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ABSTRACT Terahertz (THz) radiation (0.1~10 THz) shows great potential in agricultural products
detection, biomedical, and security inspection in recent years. Machine learning methods are widely used
to support the user demand of higher efficiency and high prediction accuracy. The technological and
key challenges of machine learning methods are for THz spectroscopy and image data preprocessing,
reconstruction algorithms, and qualitative and quantitative analysis. In this paper, an exhaustive review of
recent related works of THz detection and imaging techniques and machine learning methods are presented.
The application of machine learning methods combined with THz technology in quality inspection of
agricultural products, biomedical, security inspection, and materials science are highlighted. Challenges
of machine learning methods for these applications are addressed. The development trend and future
perspectives of THz technology are also discussed.

INDEX TERMS Terahertz spectrum, terahertz imaging, machine learning, agricultural products, detection

application.

I. INTRODUCTION

Terahertz (THz) radiation [1], also known as submillimeter
radiation or THz waves, refers to the electromagnetic waves
that cover a frequency range of 0.1~10 THz, corresponding
to a wavelength range of 0.03~3 mm with a typical
center frequency of 1 THz [2]. In early stages of terahertz
technology development, the low efficiency of terahertz
energy sources and detectors was a major hindrance to
progress. With the emergence of ultrafast lasers, terahertz
spectroscopic techniques have progressively been grow-
ing, being successfully adapted in some interdisciplinary
fields [3] that are as follows. Figure 1 shows the position
of the terahertz band in the electromagnetic spectrum and its
application areas.
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(1) Quality inspection of agricultural products and food
[4], [5]. Terahertz waves are able to penetrate various non-
polar media, allowing one to gather information about the
vibration properties of biomolecules.

(2) Security inspection [6], [7], e.g., explosives and
dangerous items.

(3) Biomedicine [8], [9] where terahertz waves can
be used for in-depth probing of various substances to
gain insight into the biological processes, chemical com-
position, spectral characteristics and radiation as well as
performing THz labeling in medical diagnosis and drug
analysis [10], [11].

(4) Characterization of room-temperature and high-
temperature superconductors [12]. Similar to radio waves,
terahertz waves can penetrate various objects such as plastics,
textiles, ceramics, semiconductors, lipids, and powders [13].
Like X-rays, terahertz waves can also be applied for imaging.
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FIGURE 1. The position of the terahertz band in the electromagnetic spectrum and the application areas of terahertz technology. (a) Agricultural product
testing field [15] (b) Biomedical field [16] (c) Security Inspection [17] (d) Materials Science Field [18].

Meanwhile, the photon energy of terahertz radiation is within
a range of 1-10 MeV, which is only a few millionths of that
of X-rays. At such a low energy level, terahertz waves will
cause neither photoionization nor biomolecular damage. This
property is highly desirable in the field of non-destructive
testing [14], which explains why terahertz waves are favored
by many researchers.

In recent years, machine learning [19] has been widely
used to enhance terahertz technology, reducing the number
of variables, and providing support for data processing. The
common machine learning algorithms related to terahertz
technology include the following elements.

Denoising and reconstruction algorithms intended for
spectrum and image preprocessing, which allow one to
greatly reduce the number of variables and remove the
irrelevant information from the optical and image parameters,
thereby improving the efficiency of data analysis [20].

Algorithms for multivariate qualitative and quantitative
data analyses [21], [22] are used for the high-precision
recognition of samples.

This article reviews the recent advances in the machine
learning applications for THz spectrum and image detection,
focusing on food safety [23], agricultural product testing [24],
biomedicine, and security inspection [25], [26]. In addition,
the advantages and shortcomings of fusing machine learning
and THz detection methods are summarized as well.

Il. EQUIPMENT AND METHODS

A. TERAHERTZ DETECTION TECHNIQUE

Depending on the physical and chemical properties of
the material to be tested, THz spectroscopy techniques
can be divided into three types [27], [28]: terahertz time-
domain spectroscopy (THz-TDS), terahertz time-resolved
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spectroscopy (TRTS), and  terahertz emission
spectroscopy (TES).

THz-TDS consists in determining the complex permittivity
of the sample, providing static characteristics of the sample.
This technique is mainly employed for quality inspection and
control in various fields of chemistry, medicine, and biology.
Figure 2 shows the schematic diagram of a transmission-
type THz-TDS detection system that is composed of a
femtosecond laser, a THz radiation generator, a THz radiation
detection device, and a time-delay control system [29]. The
system operates as follows. A titanium-sapphire femtosecond
mode-locked laser generates a laser beam. The beam is split
into a pump beam and a probe beam by a beam splitter.
The pump beam makes the terahertz transmitter to excite
and generate terahertz pulses that are afterwards focused
on the sample by a parabolic mirror. The probe beam is
used to measure the instantaneous electric field amplitude
of the THz pulse. While the time-domain waveform of the
THz electric field strength can be obtained by scanning
the relative time delay between the probe beam and the
THz pulse, the frequency- domain spectrum of the specimen
is the result of the Fourier transform on the time-domain
waveform.

