Android/Wi-Fi/regular mode of
operation).

FIGURE 8. Android response time plot with Wi-Fi in regular mode.

FIGURE 9. Android vs iOS LTE 95th percentile plot with varying load.

D. ANDROID VS. IOS: 95TH PERCENTILE TRESPONSE
Finally, we show the 95th-percentile response times for the
above-described simulation conditions on Android and iOS
under Firebase loading. We performed these tests to identify
the Tresponse that most users would encounter, excluding
outliers, to obtain a clearer picture of the characteristics of
the AUT and augment the aforementioned analysis. In each
scenario shown in Fig. 7 and Fig. 8, the response time
was directly affected by the load regardless of the network
connectivity mode or device battery mode. Moreover, the
time needed to clear each load increased due to the increase
in the response time. It can be intuitively expected that the
battery mode should not impact the response time, as the
app is running in the foreground and the tasks of sending
and receiving are not CPU intensive. Both the iOS and
Android versions of the AUT exhibited similar response
times, summarized in terms of the 95th percentile of Tresponse
in Fig. 9 and Fig. 10. It is also clear that there is no single
winner here.

While Tresponse is a key performance parameter, as
expected and as observed from the effect of Firebase loading
during UI simulations for the test scenario, our findings also
highlight the importance of the complexity of the DB queries
and the data model used in the cloud DB.

53218 VOLUME 10, 2022



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

FIGURE 10. Android vs iOS Wi-Fi 95th percentile plot with varying load.

TABLE 4. Experiments notations.

E. CONFIDENCE INTERVALS AND RESULTS ANALYSIS
This section presents Tresponse confidence intervals and
statistical analysis to characterize the tail behaviors, the
impact of different operating conditions, and the uncertainties
underlying the measured response times. Tables 5 and
6 present descriptive statistics that describe the quality
characteristics of the experimental data collected from the
simulation experiments. Specifically, Table 5 shows the
mean, standard deviation, and 95% confidence intervals.
From Table 6, we observe that the mean is always greater
than the median, indicating highly positively skewed data
with many response times lying in the tail to the right
of the mean. It should be noted that the t-interval and
Z-interval calculations for the mean result in similar values.
Therefore, given the nonnormal distribution of the data and
a sufficiently large sample size (sz > 30), the confidence
interval of Tresponse for each experiment in Table 4 can be
derived as follows:

intv
(
Tresponse

)
=

(
Tresponse_mean ± t α2 ,sz−1

(
sdv
√
sz

))
(2)

where Tresponse_mean denotes the mean of the experimental
response times, sdv is their standard deviation, sz is the
sample size, t is the t-interval, and α is the confidence
level.

In the following, we further investigate the impact of
different independent variables (device type, battery mode,
and network setting) on the response time (and the overall
performance of the case study app) through a multiway

ANOVA method. We utilize ANOVA to determine how
much of the variability in Tresponse is explained by each
of the different variables (load factor, device type, network
setting and battery mode). From the p values obtained for
each of these independent variables, we have sufficient
statistical evidence (p < 0.0001) that Tresponse is different
for different load factors, device types, and network settings.
Since ANOVA highlights the variations in the mean value
of a distribution, finding statistical significance, i.e., p <

0.05, implies 95% confidence that the different values are
indicative of representative differences. In contrast, there is
insufficient statistical evidence (p = 0.9826) to identify
a significant impact of the battery mode. Moreover, with
multiple independent variables, two or more variables may
have interacting effects on Tresponse. Therefore, we performed
Tukey’s pairwise comparison test and obtained very low p
values (<0.001) for the interaction effects between the load
factor and the device type and between the device type and
the network setting. We did not find statistical evidence of
an interaction effect between the device type and the battery
mode (p < 0.01).

F. THREATS TO VALIDITY
The validity of the proposed approach, testing methodology
and case study presented in this paper is not without threats,
as in any experimental and empirical study. There are
several factors that may affect the validity of the presented
methodology and results.

