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ABSTRACT Over the years, several research groups have been developing effective and efficient scheduling
algorithms to enhance the quality of service of mobile communication networks. The arrival of the fifth
generation of mobile networks (5G) has demonstrated the importance of advanced scheduling techniques to
manage the limited frequency spectrum available while achieving 5G transmission requirements. This issue
has been picked up extensively within the research community due to the increasing demand for mobile
communications and the desire for a fully connected world. Consequently, the scientific community has
developed novel approaches and varied scheduling schemes to meet the needs of various applications and
scenario conditions. In this context, this paper presents an overview of the state-of-the-art methods, highlights
seminal and innovative research, and investigates the current state of 5G radio resource management. This
review of literature compares emerging strategymethods based on their metrics, analyzes their performances,
and emphasizes the existing works with a vision for the future of modern 5G and upcoming networks in
terms of radio resource allocation to provide a thorough introspection of the literature. Furthermore, gaining
a better understanding of the radio resource management state-of-the-art would provide valuable information
for future work and might be helpful for new researchers in the field.

INDEX TERMS 5G, beyond 5G, scheduling algorithms, resource allocation, radio resource management,
spectral efficiency, scheduling schemes.

I. INTRODUCTION
A. BACKGROUND
Our daily life has becomemuch easier thanks to high technol-
ogy that provides innovative services, applications, and intel-
ligent devices. As new applications and technologies emerge,
the demand for communication services grows. According
to [1], [2], 5G and beyond communication systems will
address this massive rise in services and applications requir-
ing more efficient networks with higher data rates, reduced
latencies, greater spectrum efficiencies, increased energy effi-
ciency, and expanded network capacity. The fifth generation
of mobile systems 5G intends to deliver higher data rates
than its antecedent 4G of Gbps order, enhancing the users’
perceived performances called quality of experience (QoE)
[3], [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wenjie Feng.

The international union of telecommunication (IUT) has
divided 5G applications into three prominent use cases,
namely enhanced Mobile BroadBand (eMBB), massive
Machine Type Communications(MTC), and Ultra-Reliable
and Low Latency Communications (URLLC) [5], [6].

Enhanced mobile broadband (eMBB) extends 4G services
to address end-user demand for extra mobile broadband. It is
required to serve high data rate applications, provide a seam-
less transition for highway users, expand coverage zones, and
maintain QoS standards for ultra-dense situations [7], [8].
This use case provides a wide range of services and apps, such
as augmented and virtual reality (AR/VR), video streaming,
and cloud computing [9].

On the other hand, the URLLC use case guarantees com-
munications for crucial applications that need a low packet
loss and low latency, such as remote medical care, automated
industry, manufacturing, V2X communications, self-driving
cars, and robots [10], [11]. As further detailed in [12], the

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 51643

https://orcid.org/0000-0003-3457-3600
https://orcid.org/0000-0001-6128-9715
https://orcid.org/0000-0002-6597-9251
https://orcid.org/0000-0002-1098-6841
https://orcid.org/0000-0002-7521-9141
https://orcid.org/0000-0003-4812-7708


A. Mamane et al.: Scheduling Algorithms for 5G Networks and Beyond: Classification and Survey

competing demands of high reliability and low latency make
it challenging to meet URLLC QoS criteria.

In addition to the EMBB and URLLC use cases, 5G
systems transform machine-to-machine (M2M) applications
used in previous generations of mobile communications into
machine-type communications. In this use case, embedded
technologies connect devices and enable them to interact with
their internal states and exchange data with external nodes.
Machine-type communications aim to satisfy the needs of
certain services and applications, which can range from a
wearable smart gadget to a connected house or a smart
city [13], [14]. New challenges are being introduced to
provide the necessary connectivity and boost resource effi-
ciency to accommodate millions of devices transmitting low-
volume, non-delay-sensitive data across the 5G network [15].

The main characteristic of 5G networks is their use of
the millimeter-wave spectrum to serve a diversity of use
cases. It employs low-band frequencies below 1 GHz for use
cases requiring flawless coverage and high mobility, such
as ultra-Reliable Low Latency Communications (uRLLC)
and massive Machine Type Communications (mMTC) [17].
However, these low-band frequencies cannot serve enhanced
Mobile Broadband (eMBB) services that require high peak
data rates of 20 Gbps and experienced user data rates in the
range of 100Mbps, which necessitates the usage of high-band
at mmWave frequencies. Aline with mmWaves, massive mul-
tiple inputs, andmultiple outputs (mMIMO) remains a critical
technology for 5G [18]. mMIMO employs several focused
beams to improve coverage, speed, and capacity across the
macro-assisted small cells, where a macro cell uses the lower
bands to provide broad network coverage, and the small
cells operate on the mmWave band to improve user perfor-
mance [19].

Besides the new features and leading technologies that
the 5G and beyond systems enable, the effective manage-
ment of radio resources remains crucial to overcoming these
constraints [20], [21]. Using an accurate allocation of radio
assets strategy ensures fulfilling QoS targets and increases the
quality of experience for heterogeneous users [22].

The variety of use cases presented by 5G systems necessi-
tates consideration of many performance criteria to fulfill the
technological requirements of the aforementioned use cases
as depicted in Fig. 1.

In order to achieve communication targets, various models,
approaches, metrics, and algorithms have been developed
in the literature. Numerous factors influence the scheduling
decision, namely the targeted data rate, the user channel
conditions, power consumption, spectral efficiency, delay
threshold tolerated, and packet loss ratio. Thus, selecting the
appropriate scheduling scheme that meets the users’ appli-
cations and requirements among the existing algorithms and
procedures would be challenging. This paper analyzes the
current strategies, highlights their promising and overlooked
areas, and compares various research articles’ application
forms and metrics. The following paragraph discusses the
associated survey articles.

FIGURE 1. 5G performances [16].