TRTS, also known as transient THz spectroscopy, is a
useful tool for studying the onset and evolution of ultrafast
phenomena at low energies on time scales ranging from
femtoseconds to nanoseconds [30]. The TRTS setup is similar
to THz-TDS, with the addition of a third pump beam to the
THz generation and detection beams.

Kinetic properties are measured by introducing an optical
pump beam with variable time delay between the optical
pump and the terahertz probe. TRTS allows you to measure
the dynamic and formational characteristics of materials.
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FIGURE 2. Schematic diagram of a THz-TDS setup.

Semiconductor research is one of its most important appli-
cation fields.

Finally, the TES method ensures information about
the characteristics of specimens (such as semiconductors,
superconductors, etc.) via analysis of the shape and amplitude
of THz waves [31]. TES has many of the basic features
of THz-TDS, where pulsed light is irradiated to produce
THz radiation from a sample. Conversely, TES analyzes the
amplitude and shape of the transient electric field emitted by
the sample, whereas THz-TDS uses only radiation from a
well-characterized source to detect a single sample. To avoid
artifacts, TES is usually done with a detector in the near field
of an amplified laser and emitter, and it should always be done
without focusing the optical elements [32].

B. TERAHERTZ IMAGING TECHNIQUES
Terahertz imaging techniques have been developed on the
basis of terahertz time-domain spectroscopy. Since the THz
wave can penetrate into non-polar materials such as cloths,
woods, and ceramics without causing damages and can be
used to form images of the interior of an object, it has attracted
more and more attention in the imaging field. Based on the
concept of the THz-TDS system, THz imaging has been
developed with an additional imaging unit [24] Similar to the
imaging installations working in other frequency bands, the
terahertz imaging tests consist in irradiating the sample with
THz rays and acquiring the transmitted and reflected rays,
thus forming the two dimensional image [33].

The time-domain system allows one to directly measure the
electric field, providing phase and amplitude information at
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the same time. Therefore such parameters as refractive index,
absorption coefficient, and other material properties related to
frequency can be assessed within the THz frequency range.
The image obtained from the sample has the characteristic
of ““‘map-spectrum integration,” that is, both the spatial and
spectral data can be collected contemporaneously [34].

Over the past years, the rapid development of terahertz
technology has led to a breakthrough in the terahertz radiation
methods. Depending on the type of a terahertz source,
terahertz spectral imaging can be divided into THz pulse
wave imaging and THz continuous wave imaging [34].
The THz imaging instrumentation are classified by the
four types: THz-TDS installations; THz focal-plane array
systems supporting real-time imaging; near-field imaging
tools achieving sub-wavelength resolution, and compressed
sensing imaging appliances allowing sub-sampling rate
imaging [35]-[38].

Equipped with a raster scanning device, a THz-TDS
imaging system enables one to obtain the value of each pixel
by point-by-point scanning, thus resulting in the entire image.
One drawback of such a configuration is a lengthy detection
process. To solve this problem, the THz focal-plane array
imaging technique has been developed. The use of a focal
plane array detector allows the image of the sample to be
formed in one step, achieving the higher detection speed.

For the first time, Wu et al [39] presented an innovative
method for detecting terahertz bands using focal plane arrays.
The method focuses the THz wave passing through the
sample onto a large area electro-optical crystal and extends
the detection beam to fill the entire nonlinear crystal using
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TABLE 1. Common terahertz spectral imaging techniques and their characteristics.

Imaging technique Imaging mode Advantages

Disadvantages

Point-by-point

THz-TDS imaging[45] scanning

THz focal-plane array L .
imaging[46] Real-time imaging
Subwavelength

Near-field imaging[47] o 1 tion imaging

wavelength

Compressed sensing
imaging[48]

Sub-sampling rate
imaging

Acquisition of relatively complete THz
information (including information about
signal amplitude and phase)

Real-time imaging; high frequency; compact
structure; adjustable frequency point

No limits in image resolution in terms of
Ability to acquire sparse and compressible

signals; lower number of sampling points than
required by Shannon's sampling law

Low spectral resolution; lengthy two-
dimensional raster scanning, insufficient
imaging speed

Size-limited one-time imaging area; costliness;
high power required

Limits in the signal strength by the aperture
size; excessive noise from semiconductors

High computational complexity; poor stability
of reconstruction algorithms; low efficiency of
sparse decomposition algorithms

a lens device. The THz beam causes transient birefringence
in the crystal, similar to free-space electro-optical sampling,
affecting the polarization state of the probe beam (typically
a femtosecond pulse). The method focuses the THz wave
passing through the sample onto a large electro-optical crystal
using a lens device, then extends the probe beam to fill the
entire nonlinear crystal.

