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ABSTRACT A smart energy management controller can improve energy efficiency, save energy costs,
and reduce carbon emissions and energy consumption while accurately catering to consumer consumption
habits. Having integrated various renewable energy systems (RESs) and a battery storage system (BSS),
we proposed an optimization-based demand-side management (DSM) scheduler and energy management
controller (SEMC) for a smart home. The suggested SEMC creates a DSM-based operational plan regarding
user-centered and comfort-aware preferences. Using the generated appliances operation plan, consumers
can reduce energy costs, carbon emissions, peak-to-average ratio (PAR), improve their comfort in terms of
thermal, illumination, and appliances usage preferences. A schedule for residential consumers is suggested
using ant colony optimization (ACO), teaching learning-based optimization (TLBO), Jaya algorithm, rainfall
algorithm, firefly algorithm, and our hybrid ACO and TLBO optimization (ACTLBO) algorithm. Five
existing algorithms-based frameworks validate the DSM framework that relies on ACTLBO. The results
validate that the integration of RESs and BSS, and adapting our proposed algorithm and SEMC under
demand response program real-time price reduced the energy bill costs, PAR and CO2 in Case I: only
external grid (EG) usage by 42.14%, 22.05%, and 28.33%, in Case II: EG with RESs by 21.79%, 11.27%,
17.02%, and in Case III: EG with RESs and BSS by 28.76%, 41.53%, 21.86%, respectively as compared to
without employing SEMC.Moreover, the user-comfort (UC) improvement index-ratio with scheduling using
ACTLBO is 7.77%, 24.73%, 5.00%, and 3.43% in aspects of indoor air quality, average delay, thermal, and
visual, respectively. Simulation results show that the proposed DSM-based framework outperforms existing
frameworks to reduce energy cost, reduce carbon emission, mitigate peak loads, and improve UC.

INDEX TERMS Energy management controller, user-comfort, demand shifting, load scheduling, battery
storage systems, demand response, solar energy, smart grid.

NOMENCLATURE
z Ant.
x, y Ant movement state.
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Az(x) Set.
Pzxy Probability of the ant movement.
Txy Pheromone level.
ηxk Desirability of state transition.
Xnew New population.
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X (i, j) Design variable of i and j.
Xbest (j) Best teacher value.
Xm(j) Mean variable.
TFactor Integer value 1 or 2.
I (rf ) Intensity of light by firefly.
I Intensity of light.
rf Distance.
βo Beauty.
rij Euclidean distance between two fireflies.
α Randomization.
Xj,w,i Worst candidate.
Xj,b,i Best candidate.
U Uniform distribution.
lok , upk Lower and upper limits.
Aschl Schedulable appliances’ load.
t Specific time slot in T .
vti Current particle’s velocity at t .
Anschl Non-shiftable appliances load.
at Specific appliances.
Delay Delay time rate.
Ngmax Maximum numbers of iteration.
EP(t) Electricity price.
X t−1gpbest Best global position in PSO.
Eex(t) Energy procured from EG.
Alt Total home load.
Alschbill Energy bill of schedulable appliances.
Alnschbill Energy bill of non-schedulable appliances.
Epv Photovoltaic power.
Pwd Power procured from wind system.
Ebio CHP energy production.
l total Total home load.
αt/βt Operation start and end time of appliances.
η Bearable delay.
γ Emissions factor due to electricity.
ϕg(t) Total renewable energy at t .
ηsp Energy conversion efficiency factor.
Asp Solar panel’s area in (m2).
Irs(t) Sun irradiance at t .
Ta(t) Ambient temperature at t .
α1, α2 Shape factors.
ζ Weighted factor.
β1,β2 Scale factors.
Ba Wind turbine blade’s area.
Ws(t) Air flow in (m/s) at t .
∂ Cumulative system efficiency.
Ebio Electricity production of CHP.
Qf Fuel provided to CHP.
Lv Value of lower heating.
Qth Cumulative thermal output.
γe Recovery efficiency.
Qbr Bio-gas recovery.
Cf CHP system capacity factor.
Ept Electric vehicle’s photovoltaic generation.
Egt Remaining amount of energy of Ept .
lτ Electric vehicle’s consumption at τ time slot.

ω HVAC system time constant.
ηe Efficiency of thermal conversion.
Ac Total HVAC’s conductivity.
Xgbest ACO global best.
Xacgbest ACTLBO final global best.
EG External grid.
PG Power grid.
UC User-comfort.
VC Visual comfort.
TC Thermal comfort.
PSO Particle swarm optimization.
ACO Ant colony optimization.
PAR Peak-to-average ratio.
RTP Real-time price.
EP External grid Energy price.
FOA Firefly optimization algorithm.
JOA Jaya optimization algorithm.
HEMS Home energy management system.
MG, SG Micro grid, smart grid.
TLBO Teaching learning-based optimization.
ACTLBO Hybrid of ACO and TLBO.

I. INTRODUCTION
Smart grids (SG) play an essential role as innovation drivers
for green energy usage in various sectors, including indus-
tries, rural and urban, the environment, and information and
communication technology (ICT). The future SG leverages
innovative ICT and IoT to improve consumers’ overall quality
of life [1]. With rising population growth and advances in the
industrial sector, it is estimated that residential and commer-
cial energy demand will grow by 3% by the end of 2021 [2].
Buildings account for 33% of global energy consumption
and 40% of CO2 emissions, directly and indirectly, [3]. The
global consumption of energy is increasing steadily. Using
on-site renewable energy generation to manage energy con-
sumption can help meet this demand. The electricity con-
sumption in the residential sector accounts for about 40%
of global electricity generation and could also steep as the
world’s vehicles become electrified. Conventional fuel oper-
ated power grids (PGs) provide 64.5 percent electricity in
the world and emit significantly more carbon, with the gen-
eration and transportation sectors emitting about 40% and
24% of the carbon respectively [4]. The Energy Information
Administration estimates that the average electricity bill in
US grow more by 2.3 percent the following year [5]. This
steep increase in cost and demand will necessitate alternative
energy resources such as bio-thermal energy, solar energy,
and wind energy. Researchers have proposed methods for
generating power from renewable energy sources (RESs) to
overcome the exponential growth in energy demand while
simultaneously lowering carbon emissions and keeping costs
low [8]. Traditional PGs need to be converted into SGs
to utilize these RESs effectively. The SG can keep pace
with the increasing demand by combining new RESs and
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advanced net metering infrastructure [10]. There is a lack
of energy management and load control on the consumer
side. There is also a deficit in communication infrastruc-
ture at PGs. Moreover, environmental and air pollution have
increased due to fuel-based PGs’ excessive carbon emis-
sions. Based on this motivation, there are several approaches
to optimally schedule the load for energy management in
SG. The authors in [11] have presented an artificial neural
network-based scheme for energy management and renew-
able energy integration in SG to reduce CO2 emission and
energy cost. Consequently, the consumer’s costs of energy
bills are reduced by 35%. Nevertheless, they did not consider
UC and battery storage systems (BSS) integration, closely
related to demand-side management. A generic home energy
management system (HEMS) is suggested for grid-connected
smart homes with RESs [12]. Their goals were to develop
a plan to schedule household load, reduce energy costs
based on demand response (DR) programs, and integrate
RESs and BSS. A particle swarm optimization approach
in HEMS is proposed to optimize load scheduling, energy
demand, and distributed energy resources considering UC,
RESs, BSS, and DR program [13]. In order to overcome
user inconvenience, a heuristic-based algorithm is developed
to create a user-friendly DSM approach. Residential loads
in SG networks are scheduled using a genetic algorithm.
With the help of a genetic algorithm in the real-time pric-
ing (RTP) DR program, their primary objectives were to
minimize both peak-to-average ratio (PAR) and the electricity
bill costs and improve the UC level [14]. Residential energy
management under dynamic price mechanism is suggested
in [15] to integrate RESs and BSS into the SG community.
They aimed to integrate RESs and reduce energy bill costs.
In order to lower customers’ electricity bills, DR strategies
based on hourly pricing with an effective HEMS is suggested
to determine the optimal appliance scheduling scheme. The
proposed approach explicitly addresses consumer comfort by
offering consumers an opportunity to shift consumption away
from regular schedules during acceptable appliance deferral
times [16]. In [17], the authors proposed a heuristic-based
energy management controller to efficiently schedule smart
home appliances in response to a utility demand response
program to reduce energy costs, PAR, and CO2 emission.
Minimizing the energy bills, cost of generation, and also
minimizing the inconvenience caused due to shifting of loads
is a multi-objective optimization problem. In [18], the authors
have suggested a genetic algorithm-based DSM technique
for industrial and commercial micro-grid with one solar-
based RES, two diesel generators, and BSS, with the dynamic
pricing DR program of the utility grid. A multi-comfort-
based optimization scheme for home energy management is
proposed in [19] based on time and appliance-based priorities
under DSM to schedule load and keep cost under user bud-
get limits. Multiple agents have been suggested to manage
different appliances, energy storage systems, and renewable
energy from a smart home DSM system within the home area
network. The proposed method maintains the user’s comfort

by controlling appliances and based on the activity of the
user [20].

