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ABSTRACT Hyperspectral remote sensing is a reliable solution for monitoring heavy metal pollution in
crops. However, there are few studies on the spectral transformation and estimation of heavy metal content
in crops using time-frequency analysis. In this study, intrinsic wavelength-scale decomposition (IWD) was
proposed to decompose hyperspectral data to fully exploit the sensitive information implied in them and to
investigate the feasibility of the detection of copper (Cu) and lead (Pb) in maize leaves. Leaf spectra and
Cu2+ and Pb2+ contents were obtained from potted maize plants under Cu and Pb stress in the laboratory.
After the spectral data were processed using IWD to obtain the proper rotation components (PRCi), the
characteristic bands were extracted, a Hankel matrix was constructed, and singular value decomposition
(SVD) was performed. Finally, singular entropy information was obtained to characterize the heavy metal
content. Singular entropy, with a higher correlation with Cu2+ and Pb2+ contents, was selected to establish
the univariate and multivariate partial least squares regression (PLSR) models. The results showed the
following: (1) the R2 of the univariate model for the prediction of copper and lead content was 0.68∼0.81,
and the RMSE was 0.99∼7.03. (2) The R2 of the multivariate PLSR model was as high as 0.83, and the
RMSE was as high as 0.83. This study showed that the characteristic bands can be effectively extracted by
IWD spectral transformation, which provides a promising method for estimating heavy metal pollution in
vegetation.

INDEX TERMS Crop heavy metal pollution, hyperspectral analysis, intrinsic wavelength-scale decompo-
sition (IWD).

I. INTRODUCTION
In recent years, with industrialization, the discharge of
wastewater and waste gas from industrial production has
been increasing, resulting in serious soil heavy metal pol-
lution. Heavy metal contamination has serious effects on
crop growth and indirectly affects the safety of human diet
and health [1], [2]. Heavy metal copper (Cu) and lead (Pb)
pollutionmainly comes from two aspects: 1) the unreasonable
development ofmineral resources and the stacking of tailings,
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and 2) the discharge of wastewater and e-waste in industrial
production [3]. Therefore, rapid and accurate monitoring of
Cu and Pb contamination in crops has become a global
concern for environmental scientists [4]. Cu is an essential
trace element for plant growth. Small amounts of Cu in
plants are beneficial for plant growth.When the concentration
is too high, it will stress the growth of vegetation, inhibit
photosynthesis, cause plant metabolism disorders, and even
lead to plant death [5]. As a highly dangerous heavy metal,
Pb hinders hematopoietic function and affects the cardiovas-
cular, kidney, and nervous systems after being ingested by the
human body [6], [7]. Heavy metals are hidden dangers in the
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environment, and comprehensive monitoring of heavy metal
pollution is a prerequisite for preventing and controlling envi-
ronmental pollution and ensuring human health. Monitoring
and estimating the degree of Cu and Pb pollution in crops is
important [8], [9]. Traditional methods for monitoring heavy-
metal pollution mostly focus on field sampling and labora-
tory chemical analysis, which require considerable time and
financial resources and are less efficient [10], [11]. Currently,
hyperspectral remote sensing has spectral continuity and high
spectral resolution, and has the advantages of low cost, non-
destructiveness, and high efficiency for heavy metal pollu-
tion monitoring [12], [13]. Healthy plants and those under
heavy metal stress exhibit different spectral absorption and
reflection characteristics. Hyperspectral remote sensing can
rapidly capture the spectral reflectance of plant leaves to real-
ize non-destructive monitoring of heavy metal pollution in
plants [14], [15]. These include the detection of mercury (Hg)
stress in tobacco leaves [16] and the cadmium (Cd) residue in
tomatoes [17].

At present, the commonly used methods for spectral
transformation are the first derivative (FD), second deriva-
tive (SD), and continuum removal (CR) [18], [19]. Wavelet
transform (WT) has powerful analysis capability in the time-
frequency domain, and the wavelet transform of spectral data
can effectively extract spectral features [20], [21]. Square-
root transformation, logarithmic transformation, and recip-
rocal transformation of spectral data can also highlight the
characteristics of spectral reflectance, which is of great sig-
nificance for improving the prediction of zinc content in
the soil [22], [23]. Fractional differential preprocessing of
near-infrared spectra can effectively improve the accuracy
of model predictions [24]. However, using these methods to
extract spectral characteristic parameters not only highlights
useful information but also increases noise, which affects
the accuracy of heavy metal content prediction to a certain
extent. Some researchers have constructed pollution indices
using sensitive bands to monitor heavy-metal pollution. Cop-
per stress index (CSVI) and absorption difference vegetation
index (ADVI) can detect the degree of crop pollution under
copper stress [25]. The chlorophyll index and water stress
index had a high correlation with As content in leaves, which
could effectively distinguish plant species under heavy metal
stress [26]. In addition to this index, some bands can effec-
tively monitor heavy metal pollution. For example, the sensi-
tive bands of rice leaves contaminated by Pb, Zn, Cu, and As
are mainly distributed at 460, 560, 660, and 1100 nm, respec-
tively [27]. The bands at 450, 550, 670, 760, and 1240 nm
can be used to monitor the concentration of Pb pollution
in vegetation [28]. The aforementioned theories are primar-
ily based on conventional methods. Currently, characteristic
spectral parameters are commonly used in research world-
wide to extract spectral information, such as the sensitive
spectral band, spectral vegetation index, and spectral location
parameters [29]. These methods have also been studied in the
spectral domain. Although the characteristic bands extracted
using these methods can effectively improve the prediction