B. RELATED REVIEWS
The resource allocation and scheduling methods issue has
piqued the interest of academics and researchers. As a result,
several scheduling algorithms and resource allocation meth-
ods have emerged. In this context, various surveys cover
different aspects of resource allocation, as detailed in Table 1.
The survey published in [23] focuses on high-speed rail-

way communication (HSR), its architecture, channel char-
acterization, and ultimately on radio resource management
methods (RRM) for HSR wireless communications from
many perspectives: admission control, mobility management,
power control, and resource allocation.

The authors of [24] provide a comprehensive overview
of 5G’s flexible multi-user scheduling features and sum-
marize the 5G design standards of the 3GPP 5G studies.
This survey gives an E2E standpoint, covering the increased
QoS architecture and the diversified scheduling choices of
the new radio. Nevertheless, this research focuses solely on
the novel characteristics of 5G scheduling algorithms with-
out discussing the state-of-the-art solutions. On the other
hand, the resource allocation part was covered briefly, with
HSR schedulers separated into three categories: interference-
aware resource allocation, QoS-aware resource allocation,
and cross-layer dynamic resource allocation. The authors
of [25] provide a taxonomy of resource allocation in ultra-
dense networks, including methodologies, methods, opti-
mization criteria, and strategies.

Besides, the review in [26] also identifies and examines the
main aspects of effective resource allocation andmanagement
in CRAN, including user assignment, remote radio heads
selection, throughput maximization, spectrum management,
network utility, and power allocation. However, these surveys
lack a thorough examination of each scheduling system, its
advantages, disadvantages, and suitability for 5G use cases.

The research in [27] provides a thorough literature
analysis and taxonomy for content-aware and content-
unaware downlink schedulers, focusing on the content-aware
downlink scheduling methods for video streaming traffic
over Long Term Evolution (LTE). Furthermore, the work
in [28] provided a detailed overview of the downlink
packet allocation techniques suggested for LTE networks.
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TABLE 1. A review of the existing surveys.

The article detailed in [29] examines different radio
resource management (RRM) approaches used in LTE-A
networks for resource sharing, emphasizing the possibility
ofmulti-objective optimization algorithms for attaining desir-
able QoS in LTE-A systems.

Notwithstanding, there is no discussion of the appro-
priateness of 5G applications in these studies [27]–[29],
which are solely helpful for LTE networks and primarily
cover scheduling techniques in the downlink stream. The
authors of [30] investigate uplink scheduling techniques
over LTE and LTE-A from the perspective of M2M. They
focus on M2M communications characteristics like power
efficiency, QoS support, multi-hop connectivity, and scal-
ability for large devices. Nonetheless, it represents a lim-
ited number of scheduling techniques and is constrained to
M2M communication systems in the uplink. Finally, [19]
discusses how a limited number of scheduling schemes
addressing spectrum-efficient (SE), interference-efficient
(IE), and energy-efficient allocation issues may be suitable
for meeting the QoS performance requirements of 5G RAN
systems. Although the 5G suitability, the parameters used,
and the adopted performance evaluation metrics could be
more detailed.

Driven by the shortcomings mentioned above, our paper
presents the 5G use cases and their requirements. We sur-
vey the development of the scheduling algorithm through
the literature, analyze the existing strategies, determine their
advantages and inconveniences, and compare their applica-
tion forms and metrics across various research papers. This
review paper takes the readers on a journey starting from the
specifications of 5G technology to understand radio resource
allocation techniques and their role by classifying existing
scheduling algorithms, inspiring new researchers, and provid-
ing positive perspectives for upcoming works.

C. CONTRIBUTIONS
Our main contributions to this paper are summarized as
follows:

• We define the scheduling procedure and their role.
• We determine the parameters that impact the radio
resource allocation decision.

• We classify the existing schemes according to their
parameters, their performance, and their suitability for
5G services.

• Finally, we identify the strengths and gaps in the litera-
ture algorithms.

D. ROAD MAP
Fig. 2 presents the outline of this survey. The remainder of this
paper is organized as follows: Section 2 introduces the proce-
dure of radio resource allocation, details the factors impact-
ing the scheduling decision, and describes the performance
evaluation metrics. Then we classify the scheduling strategies
according to metric parameters, performance goals, traffic
type, and implementations in Section 3. Section 4 provides an
overview of the advantages and disadvantages of the schedul-
ing techniques studied in this survey.We discuss the reviewed
scheduling algorithms and emphasize new perspectives to
fill the gaps in the existing solutions in Section 5. Finally,
we summarize the paper in section 6.

FIGURE 2. Paper map.
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TABLE 2. List of acronyms.

Table 2 provides all the acronyms used in this text, together
with their meanings, to facilitate reading.

II. RESOURCE ALLOCATION AND SCHEDULING
ALGORITHMS
A. RADIO RESOURCE ALLOCATION PROCEDURE
Radio resource management (RMM) procedures aim to man-
age, run, and share radio resources to deliver an optimized

QoS [31]. A radio resource is characterized by frequency
(bandwidth and carrier frequency) and time (duration of the
transmission) [32]. It distributes the limited frequency spec-
trum resources efficiently among the connected devices in
a radio network zone to meet the network’s performance
requirements. The scheduling procedure considers the KPI
constraints defined for the scenario before allotting the radio
resources [33]. The radio management process involves rang-
ing the users according to their metric priority and generating
a mapping table that links each resource block (RB) to a
specific user and assigns sufficient resources according to
QoS needs [34].

The papers in the literature discern channel-independent
scheduling (CIS) and channel-dependent scheduling
(dynamic scheduling). The CIS strategies, also known as the
classical strategies, consist of sharing the radio resources
among the users equally without considering their type
of traffic or channel conditions [35]. Meanwhile, channel-
dependent scheduling optimally allocates resources depend-
ing on the users’ circumstances [36]. Scheduling decisions for
these dynamic strategies consider the collected information
received from the user equipment. Devices continuously send
their current status to the gNB through the CSI Report (Chan-
nel State Information), the Buffer Status Reports (BSR), and
the QoS attributes defined for each type of traffic [37], [38].
Fig. 3 details the scheduling process to make the appropriate
resource allocation decision. The procedure starts by compar-
ing the user’smetrics per RB.At every TTI, the user (i) having
the highest wi,j metric value sends its data through the jth RB.
The metric computation varies from one scheduling scheme
to another [39], [40].