Various methods and techniques have been suggested for
demand-sidemanagement, load scheduling, andUC.With the
advancement of renewable technologies and smart grids, con-
sumers can reduce their energy costs by shifting load to RESs.
The authors in [21], suggested a comprehensive UC-aware
energy management and optimization scheme to reduce
energy consumption costs in aspects of illumination, thermal,
and user preferences. In [22], a new method for smoothing
renewable energy fluctuations on different timescales is pro-
posed by utilizingmulti-typeDR resources. In their approach,
a multi-objective robust scheduling model is developed that
considers renewable energy and DR uncertainties.

In [23], an energy management controller is deployed
at grid-level for battery storage management and PG man-
agement. In [24], a multi-objective HEMS is suggested
employing grey wolf optimization to manage individual load
with on-site generations, battery storage, and UC. In [25],
energy management and optimization methods are suggested
for grid battery storages to utilize it efficiently and pro-
vide multiple grid services. In [26], the authors proposed
a local and global HEMS optimization framework for dis-
tributed energy sources and load scheduling considering
user preferences. Using big data-based power generation
forecasting techniques, the authors have proposed a dis-
tributed energy management approach in [27]. In order to
capture the dynamics of interactions and interconnections
among multiple market players, they formulate the energy
management problem as a three-stage Stackelberg game.
In their approach, the optimization of energy management
is assisted by a deep learning-based wind power forecasting
algorithm. In [28], a real-time EMS is suggested for a hybrid
energy storage system is suggested for the electric vehicle. In
[29]–[34], for demand-side management, the authors intro-
duced heuristic-based algorithms, such as genetic algorithms
(GA), wind-driven optimizations (WDO), ant colony opti-
mizations (ACO), and particle swarm optimizations (PSO).
Validation of the results is achieved by comparing them
with benchmark schemes. According to the collected results,
electricity costs and peak-to-average ratios (PARs) have
been reduced by 29% and 36.2%, respectively. However,
they did not incorporate renewable energy. To overcome
the randomization problem in [35] and [36], the authors’
employed Harris’ Hawk optimization techniques along with
integer linear programming (ILP). In addition to UC, the
authors’ primary goal is to analyze the costs’ trade-offs and
the mechanism for converting them into financial benefits.
Their approach can be adapted to meet specific user robustly
needs. Nonetheless, carbon reduction and renewable energy
are not taken into account. Authors in [37], proposed a
multi-objective-based GA for minimizing CO2 emission and
operating costs while overcoming the optimization challenge.
In [38]–[40], researchers studied a smart residential building
operating on the PG and utilizing electricity from an external
grid. The integration of hybrid energy systems, including

53834 VOLUME 10, 2022



S. Ali et al.: Demand Response Program for Efficient DSM in Smart Grid Considering Renewable Energy Sources

energy storage and wind and solar power, has been consid-
ered. A linearization-based multi-objective approach to smart
home power management was implemented with plug-in
hybrid electric vehicles (PHEVs) and renewable energy [41].
The objective was to reduce the variation in the load pro-
file and lower electricity bill costs. However, UC was not
considered. Using net metering and forecasts framework,
the authors proposed an intelligent-based method for DSM
in [42] and [43]. Their objectives were to reduce PAR, elec-
tricity bills, and CO2 emissions. Moreover, under fluctu-
ating temperature and sun irradiation, a maximum power
point tracking (MPPT) and GA-ACO-based controller was
employed to make the photovoltaic (PV) module function
at its maximum power point [44]. A hybrid of genetic
algorithm and ant colony optimization (HGACO) tech-
nique is suggested to solve the energy scheduling problem,
reduce peak formation, cost, and carbon emissions [45]. In
[46]–[49], a DSM scheme in the residential area for the
reduction of power costs and PAR with the highest level of
user satisfaction is suggested. They have used state-of-the-
art methods for this, including enhanced differential evo-
lution (EDE), GA, firefly optimization algorithm (FOA),
rainfall optimization algorithm (RFOA), optimal stopping
rule (OSR), game theory, and teacher learning-based opti-
mization (TLBO). In [50] and [51], authors have proposed
a DSM-based HEMS that adopt the hybrid of GA, PSO,
and WDO to curtail PAR, energy cost, and carbon emis-
sion and achieve maximum UC. In [52] and [53] an online
and real-time energy management controller is suggested for
grid-connected sustainable smart home considering UC. The
authors in [54] have proposed a strategy for local energy
production management, RESs usage efficiency, and reduc-
ing fuel-based generation consumption considering demand
scheduling during peak hours for both grid-connected and
island-connected modes. For both the direct and indirect
distribution modes, particle swarm optimization is used to
schedule the generation of distributed energy resources.
An optimal multi-timescale demand-side scheduling frame-
work is presented in [55] for industrial customers. The
framework combines the day-ahead approach and the week-
ahead approach. Different DSM techniques offer distinct
week-ahead and day-ahead scheduling capabilities in their
multi-time scale framework that cooperate to create the opti-
mal demand schedule. ADR program’s load scheduling prob-
lems are addressed in [56]. The authors have developed and
modeled an algorithmic foundation for these problems. They
have developed an online algorithm that outputs scheduling
decisions based on past and presents input only based on
the AC optimal power flow model. As home energy usage
increases and RESs are deployed, HEMS should simulta-
neously consider energy consumption priorities and on-site
generation. A smart HEMS architecture is developed in [57]
that considers both energy consumption and local generation
simultaneously. It is proposed in [58] that DSM techniques
can be used to control the loads within a smart home while
taking into account the priority of time-varying appliances.

In their work, a method for quantifying time-varying pri-
orities is presented concerning time and device-based fea-
tures through an evolutionary accretive comfort algorithm
(EACA). In order to generate the EACA optimal energy
consumption pattern that would give maximum satisfaction
within a predetermined budget, the input data regarding the
power ratings of appliances, their time of use, and absolute
comfort are taken into account. While the literature presented
is an excellent start when it comes to understanding DSM
in SG. However, the DSM challenge is tough to cater due
to nonlinear consumer behaviour, variable and intermittent
renewables, and finite fossil fuel resources. Furthermore,
the literature reviewed focuses on lowering energy costs,
reducing PAR, and minimizing the delay time for operat-
ing appliances. The intrinsic models cannot handle DSM
problems simultaneously to reduce electricity bill costs, peak
electricity consumption, PAR, carbon emissions, appliances
delay, and user discomfort concerning indoor thermal, visual,
and air quality. Furthermore, inherent models’ performance is
often compromised due to inherent limitations and the inabil-
ity to handle conflicting objectives concerning user-centric
and multiple comfort constraints. As a result, hybrid and
integrated approaches are needed to solve this problem.
In this context, a new technique, namely the hybrid ant-
based teaching-learning optimization (ACTLBO) algorithm,
is introduced to solve issues associated with intrinsic mod-
els while dealing with the DSM problem and considering
UC. The ACTLBO suggests and returns an optimal power
usage scheduling in response to a demand response program
real-time pricing (DRP-RTP). The novelty and main contri-
butions of this work are listed below:
• A practical optimization model is formulated for
efficient demand-side management via power usage
scheduling considering demand response and renewable
energy sources in SG.

• Ant colony teaching-learning based optimization
(ACTLBO) algorithm is proposed, which is a hybrid
of ACO and TLBO algorithms to solve demand-side
management problem.

• In addition to energy cost and PAR objectives, which
are catered in [11]- [15], we formulate and investigate
UC and carbon emission while solving the demand-side
management problem. Also, the UC is modeled in
terms of delay, indoor thermal, visual, air quality, and
freshness.

• The efficacy and applicability of the proposed ACTLBO
algorithm are endorsed by comparing it to the bench-
mark algorithms like ACO, TLBO, FOA, JOA, and
RFOA in aspects of energy cost, carbon emission, PAR,
and user discomfort minimization.

The remaining paper is organized into five sections:
Section II describes the proposed and existing methods
for demand-side management, section III details the pro-
posed system architecture for demand-side management, and
section IV presents the simulation results. Section V con-
cludes the work.
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II. PROPOSED AND EXISTING METHODS FOR
DEMAND-SIDE MANAGEMENT
This section discusses the proposed method and the previ-
ously used optimization-based schemes for solving the DSM
problems via power usage scheduling and energy optimiza-
tion. Previously used techniques such as ILP, linear program-
ming, mixed-integer linear programming (MILP), dynamic
programming (DP) face issues in convergence, and they can
not be used in a large number of appliances. We suggested a
hybrid of two algorithms, namely ACO and TLBO, discussed
in subsequent sections.