The near field is defined in diffractive optics as the
light field that falls outside the Rayleigh length of the
focal spot when the incident light wave is a plane wave
[40]. Near-field imaging techniques include both aperture-
based near-field imaging and apertureless near-field imaging.
Aperture-based near-field imaging in the near-field is the
simplest way to implement near-field imaging, and the
resolution varies depending on the aperture size. In general,
sensitivity decreases rapidly in a super-linear manner as
aperture size decreases. The resolution of the obtained image
is not limited by the wavelength, but depends rather on
the size of the local aperture or needle tip. Giordano et al
[41], for example, integrated a nanowire-based metal aperture
probe into an 18 um aperture detector to achieve subwave-
length spatial resolution interferometric terahertz near-field
imaging.

Aperture-free near-field imaging [42] confines focused ter-
ahertz radiation to a small area by mechanically modulating
a metal tip at a fixed frequency. For remote detection, the
metal tip interacts with and scatters the abrupt terahertz field
in the near-field region of the sample surface. The terahertz
field at the probe’s oscillation frequency is then measured
using a lock-in amplifier and a terahertz detector. The area of
interaction is determined by the size of the tip which hence
determines the spatial resolution.

The basic idea of compressed sensing imaging is as
follows. Given that the signals are sparse in the natural
environment, it makes it feasible to restore the original
signal using far less sampling points than required by
Shannon sampling law, thereby reducing the workloads of
sampling and data storage [43]. Chan et al [44] were the first
to propose a compressive sensing-based terahertz imaging
system, which eliminates the need for raster scanning of
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the object or terahertz beam while maintaining the high
sensitivity of a single-element detector. It achieves high-
speed image acquisition using a single-pixel detector and a
series of random masks, and the acquired signal is used for
image reconstruction. The number of measurements required
for compression sensing image reconstruction is greatly
reduced, allowing for a significant increase in acquisition
speed.

Each of these imaging techniques possesses its own advan-
tages and shortcomings, and their competent combination
allows a joint promotion of effective THz imaging tools.
More details about each terahertz spectral imaging method
can be found in Table 1.

C. MACHINE LEARNING METHODS

The development of machine learning(ML)methods bring
new opportunities and challenges to various industries.
It aims to enable machines to learn to autonomously analyze
and process data, thus freeing up more human resources
to complete tasks and make decisions with precision and
speed. ML methods are widely used in the field of THz
technology, mostly as tools for terahertz spectroscopy and
image preprocessing [49] and techniques for qualitative and
quantitative multivariate data analysis. ML has also been
extended to applications in THz imaging such as image super-
resolution, signal reconstruction, compressive sensing, and
medical imaging. All of these applications have demonstrated
high performance and results to specific problems beyond the
state-of-the-art methods currently available. Table 2 shows
some of the machine learning methods applied to terahertz
technology.

Data preprocessing approaches mainly include smoothing
using Savitzky-Golay function [50] and asymmetric least
squares (AsLS), as well as Savitzky-Golay first- and second-
derivative procedures [51]. Preprocessing aims to improve
signal-to-noise ratio and reduce the dimensionality of data,
ensuring the better accuracy of the analysis. Multivariate
techniques are classified as qualitative and quantitative
regression methods, which include principal component
analysis (PCA), partial least squares (PLS) regression, and
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TABLE 2. Machine learning methods applied to terahertz technology.

Algorithm

Method of use

References

Noise reduction

Savitzky-Golay smoothing

Wavelet transform

wavelet transform, baseline

Terahertz spectral data denoising

Terahertz time-domain spectral denoising

Terahertz frequency-domain spectral denoising

Improving the signal-to-noise ratio of terahertz signals

Luo et al.[57]

Cui et al.[58]

Peng et al.[56]

Choi et al.[59]

Spectral Data Dimensionality Reduction
The original data to a low dimensional vector.
Spectral Data Dimensionality Reduction.