B. THE FACTORS INFLUENCING THE
SCHEDULING DECISION
As previously stated, the network often bases schedul-
ing decisions on CSI reports provided by the devices.
The scheduling algorithm collects various measures from
the reports supplied by the user equipment to generate the
metric to determine when the user can utilize the channel
[41], [42]. This subsection details the scheduling inputs and
shows how these parameters affect the outputs of the schedul-
ing algorithms.

1) CHANNEL QUALITY INDICATOR
The Channel Quality Indicator is an integer coded in 4 bits,
which means its value can vary from 0 to 15. 0 denotes a
lousy channel condition, and 15 is the best case [37], [43].
The reported CQI values are essential for resource allocation
decisions, as users having appropriate channel circumstances
experience high performance. The AMC module selects the
suitable modulation and coding scheme (MCS) that matches
the CQI value to determine the number of bits per resource
element (RE). Hence, the CQI affects the enabled through-
put. Namely, a high CQI value provides high data rates
[34], [44].
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FIGURE 3. Radio resources scheduling process.

2) AVERAGE DATA RATE
The average data rate of user i in the previous TTI provides
details about the history of resource allocation. It ameliorates
the fairness of resource sharing by giving higher priority to
the users with the lowest past achieved throughput. Based
on the past achieved data rate Ri(t − 1), the instantaneous
average achieved rate Ri(t) is updated every TTI following
(1) as detailed in [45]–[47]:

Ri(t) = (1− 1/tc)Ri(t − 1)+ (1/tc)ri(t) (1)

Furthermore, the average data rate considers the current
achievable transmission rate ri(t) based on the current CQI
value of the user i. The constant tc represents the memory

of the averaging filter, whereas 1/tc stands for the moving
average data rate weight used to calculate the average data
rate.

3) HEAD OF LINE PACKET DELAY (DHOL)
This parameter computes the time a packet spends in the
buffer before being sent. The equation expressed in (2) calcu-
lates the DHOL at the current time t ,tenter refers to the moment
at which a packet enters the eNodeB buffer [48]. It maximizes
the metric of the user having a long HOL queue to ensure
packet delivery with a minimum latency [49].

DHOL = t − tenter (2)

4) QUEUE STATUS AND BUFFER LEVELS
The queue status and the buffer level parameters provide
information about the amount of data a scheduler needs
to transfer on the downlink and uplink, respectively. These
parameters ensure a flexible assignment of radio resources
considering the flow existing in the buffer or the transmission
queue of each user [50], [51]. Hence, the queue and the buffer
status impact the resource allocation decision by assigning
more resources to users having a large amount of data to
transfer, which reduces latency and enhances reliability.

5) QUALITY OF SERVICE IDENTIFIER
QCI stands for QoS Class Identifier, also known as 5QI (5G
QoS Indicator). It refers to the quality-of-service require-
ments of various use cases and applications. The QCI remains
an essential input for QoS-aware schedulers since it describes
the priority level, type of flow, tolerated packet budget delay,
and packet error loss limits for each application [52], [53].
The QCI affects the resource allocation decision by prioritiz-
ing users having a short packet budget delay or a high priority
level. In addition, it conditions the HARQ retransmissions to
respond to the packet error loss limitations of certain services.

Furthermore, other configurable parameters may impact
the scheduling decision, namely the RRC channel control of
layer 3, the SINR, and the link adaptation parameters given
by the physical layer.

C. PERFORMANCE EVALUATION METRICS
1) DELAY
Delay measures the time elapsed for a packet to be received
by the end-user [54], [55]. This performance metric measures
the perceived delay of successfully receiving the packets. The
expression (3) details its computation [56]:

Delay = Trx − Ttx (3)

With Trx the instant when the data arrive and Ttx is the
transmission moment.

2) THROUGHPUT
High throughput presents the main performance target of
mobile networks through all its generations [56], [57]. Equa-
tion (4) indicates that the throughput is the data transfer

VOLUME 10, 2022 51647



A. Mamane et al.: Scheduling Algorithms for 5G Networks and Beyond: Classification and Survey

percentage over the sending time [58].

Throughput =

∑
Rx Packet Size
Delivery Time

(4)

3) GOODPUT
Goodput presents a crucial performance indicator that clas-
sifies the schedulers regarding their effective data rate [59],
[60]. It divides the payload bits delivered successfully to
the user by the transfer time [61]. The difference between
the throughput and the goodput is in the bits successfully
delivered, where goodput does not consider the control bits
of the header or the retransmitted packets [62]. We note that
both goodput and throughput do not count lost packets [63].
According to [64], the goodput is expressed by (5):

Goodput =
Original_data

Time
(5)

4) FAIRNESS
The fairness metric evaluates the ability of the network
to assign the available radio resources equally among the
users [65]. Fairness computations differ from one article to
another. The authors in [66], [67] detail the commonly used
fairness metrics in the literature. The most frequently used
index is Jain’s index [68], which calculates the fairness as
expressed in (6).

Fairnessindex =
(
∑
xi)

2

n×
∑
x2i

(6)

where xi is the data of the ith user, and n is the total number
of devices.

5) SPECTRAL EFFICIENCY
Due to the limited radio resources, efficient spectrum usage
is necessary to enhance the QoS. The spectral efficiency
metric calculates the ratio of the average data rate to the
bandwidth (bits per second per Hertz) via the expression in
(7) to evaluate the efficacy of the network in managing the
radio resources [63], [69].

spectralefficiency =
R
B

(7)

With R, the average bit rate, and B, the bandwidth needed for
transmission.

6) PACKET LOSS RATIO
In the fifth generation of mobile networks, ultra-reliable and
critical communication services require a low packet loss
ratio. This metric computes the proportion of the packets suc-
cessfully received within the transmission time as expressed
in (8) [70], [71].