A. ANT COLONY OPTIMIZATION ALGORITHM
ACO algorithm is a meta-heuristic. To collect food and return
to their colony, ants, like humans, use the quickest route
possible. To retrace their steps, ants utilize a pheromone trail.
Artificial ants and pheromones are created in ACO to find
the shortest path across a graph. The ants will pursue the path
with the most pheromone since pheromone is an evaporative
element. The ACO algorithm, like other algorithms, starts by
creating an initial solution from a limited number of solution
components. The ant then moves along the graph, each vertex
representing a solution component.The probability is given
by the following formula [33]:

pzxy =
T αxyη

β
xy∑

k ∈ Az(x)T αxkη
β
xk

(1)

where z represents an ant, state x calculates a set Az(x). The
probability of the ant moving from x to y is pzxy. Symbol Txy
denotes the pheromone level. The three steps of ACO are
(i) main problem specification, (ii) parameter initialization,
and (iii) ant position update. According to our problem spec-
ification, the ACO approach will optimize energy usage to
reduce electricity bill costs, carbon emissions, and PAR. The
swarm size parameter describes the number of appliances in
our model, after which we initialize the evaporation rate to
0.5 and update the ACO location. At first, each ant selects
any path; therefore, six ants represent home appliances, and
24 pathways represent 24 hours of scheduling. The 24 path-
ways have a 1/24 chance of choosing each ant. According to
the ACO algorithm, one path out of 24 paths has the shortest
distance. Because we do not know the solution pathways
at the start, it is presumed that all of them have the same
pheromones [45]. The values of parameters used in the ACO
algorithm for simulation on which the best optimal schedul-
ing and energy management scheme is achieved are listed in
Table 2.

B. TEACHING LEARNING BASED OPTIMIZATION
The evolutionary-based algorithms adjust their behavior in
response to the independent variable, including population
size, number of generations, and crossover percentage. The
TLBO, which was influenced by evolutionary algorithms.
The student and teacher are the two fundamental com-
ponents of TLBO. The initial component, named teacher,

is a premature solution that learns from more mature solu-
tions [46]. As the algorithm is intended for a teacher, the
best person should significantly improve the characteristics
of learners, the rest of the people. It is a population-based
approach infers the global answer from a population of indi-
viduals (candidate solutions). The TLBO algorithm com-
prises two stages: the teacher and the learner phases. In the
teacher phase, pupils learn from the teacher (the optimum
answer for the whole population). In the learner phase, each
individual strives to learn via contact with other individuals
within the population. The following is the TLBO algorithm’s
behaviour [48]. Random data is used to build the population
and initialize the individuals (values of the design variables).
The algorithm will update the population after producing
the first generation of individuals. The best solution from
population is selected as teacher at the start of each iteration,
and the mean of each variable is computed. These numbers
are employed in the algorithm’s two primary stages: the
teacher and learner phases. In the teacher phase, the current
generation has acquired teacher, Xbest is utilized to build a
new version of each person Xnew using the equation [48]:

Xnew (i, j)=X (i, j)+rand (0, 1) (Xbest (j)

−TFactor · Xm (j)) (2)

In above equation, X (i, j) corresponds to the design variable
j of the individual i, and it is modified by using the value of
the teacher Xbest (j), the variable mean Xm(j), and the TFactor .
The TFactor can adopt the integer value 1 or 2 and is calculated
using the following expression:

TFactor = round(1+ rand (0, 1)) (3)

Following the creation of a new individual, it is evaluated.
If the new individual’s assessment result is better than the old
one’s, the old one gets replaced by the new one. Each learner
is allocated a random contestant from the population during
the learner stage. Both people are up for review. The partial
teacher is labeled as the learner, and the other is labeled as
the partial teacher, so that they may be used to build a new
individual using the expression:

Xnew (i, j) = X (i, j)+ rand (0, 1)

· (PartialTeacher (j)− Learner (j)) (4)

Every time an Xnew(i, j) is created, the new person is assessed
and compared to the original. If the new individual’s appraisal
is higher than the old one’s, the new individual takes the place
of the old one. Table 2 shows the values of the parameters
used in the TLBO algorithm for simulation that produce the
best optimal results.

C. FIREFLY OPTIMIZATION ALGORITHM
The firefly optimization algorithm (FOA) is a stochastic,
nature-inspired meta-heuristic technique for solving opti-
mization issues. It was recently introduced by Xin-Shi Yang.
The behavior of light emission of fireflies inspires the FOA,
which is the source of communication for food search and
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reproduction. The two most important roles of FOA are to
recruit matting partners and possible prey. After establishing
the light intensity and estimating the attraction of fireflies, the
ideal method is to use the objective function to determine the
fitness of all fireflies [47]. I (rf ), the light intensity emitted by
a firefly, at a distance rf may be detected using physics prin-
ciples of light and can be formulated using equation (5) [59]:

I (rf ) =
lo
r2f

(5)

where lo denotes the light intensity produced by the light
source. The symbol γ denotes the medium’s absorption coef-
ficient. If γ given then intensity of light, I at distance rf is
calculated using equation (6) [59]:

I = Ioexp(−γ r2f ) (6)

The distance between the light source and the light observa-
tion point is represented by rf . This light intensity is linked to
the attraction of fireflies in the FOA, and is determined using
the following equation (7) [59]:

B = Boexp(−βorfm)(m >= I ) (7)

where, βo denotes beauty at a distance of rf = 0. The
Euclidean distance, or the distance between two fireflies xi
and yj, is given by [59]:

rf ij = |xi − Yj| =

√√√√ d∑
k=1

(xi,k − yj,k )2 (8)

The location of the firefly can be adjusted according to the
following equation in each generation [59]:

Xi = xi + Boexp(−γ rf ij2)(xi − yj)+ αε (9)

In the above equation, α denotes the randomization parame-
ter, ε is the random number generated in Gaussian distribu-
tion. The randomization parameter is used to regulate the size
of the solution search space.

When used to solve optimization problems, the FOA, like
other optimization problems, has three main steps: (i) the
initialization step, (ii) the firefly position altering step, and
(iii) the termination step. A random search space is created
during the initialization step, taking into account the variables
utilized in the optimization function and the optimization
function’s associated value. In the firefly position change
stage, the positions of fireflies are modified using a factor
known as the randomization factor to find fresh solutions to
the problem at concern. The algorithm comes to a halt in
the termination step. As the initial solution space is unpre-
dictable, there may be an unequal link between exploration
and exploitation of the solution search space during the ini-
tialization stage, resulting in slower local and global conver-
gence rates of the algorithm and worse solution quality. The
randomization factor determines the motions of the firefly in
the position change stage. If this value is not managed care-
fully, the quality of the problem’s solution may suffer [59].

The association formed in the initialization and firefly posi-
tion shifting phases between exploration and exploitation
of the solution search space determines the optimal values
obtained during the termination stage. If the algorithm com-
pletes and the values returned are the most optimal, no fur-
ther processing is required [59]. The parameters used in the
FOA algorithm and their respective values on which its best
optimal scheduling for smart home appliances is obtained are
listed in Table 2.

D. JAYA OPTIMIZATION ALGORITHM
The Jaya optimization algorithm (JOA) is a population-based
approach for limited and unconstrained optimization prob-
lems. Jaya does not have any algorithm-specific controlling
or tuning parameters, unlike other population-based heuristic
algorithms. Only the population size and generations (the
number of iterations) are specified, just like in TLBO. This
approach is based on the idea that the best partial solution for
a given issue may be found by avoiding the worst solution
while moving towards the best partial solution. JOA outper-
formed other optimization approaches in regards to the best,
worst, and mean values of several unconstrained benchmark
functions [48]. The following is a description of the Jaya algo-
rithm. Let function f (x) to be the minimised or maximised
(objective function). Assume that there are n design variables,
i.e., j = 1, 2, . . . , n and p possible solutions, i.e., population
size, k = 1, 2, . . . , p at any iteration i. The best candidate
gets the best f (x) value, i.e., f (x)b in the whole candidate
solutions, whereas the worst candidate gets the worst f (x)
value, i.e., f (x)w in the entire candidate solutions. If Xj,k,i is
the value of the jth variable for the k th candidate during the ith

iteration, the following equation is used to change it:

X ′j,k,i = Xj,k,i + r1.j,i
(
Xj,b,i −

∣∣Xj,k,i∣∣)
− r2,j,i(Xj,w,i −

∣∣Xj,k,i∣∣) (10)

In above equation, symbol Xj,b,i represents the value of
variable j for the best candidate and Xj,w,i represents the
value of variable j for the worst candidate. The updated value
of Xj,k,i is X ′j,k,i, and r1,j,i and r2,j,i are two random values
in the range [0, 1] for the jth variable generated in the ith

iteration, respectively. The term r1,j,i (Xj,b,i|Xj,k,i|) denotes
the algorithm’s propensity to get closer to the best solution,
while r2,j,i (Xj,w,i|Xj,k,i|) denotes the algorithm’s inclination
to avoid the worst solution. Only if the new candidate (X ′j,k,i)
provides a superior function evaluation is it approved. The
acceptable function values at the conclusion of each iteration
are saved, and these values are used as the input for the
following iteration. Table 2 lists the parameters utilised in
the JOA algorithm and the values that produce the most
optimal scheduling scheme for home energymanagement and
comfort.