of heavy metal concentrations, many factors affect spectral
information. To better monitor heavy metal pollution in veg-
etation, it is necessary to find a more comprehensive spectral
information set, improve the reliability of feature information
extraction [30], and effectively improve the accuracy of heavy
metal content prediction [31].

The hyperspectral monitoring of heavy metal pollution
in crops is similar to the detection of abnormal nonlinear
signals. Two methods are commonly used in signal anomaly
detection: time-domain and frequency-domain analyses. Fre-
quency domain transformation can effectively highlight and
amplify abnormal changes in a signal. Some time-domain
analysis methods can highlight useful information while
retaining the characteristics of the original signal [8], [32].
The spectral responses of crops subjected to heavy-metal
stress generally undergo subtle changes. To effectively mon-
itor changes in heavy metal pollution, weak information
on the spectral response is enhanced by frequency-domain
transformation [33]. Common frequency-domain transform
analysis methods include wavelet and Fourier transforms.
Time-domain transformation analysis methods include intrin-
sic time scale decomposition (ITD). ITD is often used for
the fault diagnosis of mechanical bearings, heart sound signal
processing, etc [34]. However, few researchers have used ITD
for hyperspectral data processing and inverting the degree of
heavy metal contamination of crops.

Corn is one of the three major food crops in the world
and plays an important role in human production and life.
Therefore, in this study, corn was taken as the research object,
and the common heavy metal Cu and Pb pollution elements
were used to predict the heavy metal content of vegetation
under Cu and Pb stress. In contrast to previous research, the
ITD was improved in this study, and an intrinsic wavelength-
scale decomposition (IWD) method was used to estimate the
Cu and Pb contents in maize leaves. This study aimed to:
(1) obtain hyperspectral data of maize leaves under differ-
ent concentrations of Cu and Pb stress; (2) extract sensitive
bands of maize leaves under Cu and Pb stress by intrin-
sic wavelength-scale decomposition; and (3) use singular
entropy with copper and lead contents to establish univariate
and multivariate models for copper and lead content pre-
diction. It has been proven that the inversion model estab-
lished by IWD has high accuracy and reliability. The method
and model proposed in this study can provide a basis for
the large-scale monitoring of heavy metal pollution and can
also provide a reference for the remediation of heavy metal
pollution in mining and agricultural soils. More importantly,
we provide new methods and ideas for monitoring heavy
metal pollution in soils with a large vegetation cover.

II. MATERIAL AND METHODS
A. EXPERIMENTAL SCHEME
Corns were used as the research object in this study.
Potted corn was grown in the laboratory to simulate
corn growth under different Cu and Pb concentrations.

VOLUME 10, 2022 52259



J. Zhang et al.: Predicting Cu and Pb Concentration in Crops Using Reflectance Spectroscopy

The experiments were conducted at the greenhouse labora-
tory of the China University of Mining and Technology-
Beijing in 2017. ‘‘Minuo-8’’ was selected as corn seed.
Natural soil samples were collected from the land of Beijing
Olympic Park. Debris, plant residues, and other impurities
were removed during the soil collection. CuSO4·5H2O and
Pb(NO3)2 were used as stress reagents. The stress concen-
trations were designated as 0 µg/g (control group, no stress),
50, 100, 150, 400, 600, 800, and 1000 µg g-1. Three pots
of maize were planted for each stress gradient, for a total of
45 maize pots. To facilitate the expression and utilization of
the collected maize leaf spectra, the collected average spectra
were labeled as shown in Table 1. To maintain the soil water
content, water was cultivated three times a day at 7:00 a.m.,
12:00 p.m., and 6:00 p.m., 200 ml each time. The air was
kept clear and a consistent growth environment was ensured
for each potted plant to avoid other factors from affecting
the experimental results. A flowchart of the experimental
procedure is shown in Figure 1.

TABLE 1. Spectral label of maize leaves.

FIGURE 1. The flow chart of the experimental procedure.