PLR =
Psent − Precieved

Psent
(8)

Table 3 presents an annotation table to facilitate the compre-
hension of our paper and enhance its readability.

TABLE 3. Annotation table.

III. CLASSIFICATION AND OVERVIEW OF
SCHEDULING ALGORITHMS
Throughout the successive eras of mobile systems, the
researchers developed several scheduling schemes and met-
rics to fulfill the various requirements proposed by the dif-
ferent scenarios and use cases. Motivated by the diversity of
the scheduling solutions in the literature, this review aims
to describe, summarize, evaluate, compare, and assess exist-
ing works in order to help readers, scientists, and future
researchers in the field.

This section carries out a comparative analysis presented
through four subsections. Firstly, we classify themetric-based
schedulers according to the parameters used to make the
scheduling decision, followed by an overview of the machine
learning-based solutions. The third subsection analyzes the
performance goals achieved by every studied scheduler.
Finally, we investigate the suitability of the studied scheduler
to meet the 5G criteria.

A. SCHEDULING ALGORITHMS CLASSIFICATION BASED
ON THE METRIC USED
This section reviews the popular schemes considered as the
ancestors of the scheduling field, namely Round Robin, Best-
CQI, Proportional Fair, MLWDF, and EXP-PF, as well as
other schemes newly developed according to their metrics
as figures in Table 4. The Round Robin algorithm shares
the resources equally to serve all UEs in the current cell
[45], [72]. Many systems utilize it because it is the simplest
scheduling method to implement [39]. Unlike the Round
Robin method, the Best CQI scheme evaluates UE Channel
Quality Indicator (CQI) and prioritizes users with the best
channel quality as detailed in section II-B2 [73].

To properly allocate resources across high data rate sys-
tems known as CDMA-HDR, the proportional-fair met-
ric (PF) divides the achieved data rate of each user by the
past average data rate at each TTI, as earlier stated in the
section. According to the PF metric, the user with the lowest
data rate in the previous TTI will have the greatest priority in
the current TTI. As a result, the PF ensures fairness between
the users [74], [75].
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TABLE 4. Classification according to the metric.

The M-LWDF presented in [76] prioritizes streaming ser-
vices and affords a maximum delivery time for packages
with a limited shelf life τi. The M-LWDF scheduler asso-
ciates the packet loss probability δi and the delay of trans-
mitted data to the achieved data rate ratio ri,j

Ri
used by the

PF [77], [78]. Furthermore, different scheduling methods
based on the MLWDF have been developed, such as the
EXP-MLWDF, which combines the MLWDF metric with

an exponential term to promote users with poor channel
conditions, as illustrated in Table 4 [79]. On the other hand,
the Virtual Token MLWDF associates a virtual queue param-
eter to the MLWDF metric in order to achieve real-time
requirements and guarantee a minimum bit rate for non-
real-time traffic [80]. The Queue-HOL-MLWDF scheduler
associates packet delay and the queue size parameters with
the MLWDF metric to avoid packet expiration and prevent
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buffer overflows [81]. The Channel-andQoS-Aware Schedul-
ing metric associates the MQS(Maximum Queue Size) to
the metrics of M-LWDF, VT-MLWDF, and Queue-HOL-
MLWDF schemes [51], [82].

The E-model Maximum Queue Size (E-MQS) sched-
uler introduced in [85] is another queue-based scheduler.
To assess the quality perceived by the user, it utilizes the
E-Model Mean Opinion Score (MOS) obtained from the
receiver.

As a result, it improves the quality of the experience for
users.

Besides, many other schedulers base their metrics on the
proportional fair (PF) metric, namely the EXP/PF, the GPF,
and the N-PF. The Exponential/PF (EXP/PF) takes advantage
of the exponential function properties and the performance
provided by the PF scheduler to improve the user experi-
ence. It combines the EXP rule to fulfill latency constraints
for streaming services with the PF rule to serve best-effort
services to enhance the throughput and maximize fairness
among users [48], [82], [84], [91].

The Generalized Proportional Fair (GPF) adds two impact
factors: β and γ , to the numerator and denominator of the PF
metric, respectively. When the value of β increases, it raises
the impact of the instantaneous data rate. As a consequence,
it prioritizes users with the best channel conditions. However,
γ increases the average past data rate to guarantee equity
among users [75].

Furthermore, Charles Katila developed in [86]Neighbors-
Aware Proportional Fair (N-PF) method for heterogeneous
systems, including eMBBusers andmassive internet of things
devices. In order to maximize the packet transmission success
rate, the N-PF combines the PFmetric with the number of IoT
devices (uncoordinated nodes) adjacent to each scheduled
node (UE).

Similarly, the technique provided in [50] associates the
buffer size parameter with the PF metric to allow a flexible
resource assignment based on the quantity of the pending
data. Besides, the scheduling algorithm proposed in [88]
divides the user set into cell-centric and cell-edge users.
It uses the proportional-fair metric as a first step, then
involves the cell-edge users, selected by the PF, in a second
round of ranking to choose the appropriate users for each RB.
Then, the scheduler assesses the odds of assigning resources
based on the PF measure or adjusting its metric to be priori-
tized based on the equation shown in table 4.

The authors in [89] developed a scheduler for eMBB and
URLLC, prioritizingURLLCflows. It bases RB allocation on
the signal-to-noise ratio multiplied by the normalized queue
state parameter denoted p to avoid accumulating data in the
buffer.

In addition, the centralized scheduler suggested in [90]
seeks to identify UEs and cell assignments first. After that, the
scheduler prioritizes scheduling HARQ procedures to avoid
further queuing delays and reduce the need for additional
retransmissions, followed by scheduling UEs with waiting
data. The UE/cell allocation is carried out successively by

identifying the UE/cell combination with the highest schedul-
ingmetric (muc). The selected users are scheduled through the
PF metric for each cell.