E. RAINFALL OPTIMIZATION ALGORITHM
The rainfall optimization algorithm (RFOA) is suggested to
schedule household appliances properly. RFOA imitates the
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movement of raindrops. In SEMC, raindrops are treated as
appliances. A local search is performed to gather the water
droplets in the deepest valley, and then finding the global
best solution (i.e., sea level) is done [49]. RFOA particles
behave like gradients falling and hills climbing. Population
and parameters that will be used in RFOA optimization
are initialized first. This method uses terms like ’raindrop’,
’neighborhood’, ’neighbor point’, ’dominant, active and inac-
tive drops’, ’explosion process’, ’raindrop rank’, and ’merit
order list’. Each term is defined further here.

1) RAINDROP
Within a population, a raindrop is a single particle. It’s a
vector used in optimization problems to keep track of the
variables. It is used to make that the optimization problem’s
restrictions are met. The population size is represented by m,
while the drop numbers are represented by i. Equation (11) is
used to define it below:

Di = [xi,1xi,2xi,3 . . . xi,k . . . xi,n] i1, 2, 3, . . . ,m (11)

where n denotes the number of variables in the optimization
problem, and xi,k denotes the number of variables in the opti-
mization problem. The ith drop number is Di. The equation
gives the constraint that was employed. The constraint used
is given in equation (12) [49].

xi,k = U (lok , upk ) (12)

In above equation, for uniform distribution function U is
used. The symbols lok and upk are upper and lower limits.

2) NEIGHBORHOOD
In N-dimensional search space, the neighbourhood is the area
surrounded by a raindrop with a radius of r . As raindrop
values change, the neighbourhood changes as well.

3) NEIGHBOR POINT
Randomly generated points are said to be neighbors in opti-
mization. For the neighbor point j of raindrop i symbol,NPi∗j
is used. Below are the equations forNPi∗ j (13) and (14) [49]:

||(DiNP
j
i) · ūk ||||r · ūk || (13)

r = rinitial × f (iteration) (14)

In above equations, i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , np,
and k = 1, 2, 3, . . . , n, and r represents real vector, rinitial
shows the initial neighborhood size and np is the neighbor-
hood points.

4) DOMINANT DROP, ACTIVE DROP AND INACTIVE DROP
The dominating drop performs well in the neighborhood.
It achieves the best possible solution to a given objective
issue. The symbol NPdi denotes the dominant drop. The
function F is used to solve an objective issue. To calculate
the value of a raindrop (F(Di)) and its neighbouring point
(F(NPji))(F(NP

d
i ) < F(Di), apply the formulas below:

F(NPdi ) < F(NPji) j1, 2, 3, . . . , npd (15)

A dominant neighbor variable is an active drop, and no dom-
inant neighbor variable is an inactive drop.

5) EXPLOSION PROCESS
When the drop is inactive, the explosion process is initiated
when it has no dominating neighbor during optimization
or insufficient neighbors. This procedure is carried out to
remove a raindrop from the circumstance. The explosion
process takes N times to complete. The (np(ex)) is denotes
the neighbors in explosion process for verification and given
by equation (16) in [49].

np(ex) = np× eb× ec (16)

where, symbol np is the neighbor points, eb is explosion base,
ec is the explosion counter.

6) RAINDROPS RANK
There is a merit list in which all raindrops are assigned
distinct ranks. Raindrop rankings are calculated using equa-
tion (17)–(18) in [49].

C1ti = F(Di)att thiterationF(Di)att
1st
iteration (17)

C2ti = F(Di)att thiteration (18)

Rank ti = ω1 × order(C1ti )+ ω2 × order(C2ti ) (19)

where, symbols ω1 and ω2 shows the weighting co-efficient.
The value of symbols ω1 andω2 is 0.5. In each iteration t ,
symbols C1ti and C2

t
i shows the value of the objective func-

tion for raindrops changes and Rank ti denotes the rank of rain
drop.

7) MERIT ORDER LIST
The rankings of raindrops are saved in ascending order using
a merit list. A raindrop is removed from the merit list and
used in the optimization problem. The raindrops are created
at random in the first iteration. After each raindrop is created,
a neighborhood is allocated to it, and neighbor points are
produced at random according to the objective function’s
restrictions. Some limitations for allocating neighbour loca-
tions using equations (20) and (21) [49] are mentioned below:

if (NPij)k < lok , then(NPji)k = lok , otherwise (20)

if (NPji)k > upk , then(NPji)k = upk (21)

Each raindrop and its neighbors’ cost are calculated sepa-
rately. To determine the most dominant neighbor point, all
neighborhood values are compared to the value of a raindrop.
Table 2 lists the parameters utilized in the RFOA and the
values that produce the most optimal scheduling scheme for
home energy management and comfort.

F. OUR SUGGESTED HYBRID OF ACO AND TLBO
ALGORITHM FOR DSM
The hybrid ant-based teaching-learning optimization
(ACTLBO) is our proposed algorithm. ACTLBO combines
the features of ACO and TLBO algorithms in a single pack-
age. This hybridization effectively minimizes PAR, energy
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bill cost, CO2 emission and enhances UC-index considering
thermal, visual, and indoor air quality comfort. However,
ACO and TLBO suffer performance degradation for complex
and high-dimensional optimization problems. In ACTLBO,
the TLBO and ACO are combined so that the exploration and
exploitation capabilities can be balanced so that the TLBO
focuses mainly on exploring the unknown search space.
In contrast, ACO focuses on exploiting high-precision solu-
tions in the known region. Moreover, this hybridization aims
to improve the exploratory and exploitative search capabili-
ties of the algorithm to return optimal appliance schedule for
efficient energymanagement. The proposed hybrid technique
combines TLBOwith ACO to help the latter with exploration
and global search. The performance of the TLBO algorithm
is improved as the ACO produced best solution is given as
an initial population [60]. It converges early and returns the
best optimal usage schedule for efficient energymanagement.
Further, the exploratory TLBO and ACO algorithms have
been chosen because they successfully reduce cost, PAR
and offer the best thermal and visual comfort. The hybrid
ACTLBO combines themerits of TLBO in exploring solution
space and the ACO algorithm in refining solutions. The
ACTLBO has mainly two levels, where, in level one, the
preliminary steps of TLBO are adopted for global search.
In level two, the ACO steps are implemented, the learner and
teacher phase of the TLBO are adopted to the global best
solution Xgbest , generated by ACO. The global best solution
is passed as the generated population to the TLBO algorithm.
Compared to the ACO and TLBO functioning in individual
and random-based populations, the hybrid TLBO character-
istics of global search and ACO fine-tuning provide satisfac-
tory results. The algorithm 1, shows the proposed ACTLBO
algorithm steps. Figure 1 illustrates the ACTLBO algorithm’s
flowchart. The initialization steps in the flowchart take inputs
such as price signals, temperature, user desire for comfort,
and RESs generating output values. The algorithm receives
initialization inputs from ACO and TLBO, such as the num-
ber of iterations, population size, lower and upper bounds, the
initial point during parameter setup. Following initialization,
the ACO procedures are followed, followed by the TLBO
learner and teacher phases, to determine Xacgbest ; an optimal
schedule pattern for scheduling in terms of reduced electricity
bill cost, delay time, PAR, carbon emissions, and improved
UC index-ratio. The ACO and TLBO parameters and con-
straints are all considered and used. The constraints and
parameter values of the ACO and TLBO algorithms are put
into practice as given in Table 2. Our proposed optimization
algorithm is compared with existing algorithms’ computa-
tional cost; convergence, and execution time. Computational
cost relates to convergence rate and execution time: execution
time is the time spent by algorithm during execution; and
convergence rate is a rate at which an algorithm converges
to epoch while returning optimal solution. The algorithm
with a low compilation time and fast convergence rate is
said to be fast. Compilation time is measured in seconds,
and the convergence rate is determined by epochs number.

TABLE 1. Evaluation of the computation costs of existing and developed
algorithms.

In Table 1, we list the execution time and convergence rates
of the proposed and existing algorithms. The proposed hybrid
solution has variables that are concurrently optimized, which
means that the optimum solution is achieved within a shortest
possible time. Besides, the computational time is minimized
as the best solution of past iteration restricts the solution
space of the problem. The pareto optimality is achieved as the
population with the best solution from ACO is used as input
to the TLBO. This process prevents premature convergent
and local optimum problem. This implies that the quantity of
pheromone grows within the best objective function; thereby,
leading to a feasible solution.