1) EXTERNAL VALIDITY
A potential threat is that our study included only a medical-
reference-based mHealth app, which may be tested and
designed differently than other mHealth apps that exchange
biomedical information. Therefore, our conclusions may not
apply to all mHealth apps. However, it is important to note
that our results are still representative of most mHealth apps
for medical adherence and disease management as well as
other mobile apps with multimedia-intensive features that
leverage cloud backend services. Furthermore, to generate
testing artifacts specific to a particular backend service,
elements of the cloud or server configuration, such as
the project service account credentials, DB structure, and
location URLs, should be considered for utilization in the
proposed approach.

Most of our analysis focused on a Firebase cloud DB,
which could have different usage patterns than other types
of on-premises and cloud DBs. Consequently, our results
may not generalize beyond similar NoSQL cloud DBs (e.g.,
Couchbase Lite DB and AmazonWeb Services Dynamo DB)
due to the differences in the DB API designs. Additionally,
the results of our study can only be generalized to Android
and iOS mobile platforms. Nevertheless, step 1 of Algorithm
1 can be adapted to mobile apps utilizing Firebase as well as
apps that leverage architecturally similar mobile backends-
as-a-service, from which we could generate testing artifacts
analogous to those discussed in the current study. Hence,

VOLUME 10, 2022 53219



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

TABLE 5. Experimental performance results, and confidence intervals.

as per the best practices described in [45], we have addressed
generalization considerations to balance generality with the
development of a practical case study app built using Firebase
as the cloud backend DB. Moreover, all software engineering
studies suffer from the variability of real-world apps, and
thus, the issue of generalizability cannot be completely
resolved.

2) INTERNAL VALIDITY
Android and iOS are both continuously running parallel tasks
that may affect data access delays and the responsiveness
of the UI. For that reason, we ran our experiments in a
controlled setting, as mentioned in Section III.B. UI inter-
actions normally stimulate internal tasks in the mobile app
running in the foreground. While conducting testing using
automated test scripts, the mobile app was improved by
addressing memory leaks in the implementation to prevent
any side effects of UI events. Additionally, the time needed
for the UI to display the requested data was not considered
in any experiment. Thus, these experiments measured
only the data access delays or service response times.
We utilized vendor-specific test automation frameworks to
manually write test scripts specific to the sequence of user

interactions to be repeatedly performed in each experiment.
Hence, the AUT block will require continuous effort in
updating the test scripts to match any new design of the
app.

The performance aspects considered, and the metrics
calculated in this approach may also not be exhaus-
tive or representative of everything that characterizes
performance-based nonfunctional requirements that need
to be tested. Nevertheless, these aspects and metrics are
essential for testing the primary aspects of a mobile apps’
performance.

VII. DISCUSSION
Mobile network performance is a crucial element in mobile–
cloud communications and in dealing with delay-sensitive
mobile apps. In recent performance studies regarding LTE
networks [28] and crowdsourced measurements [29] con-
ducted on mobile devices using measurement apps, the
network throughputs and latencies in one or both of the
download and upload directions have been measured as
metrics. User- and network-level performance can be reliably
inferred from these metrics to properly characterize the
user experience. However, they are based on standard

53220 VOLUME 10, 2022



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

TABLE 6. Tail behavior statistics.

measurement apps such as Ookla Speedtest13 and MobiPerf
and the network datasets collected by those apps. In contrast,
our own measurement-based performance study employed
similar network-related measurements but relied on the
observed communication between our developed case study
mHealth app and the corresponding Firebase cloud DB.
For the proposed performance methodology, our analysis
began with an examination of the general characteristics of
mobile–cloud performance in terms of the response time for
video retrieval based on LTE vs. Wi-Fi network connections
with the user device operating in the regular and PS battery
modes, as discussed in Section VI.