B. SPECTRAL DATA ACQUISITION
Spectral data were collected in a dark room, and the spectral
data of maize leaves were measured using an SVC HR-1024i
spectrometer produced by the Spectra Vista Corporation
in the United States. The wavelength range of the SVC
HR-1024i spectrometer is 350–2500 nm. A 50 W halogen

lamp was used as the light source. The desktop was covered
with black cloth to reduce the influence of external stray light
and improve the spectral quality. The sensor fiber-optic probe
was perpendicular to the blade surface, and the distance was
5 cm, which was the same as whenmeasuring the whiteboard.
The field-of-view angle is 25◦, ensuring that the projected
area of the field-of-view angle falls completely on the leaf
surface. Thus, the influence of external stray light can be
avoided, and the signals received by the fiber-optic probe
are all the spectral information of the leaf sample. To reduce
the measurement noise of the reflection spectrum, the spectra
of the new, middle, and old leaves were measured thrice,
and nine spectral curves were obtained for each potted corn.
Finally, the average value of the nine spectral curves was used
as the actual spectral data for the leaf sample. When the corn
leaf spectrum was collected, the chlorophyll concentration
of the leaves was measured separately using a SPAD-502
chlorophyll meter (repeated three times). Finally, the relative
values of chlorophyll concentration in corn leaves under Cu
and Pb stress were obtained by averaging.

C. CHEMICAL ANALYSIS OF HEAVY METAL CONTENT
Chemical analysis of heavy metal content in corn leaves
was performed by the Beijing Academy of Agriculture and
Forestry Sciences. After the leaf spectrum data collection
was completed, the leaves were washed with deionized water,
dried (drying at 70 ◦C for 48 h), crushed, and the fine particles
were sieved and used as leaf samples. Nitric acid and per-
chloric acid were added for the digestion treatment. Finally,
the Cu and Pb contents in the leaves were determined using
inductively coupled plasma optical emission spectrometry
(ICP-OES) (Thermo Fisher, USA).

D. QUALITY ASSURANCE AND QUALITY
CONTROL (QA/QC)
To ensure the authenticity and reliability of the research
results, strict quality assurance and quality control (QA/QC)
measures were taken during the collection of corn leaves, the
measurement of spectral data, and the chemical analysis of
heavy metals. The collected corn leaves were cleaned, dried,
and stored in special bags. Before measuring the leaf spectral
data, a whiteboard was used for calibration to ensure accuracy
of the spectral data. Before the detection of heavy metal
content, corn leaves were treated in a cleanroom to avoid
the interference of pollutants in the surrounding environ-
ment. The testing process was quality controlled according
to national standard GSB04-1767-2004 to ensure the quality
of the analysis.

E. INTRINSIC WAVELENGTH-SCALE DECOMPOSITION
(IWD)
Intrinsic wavelength-scale decomposition (IWD) is derived
from intrinsic time-scale decomposition (ITD). ITD was first
proposed by Mark G. Frei and Ivan Osorio [35]. Compared
with empirical mode decomposition (EMD) and wavelet
transform, ITD is a new time-frequency analysis method. The
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signal component obtained after ITD transformation has rel-
atively complete time-frequency information and can reflect
the advantages of signal frequency changes [36]. The purpose
of this study was to replace the time (T ) in ITD with the
wavelength (W ), propose and explore the IWD processing
technology that forms the spectral signal, and introduce it into
the information processing and analysis of hyperspectral data.
The IWD can adaptively decompose the wavelength (w) into
several proper rotation components (PRC) and trend com-
ponents (r), and each PRCi component can be obtained by
only one iteration. For a spectral curve Xw to be decomposed,
an extreme point Xk exists and its baseline extraction operator
is defined as L. It can separate the baseline component Lw
from the spectral curve Xw to be decomposed, and then define
a proper rotation separation operator as H , as in (1).

Xw = LXw + (1− L)Xw = Lw + Hw (1)

where Lw = LXw is the baseline component, and Hw = (1−
L)Ww = HXw is the PRC component.

The IWD processing steps of the spectral curve are as
follows:

(1) Extract the extreme point Xk on the spectral curve
Xw (k = 1, 2, . . . ,N ; N represents the number of extreme
points). τk is the set of wavelengths at which the local extreme
points of Xw are located. We define τ0 = 0 as the starting
wavelength of Xw and let the values of Xw and Lw at τk be Xk
and Lk , respectively.
It is assumed that Lw and Hw are defined in the band

interval [τ0, τk ], Xw is defined in the band interval [τ0, τk+2],
and Lw is the affine ray approximation of Xw in the interval
(τk , τk+1], that is, Lw = mXw + nw and w ∈ (τk , τk+1].
Because Lw must satisfy the above-mentioned boundary con-
ditions of the local extreme points, it is expressed in the
following form:

Lw = Lk +
Lk+1 − Lk
Xk+1 − Xk

(Xw − Xk ) (2)

Assuming that the basic trend of the spectral curve is
sufficiently smooth, the changes between the local extreme
points can be ignored, and it follows that:

Xk+1 − Xk
τk+1 − τk

=
Xk+2 − Xk
τk+2 − τk

(3)

Because Lk+1 = Xk+1, there are:

Lk+1 = αXk+1 + (1+ α)Xk+1

= α

[
Xk +

(
τk+1 − τk

τk+2 − τk

)
(Xk+2 − Xk)

]
+ (1− α)Xk+1 (4)

where α is a linear scaling factor that can be used to adjust
the extracted PRC amplitude (α ∈ [0, 1]) with an empirical
value of 0.5.