III. PROPOSED SYSTEM ARCHITECTURE FOR
DEMAND-SIDE MANAGEMENT
We have considered a sub-urban area and a grid-connected
smart building having advanced meter infrastructure with the
smart scheduler and energy management controller (SEMC),
which uses the ACTLBO method that we suggested for opti-
mal demand-side management. The SEMC collect data, such
as smart home appliances power rating, preferences of all
appliances like urgent, shiftable, deffer-able, uninterruptible,
interrupt-able, UC signal aspects of indoor luminance, air
quality values, and temperature, i.e., freshness, concentra-
tion and humidity, RESs local generations like PV, WES,
combined heat and power (CHP) a biomass co-generation
system with energy storage systems such as residential BSS
and EVS. Our suggested algorithm will check for an elec-
tric vehicle available at home and have enough energy to
provide backup during peak hours. Through the home area
network, smart appliances will interact with SEMC. The
SEMC will control the scheduling of those appliances and
perform optimal demand-side management. Figure 2 shows
the proposed architecture of our system model for home
appliances scheduling and on-site RESs, BSS management
under DR programs. In this model, electric vehicles serve
as a charging load and backup source if the home installed
BSS is overloaded in peak hours. Additionally, it efficiently
integrates the on-site RESs, such as solar power, wind power
generation, and a micro-CHP system. Bio-gas micro-CHP
can give substantial environmental benefits as compared
to utilising power from fuel-operated grids and generat-
ing on-site thermal energy. CHP systems use less fuel to
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Algorithm 1: ACTLBO Algorithm Steps for Efficient DSM in Response to DRP-RTP Considering RESs and BSS
A. Inputs Initialization: (i) Price: RTP, (ii) Comfort choices: operation start and end time, flexible duration, user energy usage pattern,
prior-scheduling pattern of all appliances, indoor luminance, air quality and indoor temperature desired values, (iii) RESs and BSS
inputs with constraints: bio-gas availability, wind speed in m/s, solar irradiance, temperature, efficiency, BSS, EVS and CHP
initialization.
B. Parameters initialization: Max iterations; maxiter , size of population; nvar , k , α, β, m, Nl , Nel , evaporation decay factor, initial
point Xo, max iterations, ant quantity, visibility intensity factor, pheromone intensity factor, trail decay factor stopping criteria, random
for algorithm movement, PAR, Vc, Tc, cost of energy per hour, CO2 emission and indoor concentration.
for Hour = 1 : 24 do

ACO Steps: for iter = 1 : maxiter do
Move Ants:
for k = 1 : appant do

Create random population of appliances status and routes: appant (k) = randi([1 nvar ])
Calculate cost for each appliance appant (k) = Ebill (appant (k));
if appant (k) < Sol then

Xgbest = appant (k)
end
For all appliances update Pheromones
Evaporate Pheromones: τ = (1− ρ) ∗ τ
return the best schedule in terms of low bill cost; Xgbest

end
end
TLBO Steps:
for Xgbest = 1 : Nl do

Evaluate the fitness cost function of the initial population: Ebill (Xgbest (p, :))
end
for t = 1 : maxiter do

for i = 1 : Nl do
Teacher Phase:
Teacher factor; TF = randi([1 2], 1, 1)
Generate the new solution using equation (2)
Evaluate the cost: Ebill (Xtnew)
if Ebill < Sinit (i) then

P(i, :) = Xtnew and Sinit (i) = Snew
end
Learner Phase:
Select the random learner:
p = randi([1 Np], 1, 1);
while i == p do

p = randi([1 Np], 1, 1)
end
if Sinit (i) < Snew(p) then

Generating the new solution using equation (4) Evaluate the cost fitness of the newly generated solution
Snew = Ebill (Xlnew) if (Snew < Sfinal (i)) then
Greedy selection: Include the new solution in population: P(i, :) = Xlnew
Include the fitness function value of the new solution in population:

end
end

end
return the final global best schedule pattern; Xacgbest

end
C. Calculate main objectives: UC, Energy bill, Carbon emission, PAR, Delay and UC
for operated Xacgbest , to compute UC do

a. Usage appliances operation schedule=Xacgbest
b. Calculate thermal, visual, air quality and delay comfort using equations (47)-(53), (49)-(51), (54), and (48), respectively.
c. Calculate EB using equation (22)
d. Compute CO2 by equation (25)
e.Calculate PAR using equation (24)

end
end

produce the same amount of energy by reusing heat cre-
ated during power generation. This system includes the BSS
model, which drains energy from the RESs and acts as a
backup if the RESs are unavailable. Also, our approach

suggests a smart meter infrastructure, enabling two-way
communication between the user and the distributor. Con-
sumers can share their demand information with the distri-
bution system operators in advance, while distributors can
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FIGURE 1. ACTLBO algorithm flowchart for load scheduling and energy management under DRP-RTP.

share real-time, flat, day-ahead, and time-of-use pricing with
customers.

A. PROBLEM FORMULATION
The demand-side management and scheduling problem are
formulated to curtail energy costs, carbon emissions, PAR,
delay, and enhance the UC index-ratio considering average
delay, indoor air quality and freshness, TC, and VC levels.
Our optimization problem is formulated in (22) [32]:

Obj = min
( T∑
t=1

Ebill(t)− (ϕg(t)+ BSS(t))
)

(22)

where, Ebill is defined as total electricity consumption of
non-schedulable and schedulable appliances given below:

Ebill(t) = (Aschl (t)+ Anschl (t))× EP(t) (23)

1) PAR
PAR is defined as the proportion of peak load, max(l total(t))
consumption in a time slot t to the total load consumption
throughout the scheduled time [61]. PAR is calculated using
equation (24):

PAR =
max(l total(t))
1
T

∑T
t=1 l

total(t)
(24)

2) CARBON EMISSIONS
Carbon emissions is calculated from the average cost of
electricity per month, electricity price per kWh equal to
0.20 dollars, and the emission factor of electricity equal to
1.37 [61]:

CO2 = avg(EP(t))/0.20 ∗ 1.37 ∗ 30 (25)
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FIGURE 2. Proposed system architecture for energy management and user home appliances scheduling under DRP-RTP considering RESs in demand-side
management and UC.

3) DELAY TIME
Delay is the time appliances wait to be served and is calcu-
lated using the following equation [32]:

Delay = (sum(abs(tS1)− (tS2)))/sum(tS2) (26)

In equation (25), symbol Ebill(t), is the electricity bill for
schedulable and non-schedulable load, ϕg(t) is the total
on-site RESs procured energy at time slot t , BSS(t) is the
battery backup at time slot t . While EP(t) is real time pricing
set by the utility company, the term CO2 refers to carbon
emission, while in (48) tS1 and tS2 represents the suggested
scheduling pattern and non-scheduling pattern, and delay
refers to the time it takes for an appliance to begin operating.
subject to constraints (27)-(31) [33].

Aschl (t)+ Anschl (t) = Egrid (t)+ BSS (t)+ ϕg (t) (27)
N∑

an=1

η = Ot (a) (28)

N∑
an=1

αt ≤ η ≤ βt (29)

ϕg (t) = Rg (30)

0 ≤ BSSmin ≤ BSSmax , ∀t ∈ T (31)

where, Aschl , Anschl , a, Ot denotes the schedulable appliance’s
load, non-schedulable appliances load, specific appliance,
and duration of the appliance operating time, respectively.
The symbols αt , η, and βt are the scheduled appliances’
start, bearable wait duration, and finish time. In contrast,

ϕg(t) represents the overall renewable energy production, Rg
during time slot t . The BSSmin and BSSmax are the battery
charge and discharge constraints provided by amanufacturing
company.

B. PROPOSED SYSTEM MODEL ENERGY SOURCES
1) PHOTOVOLTAIC SOLAR ENERGY SYSTEM
The solar energy generated for 24 hours is first delivered
to scheduled loads in each time slot and is represented
by (32) [33],

Esp (t) = ηsp × Asp × Irs (t) × (1− 0.005)

×
(
Ta (t)− 25

)
∀ t (32)

In this equation the ηsp indicates the conversion factor of
energy efficiency of the solar panels, Irs(t) denotes the solar
radiance in kW/m2 at time slot t , Apv denotes the surface
area of the panels in m2, is 0.005 is the correction factor of
temperature, Ta(t) indicates the ambient temperature in ◦C
at t time slot and the standard room temperature is given
25 ◦C . The solar power depends on solar irradiance, which
is intermittent in nature and depends on seasonal climate
changes. In [6], authors’ have presented an evaluation on
optimization, modeling, possibilities, and constraints of a
hybrid solar PV system. Despite the fact, the European PGs
can generate at least 35% of its electricity using renewables
alone [7]. However, to cope with the unpredictability of solar
irradiance, in this work, we are using the forecasted solar irra-
diance from the time and date weather forecaster Islamabad,
Pakistan [8].
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TABLE 2. Algorithms parameters and values for simulation in DSM.

2) ELECTRIC VEHICLE ON-BOARD PV
The electric vehicle energy generated by the solar panels
on-board is used for driving operations, with the remainder
being saved in an EVS. It is expected that the collected energy
of the PV installed at the roof of EV would be used first for
lights, driving tasks, andmotor load [53], while the remaining
energy is stored in the EVS. The Egt is the energy quantity
obtained from the vehicle’s onboard solar system.

Ept = min
{ t∑
τ=0

lmτ1τ (1ω, τ ),Egt
}

(33)

where, the term
∑t
τ=0 lmτ1τ (1ω, τ ) depicts the cumulative

electric vehicle’s load scheduled at time slot t [53]. The term
1τ (1ω, τ ) indicates whether the vehicle load scheduled lmτ ,
is served at time slot τ . The remaining energy is stored in EV
battery and used only during peak hours and when the home
BSS backup is overloaded.