These characteristics were further revealed through the
delay traces observed over 2-minute simulation durations for
each test condition under varying Firebase loads. In practice,
the service response time has a great impact on the user
experience and, hence, on the satisfaction with the underlying
service. Overall, we did not observe significant differences
between Android and iOS devices operating in different
battery modes. However, we did detect a difference when
changing between the LTE and Wi-Fi mobile networks.
To further examine the measured response times and for
validation, we turn to a broader view of the response times
for Android and iOS devices under different Firebase loads,

13https://play.google.com/store/apps/details?id=org.zwanoo.android.
speedtest&hl=en_US

as shown in Tables 5 and 6. These tables show the differences
in download performance between the LTE and Wi-Fi cases.
Before analyzing these data further, we present abbreviated
notations for the conducted experiments in Table 4. The
values in Tables 5 and 6 (means, standard deviations,
confidence intervals, and skewness-related statistics) are
representative of the average download performance of
AUT–cloud communication on Android and iOS devices,
respectively. The response time clearly increased with the
Firebase load in all conducted experiments, while the
battery mode had no significant effect for either LTE or
Wi-Fi (see Section VI.E for the results of Tukey’s pairwise
test).

Comparisons, however, reveal that the A/Wi-Fi/R and
A/Wi-Fi/PS configurations (in general, an Android device
on Wi-Fi) provided better average performance for nearly
every Firebase load than the A/LTE/R and A/LTE/PS
configurations (in general, an Android device on LTE)
did. In particular, the average zero-load response times for
A/Wi-Fi/R and A/Wi-Fi/PS were 66.51 ms and 67.22 ms,
respectively, whereas those for A/LTE/R and A/LTE/PS
were 121.45 ms and 112.95 ms, respectively. This sub-
stantial difference in download performance of 50–70 ms
between Wi-Fi and LTE persists across different load
factors, and we can also observe a similar trend in the
iOS case.

VOLUME 10, 2022 53221



D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

As seen from Table 5, for most of the experiments, the
95% confidence intervals for the 50% and 75% load factors
overlap, indicating a nonsignificant effect of the load factor
on the response time. Additionally, the variance for the
75% load factor seems high. With regard to the distribution
of the experimental response time data collected from the
simulations, we also calculated lower confidence intervals
(90%, 85%, and others, not included in the manuscript). The
data points in the long tail of the distribution were ignored
when calculating lower confidence intervals. Considering
that the skewness is > 1 (Table 6 indicates a highly
skewed distribution), the response time cannot be assumed
to follow a normal distribution. Interestingly, as observed
from the simulation traces in Section VI and the statistics
in Section VI.E, while the response time did not appear
to be significantly affected by the mobile OS, Android
devices recorded higher response time measurements than
iOS devices in nearly every scenario under Firebase loading,
as shown in Tables 5 and 6. Given that we were measuring
AUT–cloud communication and leveraging the same Firebase
API for each OS, it is possible that the higher Tresponse
measurements for Android devices may be due to some
buffering of the network data or differences in design between
the APIs. Moreover, the Firebase DB receives many initial
requests. The reason for the presence of spikes in Fig. 7 and
Fig. 8 is the increasing load and the increasing request rates
while earlier video retrieval requests are being served by the
DB. Additionally, neither Firebase nor the case study app
implementation has a default scaling mechanism. We also
learned that the response time values are dependent on
the cloud service provider and the resource availability of
the service plan chosen for the project. As mentioned in
Section V.D.1, these experiments were conducted on a free
plan. If we were to scale up, then the simulations would
need to be rerun to obtain a relevant set of independent
variables for generating loads of 25%, 50%, etc., tailored
to the service provider. Hence, it is also worth noting that
Tresponse can be affected by many performance variables in
the cloud environment, such as the network type, the type of
cloud-hosted DB, and variations in hardware performance.