(2) According to the baseline component derived from
Equation (2), calculate and extract the proper rotation com-
ponent Hw, that is, PRCi;

(3) The baseline component Lw is considered as the input
spectrum, and the next decomposition is performed. When
the baseline component Lw becomes monotonous or the trend
component (r) is smaller than a preset value, decomposition
is terminated.

The decomposition process of IWD is shown in for-
mula (5).

Xw = Hw + Lw = HXw + (H + L)LXw

=

H p−1∑
k=0

Lk + Lp

Xw

= H1
w + H

2
w + H

3
w + · · · + H

k
w + L

p
w (5)

where p is the number of PRC, H k
w is the k th proper rotation

component, and Lpw is the trend component.
After the IWD transformation, the original input spectral

curve Xw is decomposed into multiple proper rotation com-
ponents (PRCi) and a monotonic trend component (r). This
method has the advantages of low computational complexity,
high decomposition accuracy, robustness, and the effective
avoidance of waveform superposition and modal aliasing.

F. HANKEL MATRIX
The Hankel matrix has many excellent properties, and as an
excellent mathematical theory, it is widely used in numerical
simulation calculations in various fields [37]. The elements
on each inverse diagonal of the Hankel matrix were equal.
In this study, PRCi, which better retains the original input
spectral information after IWD processing, was selected to
construct the Hankel matrix Za.

Za =


x(1) x(2) . . . x(n)
x(2) x(3) . . . x(n+ 1)
...

... . . .
...

x(m) x(m+ 1) . . . x(N )

 (6)

where m ≥ 2, n ≥ 2, and 1 < n < N and N is the number
of sampling points in the original data. In m = N − n+ 1, Za
is a Hankel matrix.

G. SINGULAR VALUE DECOMPOSITION (SVD) AND
SINGULAR ENTROPY (SE)
Singular value decomposition (SVD) means that any real
matrix A ∈ Rm×n of any dimension can be decomposed into
a product of three matrices, as shown in Equation (7).

A = USV T (7)

whereU is a unit orthogonalmatrix, that is, its column vectors
are unit vectors that are orthogonal to each other. V is the unit
orthogonal matrix; that is, the row vectors are unit vectors that
are orthogonal to each other, and are also the eigenvectors
corresponding to the singular values. S is a diagonal matrix,
S = [diag(σ1, σ2, σ3, . . . , σm),O], whereO represents a zero
matrix and its diagonal matrix is a singular value [38].
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Singular entropy (SE) is used to measure the amount of
information of the signal component corresponding to the sin-
gular value, and the formula is as shown in Equations (8)–(9).

Y = −
n+1∑
i=1

Ei lnEi (8)

Ei = λi/
n+1∑
i=1

λi (9)

where Ei is the proportion of the i-th singular value and
n+1∑
i=1

Ei = 1, which satisfies the initial condition of the infor-

mation entropy calculation.
The more complex the signal, the more useful the infor-

mation, and the greater its singular entropy; in contrast, the
smaller it is.

H. PARTIAL LEAST SQUARES REGRESSION (PLSR)
Partial least squares regression (PLSR) is a regression anal-
ysis method based on biased estimation. PLSR integrates
multiple linear regression (MLR), canonical correlation anal-
ysis (CCA), and principal component analysis (PCA), which
effectively overcomes the problem of multiple co-linearities
among variables in modeling[28]. The principle is as follows:

There are p independent variables, X = [x1, x2, . . . , xp];
q dependent variables, Y = [y1, y2, . . . , yq]; and n sample
observation points. Components t1 and u1 were extracted
using PLSR in X and Y , respectively. Moreover, t1 and u1
should represent X and Y as much as possible, respectively,
and t1 and u1 must have a high correlation. Establish the
regression model of y1, y2, . . ., yq to t1; if the regression equa-
tion reaches a satisfactory accuracy, the algorithm stops. Oth-
erwise, the second pair of principal components is extracted
until satisfactory accuracy is achieved. The final expression
is the regression equation between Y1, Y2, . . ., YQ, and the
original variable, that is, the partial least squares regression
equation.

I. ACCURACY EVALUATION OF THE MODEL
Pearson’s correlation coefficient was used to analyze the
correlation between the heavy metal content in maize leaves
and different variables. The accuracy evaluation indicators
of the model were the coefficient of determination (R2) and
root mean square error (RMSE). R2 represents the correlation
between predicted and measured values. If the correlation is
higher, R2 is closer to 1, indicating better prediction. RMSE
represents the deviation between the predicted and measured
values. The smaller the RMSE value, the smaller the variabil-
ity of the prediction error, and the better the stability of the
model [39].

R2 =

n∑
i=1

(yi − y′i)
2

n∑
i=1

(yi − ȳ)2
(10)

FIGURE 2. Overall technical flowchart for the research.

RMSE =

√√√√ n∑
i=1

(yi − y′i)
2

n
(11)

where yi and y′i denote the measured and predicted values of
the Cu and Pb content, respectively, ȳ denotes the average
measured value, and n represents the number of samples.