3) WIND ENERGY SYSTEM
Weather and wind direction are the two most important fac-
tors influencing wind energy generation. The quantity of

energy produced by a wind energy system is defined by [63],

Pwp (t) =
1
2
× % × Ba ×W 3

s (t) (34)

In this equation, %,Ba represent the density of air and tur-
bine blade’s area, respectively, whereas the Ws(t) symbol
represents the speed of the air in m/s. To cope with the
unpredictable nature of wind in this work the forecasted data
of wind speed are used [8].

4) MICRO-CHP
Micro-CHP bio-gas system electricity production consumes
32% less fuel, resulting in a 50% carbon emission reduction.
The CHP system power efficiency is calculated by the for-
mula given below [10]:

Ef =
Ve +

∑
Qth

Qf
(35)

where, Ef is the system’s total efficiency, Ve represents the
output electricity, Qth denotes the total system’s thermal out-
put, and symbol Qf indicates the input fuel energy. Equa-
tion (36) demonstrates how biogas may be used to generate
electric power. The conversion of biogas into usable electrical
energy and heat is defined in this equation [10]:

Ebio(t) =
Lc ∗ Qbr (t) ∗ Ef

γ e
(36)

where, Ebio(t) denotes the generated electric power in kWh at
time slot t , Lc represents the lower calorific value of biogas,
Qbr symbolizes the recovery and accessibility of biogas, Ef
and γe denotes the efficiency and recovery efficiency, respec-
tively. As described in [10], the (37) is used to calculate the
total powerPchp of amicro-CHP generator.WhereCf denotes
capacity factor which is 80-90 percent plant accessibility and
t denotes time in hours.

Pchp(t) =
Ebio(t)
t × Cf

(37)

5) BATTERY STORAGE SYSTEM
The BSS stores the remaining renewable energy and acts as
a backup during peak hours. The algorithm will also look for
EV availability and backup storage. Because the discharging
and charging of battery results in the gain or loss of electrical
energy, so the battery system efficiency is shown below [33]:

BSS (t) = BSS (t − 1)+ k × δBSS × EPch(t)

−
k × EPdch(t)

δBSS
(38)

subject to constraints:

EPch(t) ≤ EPchUB (39)

EPdch(t) ≤ EPdchLB (40)

BSS(t) ≤ ESchUB (41)

In (38), BSS(t) represents the stored electrical energy in
ampere-hour at t hour slot, k denotes the time duration in
hour, δBSS is the battery efficiency, EPch depicts the power
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FIGURE 3. System inputs: (a) RTP, (b) Forecasted temperature, (c) Forecasted wind speed, (d) Biogas Qbr availability, (e) Solar irradiance, and
(f) BSS and EVS charging.

of electricity in kW supplied to the battery at time slot t
from available renewable energy resources andEPdch denotes
electrical power in kW supplied to the home appliances from
battery in hour slot t . In our system model, the BSS is consid-
ered to fill the intermittent nature of RESs, and it is charged
from RESs at daytime, while it is used when the RESs are
either not available or not sufficient. So, the charging and
discharging do not occur at the same time.

6) EV STORAGE MOBILE BACKUP
The EV storage may be charged from home solar, wind
energy, and external PG, as well as its onboard source, i.e.,
installed roof PV, depending on the overall load of the EV
and the total source of the EV [53]. During peak hours, our
algorithm and SEMC will check for the availability of an
electric vehicle at home and the status of the battery to act
as a mobile storage backup and transfer the load to EVS. The
home EV availability and its EVS status are supposed and
modeled as below:

EV (a) =

{
1 if EV present at home
0 else

(42)

EVS (s) =


1 if EVS charging
0 if EVS idle
−1 if EVS discharging

(43)

The home electric vehicle battery charging over 24 hours is
shown in Figure 3(f).

C. ENERGY CONSUMPTION
There are smart schedulable, flexible, time elastic, power
elastic, and non-schedulable appliances in smart home build-
ings (SHB) that use electricity from the external grid (EG) and
on-site RESs and BSS. The energy consumption and usage
time of the schedulable and non-schedulable load and the
HVAC system are detailed below.

1) SCHEDULABLE AND NON-SCHEDULABLE APPLIANCES
ENERGY CONSUMPTION
We assume that the SHB contains various appliance loads
Al(t) that arrive over the 24 hours with temporal unpre-
dictability and uncertainty. For a duration of λ, each Al(t)
has a power rating of ς . The appliances are divided into
two categories in this study: smart schedulable appliances
and non-schedulable appliances. Smart appliances: wash-
ing machines, dishwashers, air conditioners, refrigerators,
may all run automatically, and manually-operated [33], need
human interaction. On the other hand, fixed-loads do not
result in an energy bill or a reduction in PAR. Take into
account that the SHB has mainly two groups of smart appli-
ances, i.e., Aschl and Anschl , where Aschl is the set of schedulable
home appliances, i.e., can be allotted to run at off-peak
periods, Aschl (t) = {la1, la2, la3, . . . , lam} and Anschl is a set
of non-schedulable home appliances, i.e., instantly operate
in accordance with the time and preferences specified by
the customer, Anschl (t) = {lb1, lb2, lb3, . . . , lbn} over the
scheduling hours of t ={1, 2, 3, . . . , 24}. Equations (44)
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and (45) define the energy usage of schedulable appliances
M and non-schedulable appliances N , over a 24-hour period,
respectively as in [33].

Aschl (t) =
24∑
t=1

( M∑
m=1

Aschl t,m ∈ M
)
= {Aschl t1,m ∈ M

+Aschl t2,m ∈ M + · · ·+Aschl t24,m ∈ M} (44)

Anschl (t) =
24∑
t=1

( N∑
n=1

Aschl t, n ∈ N
)
={Anschl t1, n

∈ N + Anschl t2, n ∈ N + · · ·+ Anschl t24, n ∈ N }

(45)

After accounting for all RESs and BSS, the electricity bill
Ebill at each time slot t can be computed using the following
equation:

Ebill = Aschl (t)+ Anschl (t)− (Egrid (t)+ Esp (t)+ Pwp (t)

+Pchp (t))− BSS(τ ) (46)

where symbol τ is the duration during which the on-site RESs
are either not available or insufficient, so then the load draw
energy from the BSS.

2) HVAC ENERGY CONSUMPTION MODEL
The HVAC system is another flexible appliance for cooling,
heating, and ventilation in a home or residential place. HVAC
uses over half of total electrical power in the home, according
to [52]. Heating the living room and indoor air conditioning
are the two main modes of operation of an HVAC system
in the winter and summer seasons, respectively. We concen-
trated in this work on season-based HVAC usage, i.e., heating
in the winter and cooling in the summer season. According
to [52], the interior temperature stability created by an HVAC
system may be defined as below:

Tt+1 = εT int + (1 − ε)(T outt +
ηe

Ac
et ), ∀ t (47)

where, T int represents the indoor room temperature and T outt
denotes the outdoor temperature, ηe denotes the conversion
efficiency of thermal, and Ac is in kW/◦F is the total thermal
conductivity, moreover, the symbol, ε = e−τ/ω, where ω
denotes the time constant of HVAC system.

D. USER-AWARE COMFORT MODEL
We calculated the UC in terms of wait time, less cost, indoor
thermal, visual, air quality, and freshness as comfort-index
in this work. The specifics and each comfort mathematical
formulation are provided below.

1) DELAY COMFORT
Each appliance’s serving time relates to the user’s comfort.
Equation (48) is used to calculate delay comfort as defined
in [33]. Where Scunsch(t) signifies the time allotted in the
user unscheduled scheme, while Scsch(t) represents the time

allotted in the suggested scheduled scheme. Delay time and
power consumption costs are both associated with UC.

Delaycomfort =

∑
|Scunsch (t)− Scsch (t) |∑

Scsch
(48)

2) VISUAL COMFORT
The number of indoor light devices, intensity, and time to
serve is connected to consumer visual comfort. While the
quantity of intensity of indoor lights/luminous is taken as
in [62], and it will be adjusted to user choice.

Vcomfort (t) ,
Ne.Le (t) .fs.ϑ.M

A
(49)

where, symbol Ne is the total number of lightning appliances,
Vcomfort (t) in (49) denotes the indoor total lightening value of
luminescence in a well-lit indoor space, A. The room inside
luminance can be varied by adjusting the power consumption
quantity of each lighting appliance Le(t), which have fs, the
value of source flux, ϑ , usage factor, andM , factor of mainte-
nance. The symbol, Vc user visual comfort and AppLightswt , wait
time both are in inverse relation, this relation may be defined
numerically as follows [61]:

Vc ∝
1

DLightswt

(50)

DLightswt = (DLightsUh − DLightsSh ) (51)

where, DLightsUh denotes the preference of lights configured by

the consumer, and DLightsSh is the suggested scheduled pattern
of lights operating over 24 hours duration.

3) INDOOR THERMAL COMFORT
The adjustable HVAC system’s cooling or heating temper-
ature may be regulated within a defined range according
to the user’s preferences. The power consumption of the
heating/cooling adjustable HVAC system may be changed to
control the interior temperature. The indoor temperature of a
room for a single individual to feel comfortable varies, rang-
ing in between 20?∼25? [62]. The thermal UC is computed
using equation (53). The inverse connection between thermal
UC and delay waiting for time DHVACwt may be represented
mathematically as follows [61]:

Tc ∝
1

DHVACwt
(52)

DHVACwt = (DHVACUh − DHVACSh ) (53)

where, symbol Tc denotes thermal UC, DHVACUh is the user
given preference for HVAC, and DHVACSh is the suggested
schedule pattern for operating HVAC over 24 hours duration.