Besides, the work in [92] suggests a massive MIMO
scheduling technique based on mean channel gain. It cal-
culates the difference between each user’s channel gain and
the mean channel gain and prioritizes the user whose chan-
nel gain is closest to the mean channel gain. On the other
hand, the authors in [93] suggest a scheduling approach that
extends the earliest deadline first (EDF) task scheduling,
used primarily in operating systems, into slice scheduling
by modeling delayed traffic as a task instance, substituting
CPU time with radio resources, and responding to changes
in radio resource needs. Considering the Lean production
methodology initially proposed for the automotive industry,
the authors in [87] proposed a 5G NR eMBB downlink lean
scheduler that associates the resources with the production
goal through a Lean matrix. In this scheduler, they used the
log of the PF metric to express the radio resource usage and
the log rule of the CQI of each user divided by the max CQI
among all users to determine the flow efficiency.

B. SCHEDULING ALGORITHMS CLASSIFICATION BASED
ON THE MACHINE-LEARNING CONCEPT
Machine learning approaches make the right decision by
directly collecting the relevant information from data sam-
ples. As a result, the researchers employ several machine
learningmethodologies, such as deep learning, reinforcement
learning, and supervised learning, to improve resource allo-
cations and address the QoS needs of upcoming 5G and B5G
wireless networks [94]. This section examines the recently
established machine learning-based schedulers in terms of
methodology, algorithm, and objective functions. Table 5
summarizes the algorithms studied in this section.

The reinforcement learning scheduler suggested in [95]
uses the Q-learning approach to reduce end-to-end latency
by allocating compute resources while imposing the max-
imum tolerated latency requirement constraint. Whereas
the scheduling method [96] employs two types of neural
networks to estimate the best policy for allocating radio
resources: FNN (Fully connected Neural Networks) for
resource allocation and Cascade NN to increase approxima-
tion accuracy and ensure QoS criteria.

The approach given in [97] employs many reinforcement
learning (RL) concepts such as QV, QV2, QVMax, and
ACLA algorithms to accomplish low-complexity real-time
scheduling. The scheduler cited in [98] aims to achieve
dynamic scheduling and fulfill QoS criteria. It selects and
learns the strategy to be employed at each TTI depending
on current conditions, including traffic volume, QCI, and
application requirements.

Moreover, the reinforcement learning-based radio resource
scheduling technique presented in [99] ensures a low-latency
constraint for limited radio resources by utilizing the
Q-learning algorithm and deep neural network to reach the
latency objective in a reduced time.

51650 VOLUME 10, 2022



A. Mamane et al.: Scheduling Algorithms for 5G Networks and Beyond: Classification and Survey

TABLE 5. Recent machine learning-based scheduling algorithms.

The RL-based solution in [100] utilizes a Q-learning
algorithm to optimize radio resource usage, provide high
throughput, and ensure an efficient and dynamic UL/DL
TDD configuration. Alsenwi et al. suggested a schedul-
ing approach that assures eMBB and URLLC slicing by
using an optimization problem for eMBB users combined
with a PGACL deep RL algorithm for URLLC [101]. The
authors of [102] employed the Feed Forward Back Propa-
gation (FFBP) neural network algorithm to assess the QoE
score by mapping the QoS and Opinion Score (OS). After
that, it determines the optimal values for the service priority
factor through a Particle Genetic Algorithm (PGA), which
is a combination of Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO) to appropriately allocate radio
resources and maintain the QoE threshold of each service.
The article suggested in [103] adopts a deep reinforcement
learning approach called the Dueling Deep QNetwork (Duel-
ing DQN) that considers energy efficiency (EE) and spectral
efficiency (SE) of the systemwhile allocating radio resources.
The reinforcement learning scheduler proposed in [104]
employs a multi-agent Q-learning algorithm to achieve a joint
power and resource allocation scheme. The authors of [105]
suggest a deep reinforcement learning-based method that
extracts the network’s properties to construct an intelligent
and dynamic TDD Up/Downlink resource allocation tech-
nique for high-mobility heterogeneous networks.

C. SCHEDULING ALGORITHMS CLASSIFICATION BASED
ON PERFORMANCE GOALS
Generally, scheduling schemes aim to satisfy specific
performance requirements. Proof of this, the round-robin
algorithm was introduced to guarantee an unconditional fair
sharing of resources between the users of the same cell
[106], [107]. At the same time, the best CQI attributes
the radio resource only to users having the best channel

conditions. Thus, it maximizes the spectral efficiency and
increases cell throughput to the detriment of fairness [108].
In this context, the Proportional Fair algorithm evaluates the
history of resource allocation of each data flow and then allo-
cates RBs to UEs that were neglected in previous iterations
to address the fairness issue, avoid resource starvation, and
improve the data rate [74], [109].

The MLWDF associates the HOL packet delay (DHOL)
and the channel quality indicator to maximize the met-
ric of users transmitting time-sensitive traffic. It aims to
reduce latency and avoid packet loss [61], [110]. Based
on the MLWDF metric and the exponential function, the
EXP-MLWDF [80] scheduling scheme considers the QoS
information to increase the overall throughput while decreas-
ing the packet loss ratio and the delay value. The EXP-
PF [111], [112] combines two scheduling techniques: the
exponential rule, which reduces latency, and the PF metric,
which maximizes throughput and maintains fairness among
the UEs.

The virtual token MLWDF (VT-MLWDF) metric com-
bines the queue length and packet delay used in the MLWDF
measure to maintain low latency while increasing total data
throughput and decreasing packet loss [113], [114]. The
Queue-HOL-MLWDF combines packet delay, queue size,
and average data rate to reduce packet loss ratio, enhance
throughput, and maintain fairness for RT and NRT sys-
tems [81]. The channel-QoS-aware scheduler intends to
incorporate the MQS factor into the metric using a mix of the
M-LWDF, VT-MLWDF, and Queue-HOL-MLWDF metrics.
This scheduler meets the QoS standards for real-time applica-
tions by lowering the PLR while increasing cell throughput,
fairness, and spectral efficiency [115].

The E-MQS scheduler considers theMQS (Qi,max- Qi) and
the MOS parameter, which reflects user perception, to sched-
ule services sensitive to packet loss and delay [85].
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The GPF scheduler guarantees a compromise between the
high throughput provided by the BCQI and the PF’s fairness
performance [75].