Reduce the dimensionality of the measured dataset

Liu et al.[54]
Wei et al.[60]
Yietal.[61]

Liu et al.[62]

Classification of the spectrum of glucose and lactose
Conduct quantitative analysis of amino acids mixtures
Classification and identification of herbal species
Early detection of germinated wheat grains
Non-destructive testing of rthubarb samples
Identifying GMO and non-GMO soybeans

Identification of genetically modified rice and non-
genetically modified rice

Rapid recognition of pharmaceutical bi-heterocyclic
compounds

Lietal.[63]
Lu et al.[64]
Zhang et al.[65]
Jiang et al.[53]
Wang et al.[66]

Chen et al.[67]

Xu et al.[68]

Nowak et al.[69]

elimination
Data pre- WaveNet
processing
PCA
. . . SNE
Dimensionality
reduction
t-SNE
Isomap
DNN
PLS
RF
BPNNs
Multivariate Qualitative and
. quantitative LDA
analysis analysis
SVM
DA
KNN
NL-means
CLS deconvolution.
Image
enhancement and
denoising CNN
Generative Adversarial
Network
Terahertz
imaging
CNN
Target Faster R-CNN
identification and
classification

Removal of noise from terahertz images
Improved terahertz imaging resolution

Super-resolution reconstruction of terahertz images

Super-resolution reconstruction of terahertz images

Shen et al.[70]
Ning et al.[71]

Wang et al.[72]

Wan et al.[73]

Fuzzy C-Means

Transfer learning

Rapid and effective detection of impurities contained in
wheat

Real-time detection of hazardous materials
Fast detection of targets from terahertz images

Classification of breast cancer tissue

Shen et al.[74]

Zhang et al.[75]
Xie et al.[76]

Liu et al.[77]

support vector machine (SVM) algorithms [52]. PCA consists
in extracting features and reducing the dimensions of THz
spectra to establish prediction models for data analysis.
PLS, a widely used linear regression tool, accomplishes
linearization by using the latent variables from a set of
THz spectra. Besides these, one can mention PLS discrim-
inant analysis (PLS-DA), back-propagation neural networks
(BPNNs) [53], random forests (RFs) [54], simple linear
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regression (SLR) algorithms [55], stepwise multiple linear
regression (SMLR) routes and algorithms being applied
to qualitative and quantitative multivariate data analysis of
mixed components [56]. It also includes image reconstruction
algorithms for image enhancement and denoising. Machine
learning applied to the field of terahertz imaging, based
on compressed sensing, and super-resolution reconstruction
algorithms.
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TABLE 3. Latest developments in combining machine learning methods with terahertz spectroscopy for agricultural products/food testing.

Detection object Spectral range Research method

Result References

Nutritional ingredients in 0.5-0.9 THz PLSR, LLSR
dietary supplements
Alum content in starch 0.2-1.4 THz PLS, SVM
Additives in flour 1.0-3.0 THz PLS, LS-SVM,
BPNN
Water content in fruit 0.75-1.1 THz SVM, D-Tree,
KNN
Additives in agricultural 0.2-1.6 THz iPLS, PSO-SVC
products
Rice varieties 0~357.97 SVM
cm™! spectrum
Peanut varieties 0.3-3.6 THz BPNN, SVM

The classification accuracy levels of L-
histidine and o-lactose are 94.8% and
98.9%, respectively.

Wang et al.[79], (2020)

The prediction accuracy is as high as
98.2%.

Guan et al.[80], (2019)
Rp = 0.9945, RMSEP = 0.66%. Hu et al.[81], (2019)

The classification accuracy is close to
100%.

Ren et al.[82], (2019)

The accuracy of the calibration set and
verification set are as high as 99.01% and
98.01%, respectively

Jiang et al.[83], (2020)

The prediction accuracy based on
absorption coefficient and refractive index
spectra are 98.5% an 89%,respectively..

Li et al.[84], (2022)

The overall recognition accuracy is as
high as 93.3%.

Liu et al. [85, 86], (2018)

IIl. APPLICATION OF MACHINE LEARNING METHODS IN
THZ TECHNOLOGY

A. QUALITY INSPECTION OF AGRICULTURAL
PRODUCTS/FOOD

Agricultural product/food safety is a public health issue, and
the quality inspection is essential to ensure the manufacturing
process and meet the standards in the area of industry. In that
regard, implementing suitable scientific inspection methods
is a relevant task [78]. The unique characteristics of THz
radiation endow THz technology with a significant research
value and great potential of application. In recent years,
various scholars have used THz-based feature extraction
methods and qualitative/quantitative modeling tools to assess
the quality of agricultural products/food and have achieved
certain results (for details, see Table 3).

For example, Lu et al [64] carried out the THz-TDS
experiments of a binary mixture of L-glutamic acid and
L-glutamine in the yellow rice flour sample. The absorption
spectra were preprocessed using partial least squares and
interval partial least squares regression methods to construct
a quantitative analysis model. The model achieved high
classification accuracy, and could also be applied for analysis
of amino acids in other grains.

Kou et al [87] developed a new method for qualitative
and quantitative analysis of F11 in American ginseng that
allows for accurate, rapid, and cost-effective identification
and quantitative analysis of 24(R)-pseudoginsenoside F;
in American ginseng to distinguish it from other herbs or
materials. Western ginseng was distinguished from many
similar substances by PCA using quantitative data from
terahertz spectrometry and HPLC triple quadrupole mass
spectrometry. A new idea was provided for the identification
of western ginseng.
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Liu et al [88] obtained the ADPSO-SVM recognition
model for identification of genetically modified cotton by
combining SVM and adaptive dynamic particle swarm
optimization (ADPSO). The developed model was compared
with a PSO-SVM recognition method and was shown to
achieve the higher recognition accuracy, thus providing a fast,
accurate, non-destructive method for the testing of genetically
modified cottons.