4) AIR QUALITY AND FRESHNESS
Carbon emissions and concentration ratios in the environment
quantify indoor air freshness and quality. The SHB’s adap-
tive ventilation technology may change the concentration
of indoor carbon. Interior excellent air quality may be kept
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FIGURE 4. Renewable power generation sources: (a) Solar energy production, (b) CHP energy production, (c) Wind power production.

FIGURE 5. Smart home daily consumption costs under DRP-RTP (a) Case I, (b) Case II, and (c) Case III.

regulated by venting fresh air into the indoor space based
on user preferences. The indoor carbon concentration ratio
is formulated as in [62]:

ζ t+1 = ζ t +
Frair (ζ out−ζ t )+ ζ in

V
(54)

The CO2 concentration ζt+1 in an indoor area of volume
V can be adjusted by varying the fresh air Frair amount in
that area with respect to the accumulation quantity of the
CO2 concentration ζt depending on the outdoor CO2 con-
centration ζout and the indoor carbon emission ζin due to
electricity usage.When the HVAC coolingmode is necessary,
the equation (47) can be complemented to adjust the fresh
air in a room. The desirable range values of air freshness
are measured in carbon concentrations, which vary from
740ppm∼ 780ppm [62].

IV. RESULTS AND DISCUSSION
In this section, the proposed system model for demand-side
management under DRP-RTP is evaluated utilizing electric-
ity from the EG with on-site RESs like PV solar power,
CHP, WES power, and BSS. Moreover, the results of our
suggested ACTLBO, ACO, TLBO, FOA, JOA, and RFOA
are evaluated for the electricity bill costs, PAR, carbon emis-
sions, and UC considering user preferences for appliances
usage and DRP-RTP. Figures 3(a)-(f) demonstrates the sys-
tem inputs: price signal; RTP, forecasted temperature, wind
speed, biomass availability, solar irradiance, and battery stor-
age system charging, respectively. Figures 4(a), (b), and (c)

show the predicted energy production of PV, CHP, WES,
and the remaining renewable energy after battery charging,
respectively. We considered that total RESs provided 90% of
the energy during the scheduled time. Furthermore, 30 per-
cent of on-site RESs are being utilized for BSS charging in
available time slots t , with solar energy production contribut-
ing for 20%, CHP, and wind energies production contributing
for 10%. The results are simulated for three cases, i.e., Case I:
when the smart home is only utilizing electricity from EG,
Case II: EG with RESs, and Case III: EG with RESs and
BSS. Electricity bills, PAR, delay, and carbon emissions are
calculated using the without scheduling (WS), ACO, TLBO,
FOA, JOA, RFOA, and ACTLBO scheduling techniques.

A. ELECTRICITY BILL
1) CASE I: ELECTRICITY BILL COST USING EG ONLY
The energy bill (EB) for unscheduled and scheduled con-
sumption, using energy from the EG without RESs and BSS,
is depicted in Figure 5(a). The maximum electricity cost for
unscheduled user load at time slot 9 is 275.91 cents, while the
minimum cost of electricity is 57.82 cents at time slot 16. The
maximum cost of electricity in ACO is 183.94 cents at time
slot 9, and the lowest cost is 38.30 cents in time slots 2 and 16.
In time slot 9, the maximum cost of energy in the case of the
TLBO algorithm is 228.12 cents, and theminimum is 67.55 at
slot hour 21. In time slot 7, the cost of energy in the ACTLBO
based scheduling algorithm is 96.68 cents, whereas, in slot
hour 8, the cost of energy in the FOAmethod is 150.17 cents.
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TABLE 3. Electricity bill comparison under DRP-RTP for Case I, II and III.

It is 225.26 cents at time slot 8 in the JOA-based scheduling
approach; using RFOA based scheduling costs 128.23 cents
in slot 8. Compared to the other methods, the ACTLBO
algorithm performs well in terms of EB minimization. The
cumulative energy bill costs of WS, ACO, TLBO, FOA,
JOA, RFOA, and ACTLBO are 2557, 1749, 2500, 1561,
2274, and 1012 cents, respectively, over 24 hours duration.
The total energy cost shows that ACO, TLBO, FOA, JOA,
RFOA, and ACTLBO save 31.6%, 2.23%, 40.71%, 11.07%,
38.95%, and 42.14% of respective electricity bills. Neverthe-
less, the suggested scheduling method achieves the optimum
cost reduction by evenly distributing the load throughout high
and low peak hours. Table 3 compares the electricity bill costs
of all scheduling methods and the suggested algorithm over
24 hours.

2) CASE II: ELECTRICITY BILL COST USING EG WITH RESs
The energy bill EB for unscheduled and scheduled consump-
tion, using energy from the EG with RESs is depicted in
Figure 5(b). The maximum cost of energy bill for unsched-
uled user load at time slot 8 is 167.05 cents, while the
minimum cost of energy is 36.17 cents at time slot 12. The
maximum cost of electricity in ACO is 129.43 cents at time
slot 10, and the lowest cost is in time slot 16. In time slot 9, the
maximum cost of energy in the case of the TLBO algorithm is
135.35 cents. In time slot 9, the cost of energy in theACTLBO
based scheduling algorithm is 80.56 cents, whereas, in slot
hour 9, the cost of energy in the FOAmethod is 111.37 cents.
It is 163.47 cents at time slot 9 in the JOA-based scheduling
approach; using RFOA based scheduling costs 161.79 cents
in slot 9. Compared to the other methods, the ACTLBO
algorithm performs well in terms of EB minimization. The
WS, ACO, TLBO, FOA, JOA, and RFOA cumulative energy
bill costs are 1823, 1276, 1550, 1559, 1215, and 1495 cents,
respectively, over 24 hours duration. In comparison, it costs
998 cents using our proposed method. The total energy cost
shows that ACO, TLBO, FOA, JOA, RFOA, and ACTLBO
save 30.01%, 14.98%, 14.48%, 33.35%, 17.99% and 21.79%
of respective electricity bills. Nevertheless, the suggested
scheduling method, ACO, and JOA achieves the optimum
cost reduction by evenly distributing the load throughout
high and low peak hours. Table 3 compares the aver-
age cost of all methods and the suggested algorithm over
24 hours.

3) CASE III: ELECTRICITY BILL COST USING EG WITH RESs
AND BSS
The EB for unscheduled and scheduled consumption, using
energy from the EG with RESs and BSS, is depicted in
Figure 5(c). The maximum energy bill cost for unscheduled
user load at time slot 9 is 97.59 cents, while the minimum
cost of energy is 18.51 cents at time slot 19. The maximum
cost of electricity in ACO is 76.02 cents at time slot 7, and the
lowest cost is in time slot 16. In time slot 9, the maximum cost
of energy in the case of the TLBO algorithm is 60.03 cents.
In time slot 9, the energy cost in the ACTLBO based schedul-
ing algorithm is 66.95 cents, whereas in slot hour 10, the cost
of energy in the FOA method is 66.12cents. It is 80.34 cents
at time slot 9 in the JOA-based scheduling approach; using
RFOAbased scheduling costs 79.34 cents in slot 9. Compared
to the other methods, the ACTLBO algorithm performs well
in terms of EB minimization. The WS, ACO, TLBO, FOA,
JOA, and RFOA cumulative energy bills are 1332, 1109,
1016, 1256, 1198, and 1123 cents, respectively, over 24 hours.
In comparison, it costs 790 cents using our proposed method.
The total energy cost shows that ACO, TLBO, FOA, JOA,
RFOA, and ACTLBO save 16.74%, 23.72%, 5.71%, 10.06%,
15.69% and 28.76% of respective electricity bills. Neverthe-
less, the suggested scheduling method achieves the optimum
cost reduction by evenly distributing the load throughout high
and low peak hours. Table 3 compares the average cost of all
methods and the suggested algorithm over 24 hours.

B. CARBON EMISSION
1) CASE I: CE USING EG ONLY
Carbon emission is depicted in Figure 6(a). The average car-
bon emissions per capita are 4.79 tons in the world [9] which
is 28.99 pounds per day per person. In this case, for a smart
home daily energy consumption from EG only, the CE is
6290 pounds for unscheduled, resulting in high carbon emis-
sion. CE is 5164, 4774, 4450, 5185, 5801, and 3701 pounds
in ACO, TLBO, FOA, JOA, RFOA, and ACTLBO, respec-
tively. The ACO, TLBO, FOA, JOA, RFOA, and ACTLBO
have reduced carbon emission by 17.90%, 24.10%, 29.50%,
17.57%, 7.77 %, and 28.33%, respectively. Our suggested
ACTLBO and FOA algorithms perform better in terms of car-
bon emission reduction. Table 4 compares the unscheduled
carbon emissions and carbon emissions from all scheduling
techniques.