The authors in [86]developed a new scheduling scheme
based on the PF classic N-PFmetric. It distinguishes a typical
user and IoT device to ensure continuous transmission among
IoT devices and increase the data rate for mobile phones.

Alternatively, the scheduler provided in [50] based its
scheduling decision on the buffer size in conjunction with the
PF measure to prioritize flows with larger buffer sizes. As a
result, it increases the achievable throughput while ensuring
fairness among all cell users.

In the same token, the scheduler presented in [88] enhances
cell-edge throughput while preserving the needed data rate
for cell-centric users to ensure satisfactory performance
and maintain equity among users. The heuristic algorithm
developed in [89] manages the radio interface and shares
it between URLLC and eMBB users by enhancing the
overall throughput for eMBB services and reducing latency
for URLLC applications. Furthermore, the low-complexity
scheduler suggested for 5G URLLC achieves a 99 percent
increase in dynamic point selection and reduces URLLC
latency by 90 percent when compared to distributed schedul-
ing [90]. In table 6, we summarize the scheduling algorithms
aforementioned, sorted by their performance goals. The lean
scheduler presented in [87] uses the Lean efficiency matrix
to ensure the trade-off between the spectral efficiency and the
throughput enhancement.

Furthermore, the scheduler proposed in [95] assigns neces-
sary resources in time to provide ongoing compliancewith the
low latency needs of applications under dynamic workloads.
The spectrum scheduling approach introduced in [99] com-
bines the Q-learning reinforcement learning technique with
deep neural networks to satisfy a low latency performance
goal. In addition, [96] proposes a machine learning-based
scheduling approach that reduces total power usage for 5G
traffic. Furthermore, it meets the various QoS requirements
in non-stationary wireless networks for delay-tolerant, delay-
sensitive, and URLLC services. Besides, the scheduling
scheme suggested by [97] combines multiple parameters to
reduce latency, avoid packet loss, and enhance the overall
QoS.

The approach proposed in [100] aims to achieve high data
speeds with minimal packet loss. In addition, the authors
of [101] developed an optimization-aided DRL-based frame-
work that aims at maximizing the eMBB data rate while
improving reliability for URLLC. Besides, the approach sub-
mitted in [104] balances the latency and the reliability of
URLLC users by allocating compute resources while impos-
ing the maximum tolerated latency requirement constraint,
which enhances the reliability, transmission, and queuing
delays of URLLC users. The paper proposed in [103] intends
to optimize the balance between energy efficiency and spec-
tral efficiency in the Ultra-Dense Network. The proposed
channel gain-based scheduling method enhances error per-
formance, increases overall throughput, and ensures user

TABLE 6. Classification based on performance goals.

fairness [92]. Whereas the solution proposed in [93] reduces
latency, provides an accurate resource share, and improves
resource utilization. The last work to be studied in this section
is the scheduler given in [105] adjusting TDD configuration
dynamically to enhance uplink and downlink radio resource
allocation by improving network throughput and reducing
packet loss rate.

D. SCHEDULING ALGORITHMS CLASSIFICATION BASED
ON 5G APPLICATIONS SUITABILITY
An efficient scheduling algorithm must support the service
target and fulfill the QoS needs based on the application
criteria. For instance, when a scheduling algorithm serves
non-real-time flows, such as surfing the internet or texting,
the reliability of transmitted data is critical. Whereas for real-
time flows, the latency is not tolerable as it influences the
QoS of the communication. Similarly, a slight delay may be
fatal in the medical field or vehicular communications. The
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scheduling schemes’ efficiency is highly dependent on the
use case, the scenario adopted, and the application concerned.
There are two types of scheduling algorithms: real-time and
non-real-time schedulers, based on the specifications of trans-
mitted data. As detailed in Table 7, the Round Robin and
Best CQI were initially developed to schedule non-real-time
services [84], [116]. Furthermore, the PFmetric does not con-
sider packet delay or queue length, making it unsuitable for
real-time applications and delay-sensitive services. The GPF
serves the users transmitting a best-effort flow and requiring
a high data rate. Therefore, the RR, BCQI, PF, and GPF are
suitable for some eMBB scenarios, namely virtual shopping,
virtual staff assistance, and heavy downloads.

Edge User-Friendly Scheduler [88] seeks to improve the
performance of devices near cell borders or in poor channel
conditions without taking into account QoS requirements or
any other constraints. As a result, it is appropriate for non-
real-time and elemental traffic.

The modified largest weighted delay first (MLWDF) and
its modified variants, EXP-MLWDF and VT-MLWDF, pro-
vide high reliability and decrease latency [35], [113]. In
addition, the Queue-HOL-MLWDF attempts to improve per-
formance metrics for video services while preserving the
minimal QoS required for non-real-time services in the net-
work at the same time [82]. E-MQS scheme offers low latency
and a low packet loss ratio to real-time, delay-sensitive, and
ultra-reliable services [85]. As a result, they can handle crit-
ical RT traffic and low-latency communications while still
maintaining minimum requirements for non-time-sensitive
applications [117].

Moreover, the EXP-PF combines two scheduling tech-
niques. The PF rule maximizes system throughput while
maintaining fairness for non-real-time services. Meanwhile,
the EXP rule is applied to real-time, demanding services. The
channel-QoS-aware presented in [82] meets the PLR, cell
throughput, fairness, and spectral efficiency KPIs for real-
time flows. These hybrid schedulers are suitable for both
eMBB and URLLC use cases.

Since the Neighbors are aware PF shares radio resources
between the users’ mobile phones (UE) and their con-
nected devices, it seems the most appropriate scheduler
for the massive machine-type communications [86]. The
low-complexity heuristic scheduling approach described
in [89] seeks to multiplex URLLC efficiently while transmit-
ting eMBB traffic over the same radio node. Likewise, the
scheduling strategy suggested in [104] improvesURLLC reli-
ability, which results in fewer re-transmissions and reduced
transmission delays to address the problem of multiplexing
URLLC and eMBB traffic. Besides, the heuristic scheduler
described in [90] intends to serve the URLLC traffic and
meet the QoS criteria specified for this use case. Meanwhile,
the PF-buffer scheduler explained in [50] was created to
ensure eMBB communication downstream. Similarly, the
lean scheduler [87] was designed to handle eMBB traffic
because it maintains a balance between radio resource use
and the throughput required for this use case.