THz-TDS was used by Wang et al [66] to detect official and
unofficial rhubarb samples. After collecting the THz spectra
samples, analytical models of PCA-LDA and SVM, based on
absorption coefficients were established. The study’s findings
showed that this method can classify rhubarb samples non-
destructively and accurately, and that it can also be used to
classify and quality control other herbal medicines.

Xu et al [68] looked at transgenic and non-transgenic
rice separately. The obtained time-domain spectra were
converted into frequency-domain spectra. The accuracy of
the discriminant analysis model to discriminate the of
transgenic rice from non-transgenic rice was 89.4 percent
and 85.0 percent, respectively, and the results suggest that
terahertz spectroscopy and machine learning provide a new
and viable pathway for the differentiation of transgenic rice.

Chen et al [67] collected THz time-domain spectra
of transgenic and non-transgenic soybean seeds in the
0.2-1.2 THz band. He then combined the CS-SVM method
with a combination of the cuckoo search algorithm and
support vector machine method to build a model to classify
transgenic and non-transgenic soybean seeds, proving that the
model has high classification accuracy. The study’s findings
showed that THz spectroscopy combined with the SC-SVM
method provides a reliable and fast method for identifying
GMOs and non-GMOs.
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TABLE 4. Latest advances in the application of machine learning methods in terahertz spectroscopy for disease diagnosis.

Detection object THz range Research method Result References
Liver cancer tissue 0.2-1.2 THz PCA, SVM, PNN, Isomap The prediction accuracy is 99%. Zhang et al.[98], (2018)
Prostate cancer The classification accuracy of the .
tissue 0.3-1.0 THz SVM prediction model is 100%. Anastasia et al.[94], (2020)
. Classification of tested chemical
Heterocyclic 10~70cm™* spectrum SVM, KSVM compounds in milliseconds with 100% NOWAK MR et al [96],

compound

Herbal varieties 0.2-1.2 THz PCA, SVM, DT, RF
Harmful additives 0.2-1.6 THz VIP-SPLS, PLS, SPLS
in herbal medicine
Protein molecular RF, SVM, t-SNE,

conformation 0-2.0 THz XGBoost
Glucose and 0.1-1.5 THz SVN, DNN
lactose
Biheterocyclic KNN, SVM
compound

accuracy. (2019)

The PCA-RF method achieves a

prediction accuracy of 99%. Zhang et al [65], (2017)

R,=0.9464, RMSEP = 0.3237. Zhang et al.[103], (2018)

Rp=0.9710, RMSEP = 0.2673. Cao et al.[104], (2020)

The accuracy levels of classification and .
testing are 99% and 89.6%, respectively. Lietal.[63],(2020)
The recognition accuracy is as high as

999 Nowak et al.[69], (2019)

Liu et al [89] propose a SVM identification model based
on affinity propagation clustering algorithm for genetically
GMOs. in the establishment of identification model, fewer
errors introduced by human annotation are introduced, which
improves the accuracy of identification. The results of the
experiments show that the algorithm has a low false positive
rate and a high recognition rate, allowing it to effectively
identify the types of samples to be tested. It also provides
a new method for detecting and identifying GMOs using
terahertz spectroscopy.

Machine learning methods enable the accuracy of terahertz
technology in the inspection process of agricultural products.
Quite informative data have been collected during the
agricultural product/food quality inspection based on fusion
of THz technology and machine learning methods, and
the obtained prediction models have reached high levels
of stability and accuracy. However, most studies were
carried out under laboratory conditions, which is somewhat
different from practical applications [90]-[92]. In addition,
information inadequacy and redundancy in the THz spectral
data is still a challenge. Therefore a complementary research
is required to simplify data and improve the performance of
the models, which will allow a breakthrough in data modeling
and related areas such as selection of model kernel functions,
classifier over-fitting, and model robustness.

B. BIOMEDICAL FIELD

At present, terahertz technology for biomedical applications
includes: biological tissue examination [93], [94], biomolec-
ular detection [95], [96], disease diagnosis [97], [98], and
so on (as shown in Table 4). THz has a low ionization
energy and can identify most biomolecules based on their
spectral fingerprints, making it an excellent tool for cancer
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detection [99]. Though feasibility of terahertz technology
in oncology diagnostics has been proved, the distinction of
cancerous issues from normal tissues based on differences
in water absorption and refraction still makes it impossible
to identify the type of cancer accurately [100], [101]. Since
water exerts a strong absorption effect on the THz wave,
the use of terahertz technology in the field of biomedicine
is mostly limited to disease diagnostics in epidermic and
isolated tissues. In this respect, application of terahertz
technology to living tissues is among the main future research
directions.