J. THE FRAMEWORK OF THE RESEARCH APPROACH
In this study, the steps for the inversion of Cu and Pb contents
based on the IWD are as follows:

(1) IWD transformation was performed on the spectral data
of leaves contaminated by heavy metals to obtain the PRC1,
PRC2,. . . , and r components.
(2) PRC selection. Compare each PRCi component with

the original input spectrum, and select the PRCi component
that can better retain the original input spectrum information.

(3) Characteristic band selection. From the PRCi compo-
nent, a band similar to the original input spectrum is selected
as the characteristic band to construct the Hankel matrix and
perform the SVD decomposition.

(4) Finally, singular entropy is obtained as the spectral
information characteristic of heavy metal pollution. The cor-
relation analysis between singular entropy and Cu and Pb
content was carried out, the singular entropy with higher
correlation was selected, a univariate model was established,
and a multivariate model was established in conjunction with
chlorophyll content to realize the prediction of Cu and Pb
content. A research flowchart is shown in Figure 2.

III. RESULTS AND DISCUSSION
A. EFFECTS OF THE SPECTRAL REFLECTANCE OF MAIZE
LEAVES UNDER CU AND PB STRESS
The average spectral curves of maize leaves under different
Cu and Pb concentrations are shown in Figure 3. The spec-
tral reflectance of leaves decreases with increasing Cu and
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FIGURE 3. Spectral reflectance of corn leaves with different Cu and Pb
concentrations stress (Note: The order of the spectral curves is sorted
according to the spectral labels in Table 1).

Pb concentrations in the soil [40]. The 670-760 nm, where
the reflectivity changes rapidly, is called the ‘‘red edge’’ of
the plant in the electromagnetic spectrum [41]. In addition,
some small weak peaks in the range–750-900 nm are mostly
attributed to the third overtone stretch of O-H functional
groups related to water in the corn leaf sample [42]. The
absorption region in the range–900-980 nm, corresponds to
the third overtone of the C-H functional groups (910 nm)
and the second O-H overtone (960 nm) [43]. The spectral
responses of maize leaves to different concentrations of Cu
and Pb are too subtle [17]. Therefore, it is necessary to explore
new spectral transformation methods to amplify stress
information.

B. DETECTION OF COPPER, LEAD, AND CHLOROPHYLL
CONTENT IN MAIZE LEAVES
TheCu2+ and Pb2+ contents and the relative values of chloro-
phyll in the maize leaves are shown in Figure 4(a-b). There
were significant differences in the content of Cu2+ and Pb2+,

and the relative chlorophyll concentrations in maize leaves
under different concentrations of Cu and Pb stress. It can be
seen from Figure 4(a-b) that with the increase in Cu and Pb
stress concentrations in the soil, the content of Cu2+ and Pb2+

in maize leaves also increased. This indicates that during
maize growth, Cu2+ and Pb2+ enter the plant from the roots
and are transported to the stems and leaves [44]. The accu-
mulation and transfer of Cu and Pb in maize leaves directly
or indirectly affects maize edibility. This study showed that
heavy metals accumulate in the vegetation, which is consis-
tent with previous studies [45]. Similarly, with an increase in
Cu and Pb content in the soil, the relative value of chlorophyll
content in maize leaves gradually decreased, indicating that
the stress of heavy metals affected photosynthesis in maize
plants, resulting in a decrease in chlorophyll content and a
loss of green leaves [46]. Therefore, studying the Cu2+ and

FIGURE 4. Detection value of Cu2+ and Pb2+ content and SPAD in corn
leaves under different gradient stress.

Pb2+ contents in maize leaves is helpful for understanding
the contamination of maize fruits.

C. IWD SPECTRAL TRANSFORMATION AND FEATURE
BAND EXTRACTION
The IWD method was used to decompose the original spec-
trum of the leaves of the control group ck(0) to obtain two
proper rotation components (PRCi) and one trend component
(r), as shown in Figure 5. The IWD spectral transformation
can effectively retain the original spectral information and
avoid waveform superposition and modal aliasing. In com-
parison with the original spectrum, it was found that PRC1
and PRC2 fully retained the original spectrum information
and amplified the reflectance of some bands in the original
spectrum. Similarly, the IWD transformation of the spectra
of corn leaves under different concentrations of Cu and Pb
stress showed that the obtained PRC1 and PRC2 retained
the original spectral information. Based on the spectral
information retained by PRC1 and PRC2, A band similar
to the original spectrum was selected as the characteristic
band. The characteristic bands extracted from PRC1 are
553–680 nm, 681–780 nm, 1266–1429 nm, 1430–1631 nm,
1836–1913 nm, 1914–2111 nm. The characteristic bands
extracted from PRC2 were 1263–1436, 1437–1627,
1820–1925, and 1926–2121 nm.
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FIGURE 5. The results of IWD spectral transformation of corn leaves in
ck(0) control group.