FIGURE 4. Performance level graph.

The Q-learning-based scheduler is appropriate for URLLC
since it provides low latency for varied traffic loads [95].
In addition to URLLC, the deep learning-based schedul-
ing scheme described in [96] is suitable for mMTC given
that it reduces power consumption and ensures low-latency
URLLC communication. The reinforcement learning-based
schedulers described in [97], [99] will enhance the QoS for
URLLC and critical communications since they aim to mini-
mize latency and reduce packet drop ratio.

Although the scheduler described in [100] schedules vehic-
ular networks, it could also serve some eMBB applications
because it attempts to increase user throughput. The method
presented in [101] meets the demanding URLLC reliability
requirements, improves the Jain fairness index, and boosts
data rates for eMBB traffic. The work provided in [102]
enhances QoE for video, VoIP, and best-effort applications
while optimizing radio resource allocation, making it appro-
priate for eMBB applications. In [103], the authors opti-
mized the spectral and energy efficiency to serve the dense
infrastructure of the Internet of Things (IoT) applications and
massive machine-type communications (mMTC). Similarly,
the performance requirements of the scheduler introduced
in [93] present the number of resources needed for each use
case: eMBB, uRLLC, and mMTC. The scheduler introduced
in [105] improves the user’s throughput and minimizes the
packet loss ratio to present a reliable transmission to its
users. Besides, it ensures dynamic TDD switching, making
it suitable for eMBB and URLLC applications. To facili-
tate readers’ comprehension, we scored the performances in
ascending order of the performance level for each scheduler.
Then we calculated the score corresponding to each schedul-
ing scheme. Where 0.5 corresponds to ‘‘very low,’’ 1 means
‘‘low,’’ 2 stands for ‘‘medium,’’ and 3 refers to ‘‘high.’’

The resulting graph is depicted in Fig. 4.

IV. STRENGTHS AND SHORTCOMINGS OF THE STUDIED
SCHEDULERS
The previous sections discussed the metric parameters, per-
formance goals, and methods used in the current algorithms
and their suitability for the 5G use cases. This section pro-
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TABLE 7. Classification based on applications suitability.
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vides an overview of the advantages and disadvantages of
scheduling techniques reviewed in this survey.

The first studied algorithm is the Round Robin [72],
renowned for ensuring absolute fairness between all users
regarding the number of resource blocks assigned to each
user. However, it disregards the channel conditions or the
service requirements. Meanwhile, the best CQI scheduler
provides the highest data rate for users with good link con-
ditions and a high SNIR, but it condemns cell edge users or
those with poor coverage [73].

The proportional fair combines high throughput for users
with the highest CQI value while ensuring fair resource
sharing. Despite the throughput-fairness compromise, the PF
consumes more spectral resources than other techniques and
forces users with good channel conditions to stick to a limited
level of throughput, even less than their needs [83].

The MLWDF prioritizes users with real-time traffic and
limited DHOL timing while ignoring the QoS of each ser-
vice in real-time traffic, besides the NRT users, who might
suffer from starvation [76]. The EXP/PF prioritizes real-
time traffic; however, the exponential rule increases the algo-
rithm’s complexity and makes it hard to implement [84].
The EXP-MLWDF also suffers from high complexity due to
exponential use. Meanwhile, it promotes users with terrible
channel conditions [79].

The Virtual Token MLWDF [51], the Queue-HOL-
MLWDF [81], and Channel-QoS-Aware [82] assign
resources to long-sized traffic while considering the timing
threshold to serve delay-sensitive applications and avoid
buffer overloads. However, they ignore the QoS requirements
of each service and limit the RBs allocated to NRT users.
Besides, the Queue-HOL-MLWDF [81] and Channel-QoS-
Aware [82] use unbalanced parameters since they associate
the DHOL in ms with the queue size in KBs.

Furthermore, Channel-QoS-Aware affords minimum fair-
ness among real-time applications by considering the maxi-
mum queue size.

The E-model Maximum Queue Size (E-MQS) sched-
uler [85] is a QoS-aware scheduler that improves the quality
of the experience for real-time users. It affords minimum
fairness among real-time applications by considering the
maximum queue size. Meanwhile, it uses many parameters,
which may increase the computation time and make it hard
to implement.

The GPF [75] scheduler balances the performance of the
BCQI and the PF in terms of throughput and fairness. It pri-
oritizes users with the best channel conditions and guaran-
tees minimum user equity. Yet, the users with bad channel
conditions suffer from starvation, and it does not consider
QoS. Furthermore, the factors changing from BCQI to PF
should be adjusted manually, which means it does not offer
dynamic scheduling. The N-PF scheduler presented in [86]
overlooks the QoS of each flow and uses numerous parame-
ters to schedule eMBB traffic alongwithmMTC applications.
Hence, the expanded computation time makes it hard to
implement.

The lean scheduler [87] provides the lowest complexity of
all schedulers since it associates the log rule with the PF met-
ric and the CQI of each user divided by the max CQI among
all users. It enhances spectral efficiency and ensures equity
among users. Nevertheless, it is a QoS-aware scheduler and
works only for the downstream.

The proportional fair buffer [50] avoids buffer overload,
affords equity, and enhances the overall throughput; however,
it is a QoS-aware scheduling scheme. Edge User-Friendly
Scheduler (EUFS) [88] protects cell-edge users from star-
vation. Regardless, this scheduler suffers from many limita-
tions; it is QoS-unaware, hard to implement, and wastes many
radio resources.