Using gastric tubular adenocarcinoma tissues on the gastric
mucosa as the detection object, Zhang Yi et al [102] intro-
duced tissue chip technology to acquire the histopathology
and terahertz detection results. The terahertz absorption
coefficients and refractive index spectra were exposed
to PCA, and SVM along with logistic regression (LR)
techniques were applied for data classification, ensuring
high-accuracy distinction of cancerous gastric tubular gland
cells from normal cells.

In other work, Hou et al [93] performed the THz-TDS
study on dehydrated gastric cancer tissues and normal tissues
to detect the central areas of sliced tissues by combining
PCA with T tests to extract valuable spectral information.
The k-means and SVM were used to build a classification
model, enabling one to successfully distinguish cancerous
tissues from normal gastric tissues.

Huang et al [95] employed a terahertz attenuated total
reflection technique to examine glycoprotein solutions with
a concentration gradient of 0.2-50 mg/ml. He then imple-
mented the composite multi-scale entropy (CMSE) analysis
to obtain features and clustered them using the k-means
algorithm. For comparison, the data were also exposed
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FIGURE 3. THz images of TBI samples.

to PCA treatment. According to the results, the CMSE
method allows one to not only extract features with better
specificity and sensitivity, but also is more suitable for
qualitative identification, thus being promising for cancer
identification.

Based on the spatial distribution characteristics of the
transmittance and the statistical distribution parameters of the
normalized gray histogram, KNN, SVM and RF algorithms
were applied in study [97] to identify and evaluate traumatic
brain injury (TBI), achieving an accuracy level up to 85%
(as shown in Figure 3. The THz images are displayed in
5-colors, different colors indicating the transmittance of THz
wave). The method was shown to be suitable for detection of
other diseases and be a powerful tool in automatic biomedical
diagnosis.

C. SECURITY INSPECTION

The combination of machine learning methods and THz
technology has a wide range of applications in security
inspection. The identification of dangerous items and suspi-
cious objects is also a research direction of THz technology
in the field of security inspection [105]. Compared with
other imaging technologies such as X-ray imaging, THz
technology has the outstanding advantages that are as below
[106], [107]: 1) a zero risk of radiation hazard; 2) the ability
to detect non-metal and non-polar materials; 3) the aptness
to identify explosives and illegal drugs. Existing terahertz
security screening cameras only report the approximate
locations of suspicious objects, and the resulting images are
noisy, thus leading to low recognition efficiency. Various
scholars have attempted to use machine learning methods to
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improve the quality of THz imaging and reduce image noise,
and build accurate target recognition models. Figure 4 and
table 5 shows the application of THz technology and machine
learning in the field of security detection.

Mohamed et al [108] proposed a clustering algorithm
developed on the basis of k-means approach, and so-called
the ranked k-means clustering. This algorithm was found to
be more effective than other clustering techniques suitable for
segmenting THz images with large-scale data sets.

Shi et al [109] have developed a terahertz image enhance-
ment method based on the dual-threshold canny equalization
algorithm, which allows one to improve the imaging quality
of a terahertz imaging system and obtain images with higher
resolution and clearer edges. Furthermore, its ability to
capture clear image contours and edges along with enhanced
ability to identify hidden objects makes terahertz imaging
attractive in security applications.

As another example, a technique combining ant colony
algorithm (ACA) and compressed sensing was proposed by
Li et al [110] to improve the quality of terahertz imaging.
In this method, the image reconstruction is attained via the
use of ACA for edge detection along with a partial Fourier
reconstruction algorithm for noise reduction of the non-edge
part of the image. With the ability to drastically reduce
the image noise while retaining the edge information, the
approach has great potential in security inspection.

Xi et al [111] introduced a spatiotemporal information
of THz security images into the Faster-R-CNN framework
through sparse low-rank decomposition (SLD), achieving
high accuracy and efficiency in the recognition of suspicious
targets.
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FIGURE 4. THz technology and machine learning in the field of security detection.

Dong et al [112] proposed a method for isolating hidden
weapons in samples with poor imaging quality in the
THz band range by generating a conditional generation
confrontation network (CGAN) called Mask-CGAN. This
enabled one to isolate target objects from samples with low-
quality, noisy images after a small training dataset. The
method was shown to be superior to CGANs and Mask-
RCNN models in terms of processing speed, recall, and
precision.

Xiao et al [113] performed mean filtering to reduce the
noise of the THz image, and employed the RCNN algorithm
to detect and identify the dangerous items in the denoised
image, achieving a recognition accuracy of 89.6%.