VIII. CONCLUSION AND FUTURE WORK
This paper has presented a technique for testing- and
measurement-based performance studies for Android and
iOS apps that leverage third-party cloud backend services.
In this study, we performed a series of experiments using
Android and iOS versions of the prototype mHealth HT
Patient Helper app under various load conditions of the
cloud-based backend DB (Firebase) with different modes
of device battery usage and mobile network connection.
The actual trace plots of the response times with respect
to the simulation time and the reliability metrics obtained
from a statistical analysis showed that the performance was
consistent between Android and iOS in all experiments and
that Tresponse increased with an increasing Firebase load.
We found that the response time performance was not directly

associated with the mode of battery operation (PS or regular).
However, our study revealed certain characteristics of Wi-Fi
and LTE mobile networks in mobile–cloud communication.
The average Wi-Fi response time measurements were lower
than the corresponding LTEmeasurements by at least a factor
of two. This indicates that when retrieving large chunks of
data, if the signal strength is good, Wi-Fi is more efficient.
We also found that the mean Tresponse measurements for
Android devices were slightly higher than those for iOS
devices due to buffering, differences in the design of the
Firebase APIs, or both. The confidence intervals clarified to
what extent the mean values are indicative of representative
differences and the potential impact on tail behaviors. This
detailed analysis could provide some guidancewhen realizing
quality-sensitive mobile applications with a cloud backend.

The testing setup and the case study app do not claim
commonality but provide a sense of possible impacts caused
by various factors for a representative mobile apps with
multimedia data processing utilizing cloud services. At the
same time, the introduced technique and testing methodology
with mobile device settings is applicable for other applica-
tions. In future research, to accurately measure performance,
we plan to explore awide range of key performance indicators
that are relevant to nonfunctional requirements, such as
service-orientedmetrics (availability) and efficiency-oriented
indicators (throughput and capacity), along with other cloud
platforms in diverse geographical locations.

REFERENCES
[1] (2016). Smartphone Users Worldwide 2016–2027. Accessed:

Mar. 20, 2022. [Online]. Available: https://www.statista.com/s
tatistics/330695/number-of-smartphone-users-worldwide/

[2] J. Gao, X. Bai, W. T. Tsai, and T. Uehara, ‘‘Mobile application testing: A
tutorial,’’ IEEE Comput., vol. 47, no. 2, pp. 26–35, Jan. 2014.

[3] M. Linares-Vasquez, K. Moran, and D. Poshyvanyk, ‘‘Continuous,
evolutionary and large-scale: A new perspective for automated mobile
app testing,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),
Sep. 2017, pp. 399–410.

[4] S. Zein, N. Salleh, and J. Grundy, ‘‘A systematic mapping study of mobile
application testing techniques,’’ J. Syst. Softw., vol. 117, pp. 334–356,
Jul. 2016.

[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A.M.Memon,
‘‘MobiGUITAR: Automated model-based testing of mobile apps,’’ IEEE
Softw., vol. 32, no. 5, pp. 53–59, Sep. 2015.

[6] M. Linares-Vasquez, M. White, C. Bernal-Cardenas, K. Moran, and
D. Poshyvanyk, ‘‘Mining Android app usages for generating actionable
GUI-based execution scenarios,’’ in Proc. IEEE/ACM 12th Work. Conf.
Mining Softw. Repositories, May 2015, pp. 111–122.

[7] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, ‘‘Using GUI ripping for automated testing of Android
applications,’’ in Proc. 27th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), 2012, pp. 258–261.

[8] A. Memon, I. Banerjee, and A. Nagarajan, ‘‘GUI ripping: Reverse
engineering of graphical user interfaces for testing,’’ in Proc. 10th Work.
Conf. Reverse Eng. (WCRE), 2003, pp. 260–269.

[9] I.-A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, and A. Usman,
‘‘AMOGA: A static-dynamic model generation strategy for mobile
apps testing,’’ IEEE Access, vol. 7, pp. 17158–17173, 2019, doi:
10.1109/ACCESS.2019.2895504.

[10] P. Chalela, E. Munoz, D. Inupakutika, S. Kaghyan, D. Akopian,
V. Kaklamani, K. Lathrop, and A. Ramirez, ‘‘Improving adherence to
endocrine hormonal therapy among breast cancer patients: Study protocol
for a randomized controlled trial,’’Contemp. Clin. Trials Commun., vol. 12,
pp. 109–115, Dec. 2018.

53222 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2019.2895504


D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

[11] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, ‘‘Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,’’ Future Generat. Comput. Syst.,
vol. 25, no. 6, pp. 599–616, 2009.