The scheduler in [89] schedules eMBB and URLLC
traffic and prioritizes URLLC flows. It is a channel
conditions-aware scheduler that avoids accumulating data in
the buffer. Meanwhile, it does not consider the QoS of each
service in the studied use cases.

The centralized scheduler suggested in [90] avoids queuing
delays and reduces the need for additional retransmissions.
Yet, it is unsuitable for the TDD duplex, and it overlooks
the QoS requirements. Likewise, the reinforcement learn-
ing scheduler suggested in [95] reduces the overall end-to-
end latency and imitates human decisions to assign radio
resources dynamically to the delay-sensitive users. Nonethe-
less, it is hard to implement due to the unavailability of
the input data. Besides, using machine learning principles
increases the algorithm’s complexity.

The schedulingmethod in [96] employs two types of neural
networks to increase approximation accuracy and ensure QoS
criteria. Despite that, it suffers from high complexity and a
challenging implementation. On the other hand, the scheduler
in [97] accomplishes low-complexity real-time scheduling
and allows a dynamic allocation of radio resources based
on the QCI of each flow. Meanwhile, it employs numerous
reinforcement learning (RL) concepts that increase the com-
putation time and cause high latency.

The scheduling technique presented in [99] reduces latency
and enhances spectral efficiency. Besides, The solution
in [100] utilizes a Q-learning algorithm to provide high
throughput and ensure an efficient and dynamic UL/DL TDD
configuration. Nonetheless, potential weaknesses of these
algorithms are unavailability of the input data to the learning
algorithms, advanced complexity, and difficulty of usage.

The scheduling scheme presented in [101] ensures the
eMBB and URLLC slicing. It aims to maximize the eMBB
data rate and improve reliability for URLLC by using an
optimization problem for eMBB and a PGACL deep RL
algorithm for URLLC. Hence, the algorithm’s complexity
increases and causes a challenging implementation. In addi-
tion, this scheduler neglects the QoS requirements of the
different applications in each use case.

The main limitation of the work cited in [102] consists of
the increased complexity of implementation due to the usage
of Feed Forward Back Propagation (FFBP) combined with
Genetic Algorithms (GA) and Particle Swarm Optimization
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TABLE 8. Strengths and shortcomings of the studied schedulers.
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(PSO). However, it allocates radio resources appropriately
and maintains the QoE threshold of each service. The work
in [103] improves energy efficiency (EE) and spectral effi-
ciency (SE). Nevertheless, it might be hard to implement
since it uses a deep reinforcement learning approach, making
it a high-complexity scheduler. The gain-based method pre-
sented in [92] ensures spectral efficiency and efficient spec-
trum usage. However, it is concerned solely with downlink
traffic and does not consider the quality of service needed
for each user. Besides, the reinforcement learning method
introduced in [104] prioritizes the URLLC flows by reducing
the latency and enhancing the power efficiency. Nevertheless,
it might be classed as high complexity scheduler since it
uses multi-agent Q-learning to achieve its goals. Table 8
summarizes the weaknesses and the strengths of the studied
scheduling algorithms.

V. DISCUSSION AND PERSPECTIVES
The main flaw of the well-known algorithm, Round Robin,
is that it ensures absolute fairness regardless of channel con-
ditions. Numerous channel-dependent schedulers have been
developed to address this issue. Such as the best CQI sched-
uler, which considers channel quality but penalizes users at
the cell edge or those having inadequate coverage. There-
fore, it does not share radio resources equally among users.
In this context, the proportional fair, combining fair sharing
of resources with knowledge of the state of the canals, was
developed. However, it consumesmore spectral resources and
ignores service requirements.

In light of this, many scheduling algorithms have been
developed based on the stream type requirements, whether
for real-time or non-real-time streams. PF-based delay-aware
schedulers, namely EXP-PF, MLWDF, and their variants,
focus on real-time traffic to reduce latency and packet loss
rate.

Unfortunately, these schedulers suffer from many short-
comings, such as starvation of NRT users and high
complexity due to many parameters’ usage. Moreover,
they only perform downlink transmissions and ignore
the quality-of-service requirements required for each
application.

On the other hand, recent scheduling methods developed
for 5G networks only work on frequency division duplex
(FDD), while the 5G NR 2 (FR2) frequency range uses only
frequency division duplex (TDD). Also, most 5G planners
design their metrics to meet a particular requirement.

Given these points, radio resource allocation for 5G net-
works and beyond remains challenging and needs further
investigation, considering the following perspectives:
• Resource allocation with flexible duplexing, particularly
dynamic TDD

• Radio resource management issues related to carrier
aggregation

• Multi-criteria schedulers
• A generalized scheduling scheme that considers all 5G
use cases

VI. CONCLUSION
Scheduling algorithms are crucial to effectively and effi-
ciently managing the limited radio resources. Consequently,
they aroused the interest of numerous scholars who proposed
diverse solutions. Several scheduling schemes and metrics
are designed to allocate radio resources efficiently to various
flow types and applications in different fields like multime-
dia, industry, medical fields, and virtual reality. This article
describes and reviews the latest developments in resource
allocation managing strategies. Intending to understand fur-
ther the process of resource allocation and the importance of
scheduling algorithms, we studied, compared, and classified
the scheduling schemes according to the parameters used
to calculate their metrics, performance goals and objectives,
and application suitability. In summary, we started by iden-
tifying the 5G use cases, characteristics, and requirements.
Subsequently, we explained the radio resource scheduling
process. After that, this survey discusses the input parameters
considered for scheduling algorithms and their impact on the
outputs. Then, it introduces the metrics used to evaluate the
schedulers’ performances. The classification section includes
four subsections to categorize the studied schemes on the
basis of their metrics, the machine learning algorithm used,
their performance, and their suitability for 5G use cases. The
last two sections discussed the strengths and shortcomings
of the state-of-the-art solutions and introduced the remaining
challenges in the literature. The perspectives section shows
that all the existing scheduling schemes in the literature need
to be improved and modified to address the requirements of
the diverse use cases proposed by 5G and beyond commu-
nication systems. In addition, it presents outstanding issues
that require further study.
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