Murate et al [114] combined machine learning with is-
TPG spectroscopic measurements to identify reagents hidden
by various shielding materials. Three machine learning
algorithms were tested, SVM demonstrated the best discrim-
ination performance after training the algorithms on a large
amount of spectroscopic data. The results show that machine
learning improves the accuracy of terahertz wave methods
for detecting illicit drugs and other substances hidden in
packaging.

Yi et al [115] elaborated the technique for identifying
various explosives and related substances in a mixture using
a micro-genetic algorithm for terahertz spectrum uncertainty
analysis, thus obtaining the better results compared to the
traditional methods allowing identification of compositions
of mixtures. Tan et al [116] used the reflection THz-TDS
system to measure nineteen different liquids and applied PCA
algorithm to mark the safety threshold. Their study revealed
that the contribution of the first principal component to the
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total deviations is up to 96.52%, which means that flammable
and explosive liquids can be identified easily.

The above-mentioned works have laid a theoretical foun-
dation for the application of terahertz technology in the field
of security inspection. At present, terahertz technology has
been practiced in the detection of explosives, drugs, guns,
and other contrabands. Various terahertz security inspection
instruments have been put into use all over the world, and the
application of machine learning methods has improved the
detection accuracy of these tools. In the future, they need to
develop towards high sensitivity and portability.

D. MATERIALS SCIENCE

Since terahertz radiation can penetrate into non-polar and
dielectric composites such as ceramics, carbon plates, cloth,
plastics, etc. THz waves allow one to test the matter
in a non-contact, damage-free, and non-ionizing manner.
The detection accuracy is high and there is no need
for coupling [117]. For this reason, terahertz technology
is widely used in the field of non-destructive testing of
materials [118]. Table 6 shows the application of THz
technology and machine learning for non-destructive testing
of materials.

Tu et al [119] combined neural network technology
and wavelet analysis to carry out non-destructive terahertz
testing of marine protective coatings, and performed multiple
regression analysis in combination with a BP neural network
prediction method to make predictions on coatings.

Ye et al [120] used a transmission type THz-TDS with a
zero incident angle to obtain the spectral data from a variety
of thermal barrier coatings, which were afterwards PCA-
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TABLE 5. Latest advances in the application of machine learning methods in terahertz spectroscopy for security inspection.

Detection object

Research method

Result

References

Segmenting THz images

Terahertz image enhancement

Improve the quality of
terahertz imaging

Target Recognition

Target Recognition

Image denoising and target

K-means, Ranked-
K-means

Canny Equalization
Algorithm

Colony algorithm,
Compressive
sensing

CNN, R-CNN

CGANS, Mask-
RCNN, Mask-
CGANS

Mean filter, Faster

k-means clustering based on ranked set sampling is more efficient than
other clustering techniques .

The algorithm has a good noise reduction effect on terahertz images,
can retain image details, enhance and improve image contrast and
image quality.

The method can largely reduce noises and preserve the edge
information.

The method performs well in a short period of time for both simple and
complex cases, with improved accuracy and increased efficiency.

Mask-CGANs with an optimal model structure and a proper loss
function, has abilities in segmenting concealed objects in such low
quality and noisy Terahertz samples within a small training dataset.

The proposed algorithm can effectively identify the dangerous articles
of controlled knives in terahertz images, and the recognition rate can
reach 89.6%.

Through the low-attenuation untrained shield, all learning methods
achieved 100% accuracy; Through the high-attenuation untrained
shield, the SVM, KNN and RF algorithms achieved 88.9%, 77.8%, and
80.0% accuracy, respectively.

The multi-objective micro-GA method has been utilised to determine

Mohamed et al.
[108]

Shi et al. [109]

Lietal. [110]

Xietal[111]

Dong et al.
[112]

Xiao et al.[113]

Murate et
al.[114]

recognition RCNN
e s sy oo R
Explosives Recognition GA, Micro-GA
Flammable and explosive PCA

liquid recognition

the explosive mixture components via THz spectroscopic statistical

Yietal[115]
analysis supported.

The first principle component contribution a rate of 96.5% to all
deviation. This works show that the flammable and explosive liquids
can be identified feasibly by THz-TDS with PCA algorithm.