VOLUME 10, 2022 53847



S. Ali et al.: Demand Response Program for Efficient DSM in Smart Grid Considering Renewable Energy Sources

FIGURE 6. Carbon emissions under DRP-RTP (a) Case I, (b) Case II, and (c) Case III.

TABLE 4. Carbon emission comparison under DRP-RTP for Case I, II, and III.

FIGURE 7. PAR under DRP-RTP (a) Case I, (b) Case II, and (c) Case III.

2) CASE II: CE USING EG WITH RESs
Carbon emission for this case is depicted in Figure 6(b).
In this case, for a smart home daily energy consumption
from EG with RESs, the CE is 5799 pounds for unscheduled,
resulting in high carbon emission. CE is 3696, 3299, 4380,
3777, 5499, and 3067 pounds in ACO, TLBO, FOA, JOA,
RFOA, and ACTLBO, respectively. The ACO, TLBO, FOA,
JOA, RFOA, and ACTLBO have reduced carbon emission
by 36.26%, 43.11%, 24.47%, 34.87%, 5.17 %, and 17.02%,
respectively. In terms of reducing carbon emission, our sug-
gested ACTLBO, ACO, and TLBO algorithms perform bet-
ter. Table 4 compares the unscheduled carbon emissions and
carbon emissions of all scheduling techniques.

3) CASE III: CE USING EG WITH RESs AND BSS
Carbon emission, in this case, is depicted in Figure 6(c).
In this case, for a smart home daily energy consumption
from EG with RESs and BSS, the CE is 4387 pounds for

unscheduled, resulting in high carbon emission. CE is 3842,
3561, 3936, 3097, 3469, and 3002 pounds in ACO, TLBO,
FOA, JOA, RFOA, and ACTLBO, respectively. The ACO,
TLBO, FOA, JOA, RFOA, and ACTLBO have reduced car-
bon emission by 12.42%, 18.83%, 10.28%, 29.41%, 20.93%,
and 21.86%, respectively. In this case, the JOA and our sug-
gested ACTLBO algorithms perform better in terms of car-
bon emission reduction. Table 4 compares the unscheduled
carbon emissions and carbon emissions from all scheduling
techniques.

C. PAR
1) CASE I: PAR USING EG ONLY
PAR with and without load scheduling in Case I is illustrated
in Figure 7(a). In WS, it is 2.86, while in ACO, FOA, JOA,
RFOA, and ACTLBO, it is 2.54, 2.49, 2.46, 2.59, 2.48,
and 1.98, respectively. The PAR is decreased by 11.19%,
12.93%, 13.98%, 9.44%, 13.29%, and 22.05%, as a result of
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TABLE 5. PAR comparison under DRP-RTP for Case I, II, and III.

employing the suggested ACO, TLBO, FOA, JOA, RFOA,
and ACTLBO algorithms, respectively. Nonetheless, com-
pared to other exploratory methods, the ACTLBO approach
considerably reduces PAR. Table 5 depicts the comparisons
of PAR with each discussed algorithm with the suggested
ACTLBO algorithm.

2) CASE II: PAR USING EG WITH RESs
PARwith and without load scheduling in Case II is illustrated
in Figure 7(b). In WS, it is 2.45, while in ACO, FOA, JOA,
RFOA, and ACTLBO, it is 2.04, 2.30, 2.09, 2.01, 2.21, and
1.81, respectively. The PAR is decreased by 16.73%, 6.12%,
14.69%, 17.95%, 9.79%, and 11.27%, as a result of employ-
ing the suggested ACO, TLBO, FOA, JOA, RFOA, and
ACTLBO algorithms, respectively. Nonetheless, compared to
other exploratory methods, the ACTLBO and JOA approach
considerably reduces PAR. Table 5 depicts the comparisons
of PAR with each discussed algorithm with the suggested
ACTLBO algorithm.

3) CASE III: PAR USING EG WITH RESs AND BSS
PAR with and without load scheduling for Case III is illus-
trated in Figure 7(c). In WS, it is 2.34, while in ACO, FOA,
JOA, RFOA, and ACTLBO, it is 1.95, 1.85, 1.84, 1.87, 1.64,
and 1.14, respectively. The PAR is decreased by 16.67%,
20.94%, 21.36%, 20.80%, 29.91%, and 41.53%, as a result
of employing the suggested ACO, TLBO, FOA, JOA, RFOA,
and ACTLBO algorithms, respectively. Nonetheless, com-
pared to other exploratory methods, the RFOA and ACTLBO
approach considerably reduces PAR. Table 5 depicts the
comparisons of PAR with each discussed algorithm with the
suggested ACTLBO algorithm.

D. UC
The UC is taken in terms of appliances delay, energy
bill costs, air quality, freshness, indoor lights, and
temperature.

1) DELAY AND COST COMFORT
The user-level of comfort is associated with EB and schedul-
ing ofHVAC, indoor illumination, and air quality. To decrease
EB, the user will regulate their home electric appliances

FIGURE 8. Delay comfort (minutes) of appliances: water heater (WH),
refrigerator, HVAC, washing machine and dryer (WM), EV, and Lights.

by accepting and following the scheduling pattern given by
SEMC. The average waiting schedule time of the house-
hold appliances for Case III managed through our proposed
ACTLBO, TLBO, RFOA, ACO, JOA, and FOA algorithms
are shown in Figure 8. There is less wait time in employing
theACO-based schedulingwhen serving the clothwasher and
dryer loads. The suggested method has less than one hour
or half-hour delay for cloth washers, HVAC, water heater,
and light appliances. The best thermal and visual comfort
values are found in ACO and TLBO. It also schedules the
HVAC and lighting loads with the minimum possible delay.
The ACTLBO algorithm reduces carbon emission, resulting
in a lower CO2 level in the atmosphere. As a result, the best
possible indoor air quality is maintained. In the case of the
ACTLBO algorithm, Table 6 shows the suggested pattern for
scheduling of the household appliances in minutes along with
the corresponding comfort compromising. The comfort com-
promising level is 5.13, 8.88, 5.00, 6.66, 3.43, and 17.14% in
case of scheduling refrigerator, washer/dryer, HVAC, water
heater, lights, and EV, respectively.

2) AIR QUALITY AND FRESHNESS
Air quality and freshness are calculated in terms of car-
bon concentration inside the house using equation (54). The
desired level of carbon and emission due to usage of elec-
tricity of scheduling methods, i.e., ACO, TLBO, FOA, JOA,
RFOA, and ACTLBO, is shown in Figure 9. CE in the case
of WS is high as compared to scheduling algorithms. The
suggested algorithms reduce electricity consumption from
the main PG, which results in less electricity usage and
shifts loads to RES and BSS, thus resulting in good quality
comfort.
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TABLE 6. Delay (wait time) comfort (minutes) of household smart appliances in response to DRP-RTP employing SEMC.

FIGURE 9. Indoor air quality and freshness of all techniques under
DRP-RTP.

3) INDOOR LIGHTS AND VISUAL COMFORT
To quantify the visual comfort of an indoor room, equa-
tions (49)-(50) are adopted, which are related to indoor lights
devices ON/OFF status, delay, intensity level, and the number
of lights in a room. Figure 8 shows that the minimum delay
for lights is 29 minutes with ACO, TLBO, FOA, JOA, and
37 minutes in case of RFOA while 33 minutes in ACTLBO
based scheduling.

4) INDOOR THERMAL COMFORT
The thermal comfort of a user is calculated by equations (52)
and (53), which are related to indoor HVAC devices ON/OFF
status, delay, and thermal level. Figure 8 shows that our
suggested algorithm ACTLBO schedules the HVAC with a
delay of 24 minutes and does not compromise too much of
the UC level.

V. CONCLUSION
Weconsidered a smart home utilizing power from the external
grid, battery storage, and RESs like solar, wind generation,
and thermal to move loads to it during peak hours and reduce
cost, PAR, and carbon emission. The HVAC load is controlled
alongside other deferrable and shiftable appliances to mini-
mize load, alleviate costs, and reduce PAR. The scheduling
problem is optimized using nature-inspired algorithms like
ACO, TLBO, FOA, JOA, RFOA, and our proposed hybrid
of ACO and TLBO. The proposed algorithm is compared
to the existing optimization algorithms in MATLAB simu-
lations. The results validate that the integration of RESs and
BSS, and adapting our proposed algorithm and scheme under
DRP-RTP reduced the energy bill, PAR and CO2 in Case I:
only EG usage by 42.14%, 22.05%, and 28.33%, in Case II:
EG with RESs by 21.79%, 11.27%, 17.02%, and in Case III:
EGwith RESs and BSS by 28.76%, 41.53%, 21.86%, respec-
tively as compared to without employing SEMC. More-
over, the UC improved index-ratio with scheduling is 7.77%,

24.73%, 5.00%, and 3.43% in terms of average delay,
air quality, thermal, and visual, respectively. We will use
real-time algorithms in future work and evaluate the per-
formance of our proposed scheme in residential, industrial,
automotive, and agricultural sectors with extensive load and
on-site renewables.
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