[12] H. Hacigumus, B. Iyer, and S.Mehrotra, ‘‘Providing database as a service,’’
in Proc. 18th Int. Conf. Data Eng., Feb. 2002, pp. 29–38.

[13] L. Zhao, S. Sakr, and A. Liu, ‘‘A framework for consumer-centric SLA
management of cloud-hosted databases,’’ IEEE Trans. Services Comput.,
vol. 8, no. 4, pp. 534–549, Jul./Aug. 2015.

[14] C. Gyorödi, R. Gyorödi, and R. Sotoc, ‘‘A comparative study of
relational and non-relational database models in a web-based application,’’
Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 11, pp. 78–83, 2015,
doi: 10.14569/IJACSA.2015.061111.

[15] M. Abourezq and A. Idrissi, ‘‘Database-as-a-service for big data:
An overview,’’ Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 1, pp. 157–177,
2016, doi: 10.14569/IJACSA.2016.070124.

[16] W. Al Shehri, ‘‘Cloud database database as a service,’’ Int.
J. Database Manage. Syst., vol. 5, no. 2, pp. 1–12, Apr. 2013, doi:
10.5121/ijdms.2013.5201.

[17] S. D. Bijwe and P. L. Ramteke, ‘‘Database in cloud computing-database—
A-service (DBaas) with its challenges,’’ Int. J. Comput. Sci. Mobile
Comput., vol. 4, no. 2, pp. 73–79, 2015.

[18] R. Gyorodi, M. I. Pavel, C. Gyorodi, and D. Zmaranda, ‘‘Performance of
OnPrem versus azure SQL server: A case study,’’ IEEE Access, vol. 7,
pp. 15894–15902, 2019.

[19] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, ‘‘Characteriz-
ing and detecting resource leaks in Android applications,’’ in Proc.
28th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2013,
pp. 389–398.

[20] Y. Liu, C. Xu, and S.-C. Cheung, ‘‘Characterizing and detecting
performance bugs for smartphone applications,’’ in Proc. 36th Int. Conf.
Softw. Eng., May 2014, pp. 1013–1024.

[21] A. Nistor and L. Ravindranath, ‘‘SunCat: Helping developers understand
and predict performance problems in smartphone applications,’’ in Proc.
Int. Symp. Softw. Test. Anal. (ISSTA), 2014, pp. 282–292.

[22] B. M. C. Silva, J. J. P. C. Rodrigues, I. de la Torre Díez,
M. López-Coronado, and K. Saleem, ‘‘Mobile-health: A review of current
state in 2015,’’ J. Biomed. Inform., vol. 56, pp. 265–272, Aug. 2015.

[23] P. D. Kaur and I. Chana, ‘‘Cloud based intelligent system for delivering
health care as a service,’’ Comput. Methods Programs Biomed., vol. 113,
pp. 346–359, Jan. 2014, doi: 10.1016/j.cmpb.2013.09.013.

[24] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, ‘‘What do mobile
app users complain about?’’ IEEE Softw., vol. 32, no. 3, pp. 70–77,
May 2015, doi: 10.1109/MS.2014.50.

[25] G. Rodriguez, D. Inupakutika, S. Kaghyan, D. Akopian, P. Lama,
P. Chalela, and A. G. Ramirez, ‘‘Performance assessment of
mHealth apps,’’ in Proc. IEEE Int. Conf. Pervasive Comput.
Commun. Workshops (PerCom Workshops), Mar. 2020, pp. 1–7,
doi: 10.1109/PerComWorkshops48775.2020.9156198.

[26] M. Jun, L. Sheng, Y. Shengtao, T. Xianping, and L. Jian, ‘‘LeakDAF: An
automated tool for detecting leaked activities and fragments of Android
applications,’’ in Proc. IEEE 41st Annu. Comput. Softw. Appl. Conf.
(COMPSAC), Jul. 2017, pp. 23–32.

[27] J. Qian and X. Zhou, ‘‘Inferring weak references for fixing Java memory
leaks,’’ in Proc. 28th IEEE Int. Conf. Softw. Maintenance (ICSM),
Sep. 2012, doi: 10.1109/ICSM.2012.6405323.