The Hankel matrix was constructed on the characteris-
tic bands extracted by PRC1 and PRC2, the matrix was
decomposed by SVD, and finally, singular entropy (SE) was
obtained to analyze the monitoring effect. To further ana-
lyze the correlation between heavy metal content and spec-
tral reflectance, Pearson correlation analysis was carried out
between the SE corresponding to each characteristic band
and the content of Cu2+ and Pb2+ in corn leaves, and the
results are shown in Figure 6-7. The values in Figure 6-7 are
the correlation coefficients; the direction of the ellipse to the
right is a positive correlation, and the direction to the left
is a negative correlation. They are extremely significant at
a 0.01 level (both sides). All analyses were performed using
SPSS Statistics 23.0, and all graphs were created using Origin
software.

The singular entropies derived from the characteristic
bands at 1266-1429 nm and 1836-1913 nm extracted by
PRC1 and 1820-1925 nm extracted by PRC2 were strongly
correlated with the Cu2+ content in maize leaves, with corre-
lation coefficients as high as approximately 0.90. The singu-
lar entropy derived from the feature bands at 1430–1631 nm
extracted by PRC1 and 1926–2121 nm extracted by PRC2
was strongly correlated with Pb2+ content in maize leaves,
and the correlation coefficients were both as high as approx-
imately 0.8. These optimal bands were observed in the near-
infrared region. It can be seen that the two heavy metals
are very sensitive to the near-infrared band, especially in the
1266-1913 nm and 1820-2121 nm. This finding suggests that

FIGURE 6. The correlation between the singular entropy of characteristic
bands and the content of Cu2+ in corn leaves.

FIGURE 7. The correlation between the singular entropy of characteristic
bands and the content of Pb2+ in corn leaves.

these bands have the potential to predict the heavy metal
content of vegetation. The correlation between the spectral
variables transformed by the IWD and copper or lead content
was significantly enhanced. The heavy metal Cu content had
a significant positive correlation with the singular entropy
of the optimal band, and the absolute value of r was 0.90.
The lead content was negatively correlated with the singular
entropy of the optimal band, and the absolute value of r was
0.86. This may be because the amount of spectral information
in the leaves gradually decreased with the gradual increase
in Pb content in the leaves. These variables may contain
potential signatures owing to their statistically significant
correlations. Therefore, we chose the band with the larger r
as the optimal band, and the singular entropy corresponding
to each optimal band was used as the input variable of the
model.

D. CONSTRUCTION OF A UNIVARIATE MODEL
The singular entropy corresponding to the optimal band
was selected to establish univariate models with Cu2+ and
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FIGURE 8. Models for estimating Cu2+ and Pb2+ content based on PRC1,
(a) 1266-1429nm, (b) 1836-1913nm, (c) 1430-631nm.

Pb2+ contents in maize leaves. The scatter plot shows the
results with the highest accuracy of the univariate model, and
the results are shown in Figures 8-9. The singular entropy
corresponding to the optimal bands of 1266–1429 nm and
1836–1913 nm extracted from PRC1 was strongly correlated
with the Cu2+ content in maize leaves. The singular entropies
corresponding to the best band at 1430–1631 nm extracted
from PRC1 are strongly correlated with the Pb2+ content.
The R2 value of the prediction models was as high as 0.7,
and the RMSE was 1.296. The singular entropy correspond-
ing to the characteristic band of 1820–1925 nm extracted
from PRC2 was strongly correlated with the Cu2+ content
in maize leaves. The singular entropy corresponding to the

FIGURE 9. Models for estimating Cu2+ and Pb2+ content based on PRC2,
(a) 1820-1925nm, (b) 1926-2121nm.

characteristic band 1926–2121 nm extracted by PRC2 was
strongly correlated with the Pb2+ content. The R2 value of
the model was as high as approximately 0.76, and the RMSE
was 1.128. Thus, these models show considerable promise
for univariate modeling in predicting Cu and Pb contents
in maize leaves and lay the foundation for the prediction
of heavy metal content in vegetation. Therefore, compared
with the univariate model, whether the multivariate model has
better forecasting ability is worth further discussion.

E. CONSTRUCTION OF MULTIVARIATE MODELS
Changes in the chlorophyll content of plant leaves can
also cause changes in visible and near-infrared spectral
reflectance. With the increase in Cu and Pb stress concen-
trations, the Cu2+ and Pb2+ contents in the maize leaves
increased gradually. Heavy metal stress has a negative effect
on plant growth, causing changes in cell structure and water
content, inhibiting photosynthesis, and reducing chlorophyll
content [14], [47]. Finally, the relative value of chlorophyll
concentration measured during data collection and the sin-
gular entropy (SE) calculated from the characteristic band
were selected as parameters and combined with partial least
square regression (PLSR) analysis to establish a multivariate
model to predict the content of Cu2+ and Pb2+ in corn leaves.
As shown in Figure 10, the predicted value of the multivariate
model had a stronger correlation with the measured value,
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FIGURE 10. The multivariable models on predicting Cu2+ and
Pb2+content in corn leaves.

with an R2 of approximately 0.8. Compared with univariate
models, multivariate models are more robust and steadiest.
This may be because the multivariate model integrates infor-
mation from several different bands, which is consistent with
previous studies [48].

Heavy metal pollution can cause changes in the chloro-
phyll content, cell structure, and water content of plants,
thereby affecting the spectral reflectance of leaves. Non-
destructive detection of Cu and Pb contents in crops can be
achieved by monitoring subtle changes in spectral reflectance
using hyperspectral techniques. This is consistent with previ-
ous studies showing that cell structure, spectral reflectance,
and chlorophyll content can be used as parameters for the
quantitative prediction of Cu and Pb content [49]. In this
study, the optimal characteristic bands were determined by
correlation analysis between the Cu2+ and Pb2+ content in
maize leaves and spectral parameters. The results of this
study show that spectral changes in the near-infrared band
are significantly affected by the accumulation of Cu and
Pb. Antonucci et al. also demonstrated that it is feasible to
monitor heavy metal pollution using visible-light and near-
infrared spectroscopy [50]. This study demonstrated that
nonlinear models based on multivariate spectral bands are
more accurate than linear models, which is consistent with
previous results [51]. As shown in Figure 10, the multivariate
model could better predict the Cu2+ and Pb2+ contents in

maize leaves. The R2 and RMSE values of the model are
0.837, 0.937, 0.789, and 6.016, respectively. This further
confirms that the influence of Cu and Pb stress on leaf spectral
reflectance is a complex process, and the high accuracy of
the multivariate model can be attributed to the integration of
multiple factors. The results of this study were satisfactory
when compared with the discrete wavelet transform (DWT),
traditional typical vegetation spectral parameters, and a vari-
ety of similar modeled spectral indices. Hyperspectral models
are simple, inexpensive, and widely applicable. To further
prove the reliability of this study, we verified the superiority
and reproducibility of our proposed theoretical method.

F. VALIDATION OF THE SUPERIORITY OF THE MODELS
1) COMPARED WITH DISCRETE WAVELET TRANSFORM
(DWT)
To verify the superiority of the model established based
on the IWD transform in predicting heavy metal content
in maize leaves, similar spectral transforms, such as the
discrete wavelet transform (DWT), were selected to extract
characteristic bands to establish models for comparative anal-
ysis. The main feature of wavelet analysis is the use of the
expansion and translation of the wavelet function to charac-
terize the local characteristics of the signal. The absorption
and reflection spectra of the physicochemical components
of vegetation have obvious local characteristics. Therefore,
the use of wavelet analysis to transform vegetation spectral
data can fully characterize the spectral information. The dis-
crete wavelet transform can reduce redundant information
and effectively extract the characteristic bands from spectral
signals. Liu et al. showed that the db5 wavelet can accu-
rately detect the singularity of crop spectra and effectively
extract vegetation spectral information [52]. Here, the dis-
crete wavelet transform (DWT) and db5 mother wavelet were
used to decompose the leaf spectral curve into nine layers, the
high-frequency coefficients of each layer were reconstructed,
and correlation analysis was carried out with the content
of Cu2+ and Pb2+ in the leaves. The results are shown in
Figure 11(a-i). The wavelength with the largest correlation
coefficient was selected as the optimal band, and a model was
established to predict the Cu2+ and Pb2+ contents, as shown
in Table 2. In terms of copper and lead content prediction, the
model established by the wavelength selected after wavelet
decomposition in the seventh layer could predict the Cu2+

and Pb2+ content in corn leaves well, but the maximum R2

values were 0.769 and 0.693, respectively. These are not
as good as the results obtained by the theoretical method
proposed in this study, which confirms the superiority of the
theoretical method proposed in this study.

2) COMPARED WITH TRADITIONAL TYPICAL VEGETATION
SPECTRAL PARAMETERS
To verify the superiority of themodel established by the IWD,
traditional spectral characteristic parameters such as the max-
imum blue edge, maximum red shoulder, and height of the
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FIGURE 11. The correlation coefficient between the high-frequency coefficient of 9-layer wavelet decomposition and Cu2+, Pb2+

content of leaves.
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FIGURE 11. (Continued.) The correlation coefficient between the
high-frequency coefficient of 9-layer wavelet decomposition and Cu2+,
Pb2+ content of leaves.

TABLE 2. Model inversion results of wavelet transformation.

TABLE 3. Name of spectral characteristic parameter.

green peak were selected to establish models for comparative
analysis, as shown in Figure 12 and Table 3 [53]. As shown
in Table 4, in addition to the high accuracy of the green peak
height in the Cu2+ content prediction, none of the Cu2+ and
Pb2+ content prediction models using other spectral feature
parameters achieved a high accuracy.

3) COMPARED TO THE NEW SPECTRAL INDEX
To verify the superiority of the theoretical approach proposed
in this study further, we selected a variety of spectral indices

FIGURE 12. The typical spectral reflectance of green vegetation and the
main spectral features.

TABLE 4. Prediction of Cu2+ and Pb2+ content in corn leaves with
spectral characteristic parameters.