[28] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
‘‘A close examination of performance and power characteristics of 4G LTE
networks,’’ inProc. 10th Int. Conf. Mobile Syst., Appl., Services (MobiSys),
2012, pp. 225–238.

[29] W. Li, D.Wu, R. K. C. Chang, and R. K. P.Mok, ‘‘Toward accurate network
delay measurement on Android phones,’’ IEEE Trans. Mobile Comput.,
vol. 17, no. 3, pp. 717–732, Mar. 2018.

[30] I. C. Morgado and A. C. R. Paiva, ‘‘The iMPAcT tool: Testing UI patterns
on mobile applications,’’ in Proc. 30th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Nov. 2015, pp. 876–881.

[31] R. M. L. M. Moreira, A. C. R. Paiva, and A. Memon, ‘‘A pattern-based
approach for GUI modeling and testing,’’ in Proc. IEEE 24th Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2013, pp. 288–297.

[32] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,
‘‘Anatomizing application performance differences on smartphones,’’ in
Proc. 8th Int. Conf. Mobile Syst., Appl., Services (MobiSys), San Fransisco,
CA, USA, 2010, pp. 165–178.

[33] H. Kim, B. Choi, and W. E. Wong, ‘‘Performance testing of mobile
applications at the unit test level,’’ in Proc. 3rd IEEE Int. Conf. Secure
Softw. Integr. Rel. Improvement, Jul. 2009, pp. 171–180.

[34] V. L. L. Dantas, F. G. Marinho, A. L. da Costa, and R. M. C. Andrade,
‘‘Testing requirements for mobile applications,’’ in Proc. 24th Int. Symp.
Comput. Inf. Sci. (ISCIS), Sep. 2009, pp. 555–560.

[35] H. Muccini, A. Di Francesco, and P. Esposito, ‘‘Software testing of mobile
applications: Challenges and future research directions,’’ in Proc. 7th Int.
Workshop Autom. Softw. Test (AST), 2012, pp. 29–35.

[36] Y. Kang, Y. Zhou, M. Gao, Y. Sun, and M. R. Lyu, ‘‘Experience report:
Detecting poor-responsive UI in Android applications,’’ inProc. IEEE 27th
Int. Symp. Softw. Rel. Eng., Oct. 2016, pp. 490–501.

[37] P. Zhang and S. G. Elbaum, ‘‘Amplifying tests to validate exception
handling code: An extended study in the mobile application domain,’’ in
Proc. Int. Conf. Softw. Eng., 2014, pp. 1–28.

[38] S. Yang, D. Yan, and A. Rountev, ‘‘Testing for poor responsiveness in
Android applications,’’ in Proc. 1st Int. Workshop Eng. Mobile-Enabled
Syst. (MOBS), May 2013, pp. 1–6.

[39] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyande, and J. Klein, ‘‘Automated
testing of Android apps: A systematic literature review,’’ IEEE Trans. Rel.,
vol. 68, no. 1, pp. 45–66, Mar. 2019.

[40] M. K. Kulkarni and A. Soumya, ‘‘Deployment of calabash automation
framework to analyze the performance of an Android application,’’ J. Res.,
vol. 2, no. 3, pp. 70–75, 2016.

[41] M. Linares-Vasquez, ‘‘Enabling testing of Android apps,’’ in Proc.
IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., May 2015, pp. 763–765.

[42] S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govindan, ‘‘PUMA:
Programmable UI-automation for large-scale dynamic analysis of mobile
apps,’’ in Proc. 12th Annu. Int. Conf. Mobile Syst., Appl., Services,
Jun. 2014, pp. 204–217.

[43] R. Mahmood, N. Mirzaei, and S. Malek, ‘‘EvoDroid: Segmented
evolutionary testing of Android apps,’’ in Proc. 22nd ACM SIGSOFT Int.
Symp. Found. Softw. Eng., Nov. 2014, pp. 599–609.