TABLE 5. Spectral index for heavy metal content prediction in other
studies.

to build models for comparison. The model was established
based on the relevant literature (Table 5). According to the
spectral data obtained in our experiments, an expression
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TABLE 6. Prediction of Cu2+ and Pb2+ content in corn leaves with
spectral index.

for the exponential model was obtained, and the Cu2+ and
Pb2+ contents were predicted. Table 6 presents the results.
As shown in Table 6, the PSRI and NDVIre spectral indices
were strongly correlated with leaf Cu content, with R2 val-
ues as high as 0.5. Previous studies have shown that the
red edge is mainly determined by parameters such as the
plant pigment and moisture [54]. They are highly sensitive
to heavy metal contamination, and are often used to detect
plant diseases and stress. RVSI also reflects subtle changes
in the cell structure and chlorophyll content of crops under
heavy metal stress [47]. However, in this study, PSRI and
NDVIre were weakly correlated with Pb2+ content, which
may be related to differences in the responses of specific
vegetable varieties to Pb pollution. Other spectral indices,
such as RVSI, LWVI, WBI, MSI, NDWI, and DWSI, cannot
effectively predict Cu2+ and Pb2+ contents. Overall, the IWD
proposed in this study is useful for enhancing the subtle
differences in leaf spectra under Cu and Pb stress, ampli-
fying the stress information, achieving Cu and Pb content
predictions simultaneously, and with high reliability. This
is of great significance for monitoring vegetation growth in
heavy-metal-polluted environments in the future.

4) COMPARISON WITH OTHER SIMILAR STUDIES
To further demonstrate the advantages of this study, similar
studies for estimating heavy metal content in plants were
selected for comparison. Table 7 presents the results. As can
be seen in Table 7, the results of this study can achieve better
results when compared with other similar studies, regardless
of whether it is the prediction of the copper or lead content.
Simultaneously, the prediction accuracy of the multivari-
ate PLSR model was higher than that of the conventional

TABLE 7. Comparisons of study results with other similar studies.

univariate model. Heavy metal stress in plants is affected by
many other factors. Only a small number of studies were
selected for comparative analysis. Whether this finding is
generalizable requires further investigation in future studies.

IV. CONCLUSION
In this study, hyperspectral data of maize leaves under differ-
ent concentrations of Cu and Pb stress were obtained using an
SVC HR-1024i spectrometer, and the Cu and Pb contents in
the maize leaves were determined using an inductively cou-
pled plasma optical emission spectrometer (ICP-OES). The
changes of spectral characteristics of maize leaves caused by
heavy metal copper and lead stress were difficult to identify
the pollution degree according to the shape of the spectral
curve. In this study, we proposed an innovative concept and
method of IWD for preprocessing spectral data, extracting
optimal feature bands, and inverting the Cu and Pb contami-
nation information of maize leaves by constructing univariate
and multivariate PLSR models to screen and predict the
degree of Cu and Pb contamination in maize leaves.

The research results show that (1) PRC1 and PRC2 are
obtained after the IWD transformation of spectral data, and
bands similar to the original spectrum can be extracted as
characteristic bands.

(2) The Hankel matrix was constructed for the characteris-
tic band and singular entropywas obtained by SVDdecompo-
sition. The correlation between singular entropy and Cu and
Pb contents was analyzed to obtain the optimal characteristic
band for Cu and Pb content estimation.

(3) Univariate andmultivariate PLSRmodels for Cu and Pb
content prediction using the singular entropy corresponding
to the optimal characteristic band. The R2 value for the uni-
variate model was approximately 0.7. The multivariate model
had high accuracy, with anR2 value of 0.8. Comparedwith the
univariate model, the multivariate model exhibited stronger
stability and robustness.

(4) The superiority of the theoretical method proposed in
this study was further proven by comparing it with the dis-
crete wavelet transform (DWT), typical vegetation spectral
parameters, novel vegetation indices, and similar studies.

Studies have shown that reflectance spectroscopy can pre-
dict heavy metal content at large concentrations [66]. The
optimal bands extracted in this study were all located in the
near-infrared spectral region, which provides strong support
for the in-depth exploration of near-infrared spectroscopy
for monitoring heavy metal pollution. The IWD spectral
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transformation proposed in this study will encourage more
researchers to use the time-frequency analysis technique of
the signal as a meaningful method to detect heavy metal
pollution in vegetation. In this study, we only simulated the
growth of maize plants under Cu and Pb stress through potted
plants and predicted the heavy metal content in the leaves,
which had certain limitations. Non-heavy metal stress (such
as water stress and drought stress) is abrupt, and in future
research, hyperspectral technology will be applied to the
monitoring of vegetation growth under other types of heavy
metals and non-heavy metal stress to further optimize and
mine the universality and robustness of this method.

This study is of great significance and provides a ref-
erence for monitoring heavy metal pollution in vegetation.
This experiment was carried out in a greenhouse, which has
certain limitations. In future research, we will set up a heavy
metal stress experiment in the field planting area, realize the
monitoring of heavy metal pollution in large-scale vegetation
through field experiments, and further verify the feasibility
and generalizability of this research method.
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