[44] C. H. Liu, C. Y. Lu, S. J. Cheng, K. Y. Chang, Y. C. Hsiao, and
W. M. Chu, ‘‘Capture-replay testing for Android applications,’’ in Proc.
Int. Symp. Comput., Consum. Control, Jun. 2014, pp. 1129–1132.

[45] R. Wieringa and M. Daneva, ‘‘Six strategies for generalizing software
engineering theories,’’ Sci. Comput. Program., vol. 101, pp. 136–152,
Apr. 2015.

[46] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[47] M. J. Crawley, Statistics: An Introduction Using R. Hoboken, NJ, USA:
Wiley, 2014.

DEVASENA INUPAKUTIKA (Graduate Student
Member, IEEE) received the B.Tech. degree from
MITSUniversity, India, and theM.Sc. degree from
the University of Salford, Manchester, U.K. She
is currently pursuing the Ph.D. degree in electrical
engineering with The University of Texas at San
Antonio (UTSA). Her current research interests
include wearable technology and the IoT and web
and mobile application development.

GERSON RODRIGUEZ received the B.S.E.E.
degree from The University of Texas at El Paso
and the M.S. degree in computer science from
The University of Texas at San Antonio (UTSA).
He was a Project Engineer at DuPont. His research
interests include mobile application development,
performance assessment, algorithms, and cloud
technology.

VOLUME 10, 2022 53223

http://dx.doi.org/10.14569/IJACSA.2015.061111
http://dx.doi.org/10.14569/IJACSA.2016.070124
http://dx.doi.org/10.5121/ijdms.2013.5201
http://dx.doi.org/10.1016/j.cmpb.2013.09.013
http://dx.doi.org/10.1109/MS.2014.50
http://dx.doi.org/10.1109/PerComWorkshops48775.2020.9156198
http://dx.doi.org/10.1109/ICSM.2012.6405323


D. Inupakutika et al.: On Performance of Cloud-Based mHealth Applications

DAVID AKOPIAN (Senior Member, IEEE)
received the Ph.D. degree from the Tampere
University of Technology, Finland. He is currently
a Professor with The University of Texas at San
Antonio (UTSA). Prior to joining UTSA, he was
a Senior Research Engineer and a Specialist with
Nokia Corporation. His current research interests
include digital signal processing algorithms
for communication and navigation receivers,
positioning, dedicated hardware architectures, and

platforms for software defined radio and communication technologies for
healthcare applications. He is a fellow of U.S. National Academy of
Inventors.

PALDEN LAMA received the B.Tech. degree in
electronics and communication engineering from
the Indian Institute of Technology and the Ph.D.
degree in computer science from the University
of Colorado Colorado Springs. Currently, he is
an Assistant Professor with the Department of
Computer Science, The University of Texas at San
Antonio (UTSA). His research interests include
cloud computing, autonomic resource manage-
ment, and big data processing in the cloud.

PATRICIA CHALELA received the B.S. degree in
community health from the Universidad Industrial
de Santander, and the M.P.H. degree in health
promotion/health communications and the D.P.H.
degree in health promotion from the UT Health
Science Center at Houston, TX, USA. She is
currently an Associate Professor with the Institute
for Health Promotion Research (IHPR), UTHealth
San Antonio (UTHSCSA), and an Associate
Director for education and training programs. Her

research interests include chronic disease prevention and control, particularly
the role of epidemiological, environmental and individual psychosocial
factors on health and disease, and racial/ethnic disparities with emphasis on
Latino populations.

AMELIE G. RAMIREZ received the B.S. degree in
psychology from the University of Houston, TX,
USA, and the M.P.H. degree in health services
administration and the D.P.H. degree in health
promotion from the UT Health Science Center
Houston, TX, USA. She is currently the Chair of
the Department of Population Health Sciences and
the Director and a Professor of the Salud Amer-
ica, IHPR, UTHSCSA. She is an internationally
recognized Cancer Health Disparities Researcher

and directs research on human and organizational communication to reduce
chronic disease and cancer health disparities affecting Latinos, and more.

53224 VOLUME 10, 2022