Tan et al.[116]

processed to reduce their dimensions in a range of 0.6 to
1.4 THz. The complementary methods such as MLR, BP, and
SVM, were applied for regression analysis as well. According
to the results, the prediction accuracy of the PCA-SVM
model enriches a level of 95%. This new approach combining
terahertz time-domain spectroscopy and machine learning
is promising for microstructural characterization of thermal
barrier coatings and high-accuracy prediction on the coating.
Yin et al [121] offered a tool based on THz-TDS and CS-
SVM (cuckoo search algorithm-support vector machine) for
rubber detection. In this method, PCA is adopted to reduce
the spectral data dimensions and improve the accuracy of the
SVM model by optimizing its penalty factor and function
parameters via cuckoo search algorithm. This enabled one to
increase the recognition accuracy of the test up to 100%.
Liu et al [122] applied PCA to the THz spectra of three
dyes, simultaneously using the SG smoothing algorithm
to improve the recognition accuracy along with FCM and
k-means approaches to evaluate the recognition results.
Their study revealed the high efficiency of combined SG
smoothing algorithm and PCM in THz data processing of
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dyes. To elucidate the physical properties of coal/rock in the
THz band range, Wang et al [123] established a recognition
model of THz absorption coefficient spectra and refractive
indices based on PCA and SVM, achieving a recognition
accuracy of 100%.

Data such as phase and amplitude signals can be obtained
directly when terahertz is used to detect materials. Material
parameters are difficult to obtain because they necessitate
multiple analysis steps, each of which can introduce errors
into the calculations. To replace the conventional fitting
function, Nicholas et al. [124] proposed an efficient neural
network for extracting material parameters and estimating
the refractive index of the material. The experimental results
show that the method can be used to replace the traditional
fitting function with high accuracy, speed, and ease of
implementation.

The advantageous background of terahertz technology
has resulted in the emergence of terahertz metamaterials,
which have created the conditions for the development of
terahertz devices. For conventional devices, the magnetic
permeability and dielectric constant of the material affect

VOLUME 10, 2022



Y. Jiang et al.: Machine Learning and Application in THz Technology: A Review on Achievements and Future Challenges

IEEE Access

TABLE 6. Latest advances in the application of machine learning methods in terahertz spectroscopy for materials science.

Detection object Research method Result References
. The hybrid signal processing approach could be
Marine protective coating BPNN, Multiple- recommended for terahertz non-destructive testing Tuetal.[119]

regression analysis

applications of marine protective coating

The correlation coefficient comparisons showed that the

Thermal barrier coatings PCA, SVM, MLR, BP

characterization accuracy of PCA-SVM reached by over

Ye etal.[120]

95% and outperformed the other models.

Cuckoo search

Rubber algorithm(CS), PCA, SVM The identification rate of testing sets for CS-SVM is 100% Yinetal.[121]
Dyestuffs FCM, SG, PCA, K-means SG smoothing coupled with PCA achieved the highest Liuet al. [122]
accuracy of 94.44%.
The recognition rate of coals/rocks reaches to 100 % and the
Coals and Rocks PCA, SVM recognition rate of different bituminous coals reaches to Wang et al. [123]
97.5 %.
Design initial Calculate the Analysis of the ettt e
structure based on | == ohtical response of | ==—) onbtica] response of | =— structufe

experience the structure

the structure

FIGURE 5. The conventional design process for metamaterials.

the final optical response of the device, which becomes
a limitation for the light source wavelength. However, the
emergence of metamaterial devices breaks this limitation
because metamaterial devices can be designed with structural
parameters to tune the response band of the metamaterial.
The conventional design process for metamaterials, shown in
Figure 5, involves solving a system of Maxwell’s equations,
and the highly nonlinear nature of Maxwell’s equations
and complex boundary conditions make this computational
process very difficult and almost impossible for complex
structures [125]. Based on the superiority of machine
learning, by allowing the neural network to learn a data
set containing the structure of the metamaterial and its
corresponding optical response, neural networks can obtain
the ability to predict the structure of the metamaterial from
its optical response. This avoids the problems of high
nonlinearity and complex boundary conditions encountered
in traditional methods of solving Maxwell’s equations.
Moreover, the network can also predict the optical response
of metamaterials based on their structures, a process that is
much faster and more accurate than traditional numerical
computation methods. Therefore, it is a convenient, efficient,
and important approach to apply machine learning to the
design of metamaterial structures.
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IV. PROBLEMS TO BE SOLVED

As an emerging sensor technique, THz technology finds
application in various industries, including agriculture. While
the combination of machine learning methods and terahertz
technology brings great benefit to society, especially in terms
of public health and safety, there are still some shortcomings
that still limit their large-scale use, which are as follows.

A. HIGH COST OF TERAHERTZ EQUIPMENT

The costiveness of terahertz sources and detectors is a key fac-
tor hindering the commercialization of terahertz technology.
Because of the high price of hardware, terahertz technology
is used rather in academic research than for commercial
goals. If terahertz technology could be applied to more fields,
the increasing demands for terahertz systems would cause
the cost drop. On the other hand, further R&D needs to be
carried out to design terahertz imaging systems with low-cost
and high-efficiency source and detector, and to enlarge the
applicability of terahertz instruments and techniques.

B. INFLUENCE OF SCATTERING EFFECT
ON INSPECTION RESULT
Scattering effect always takes place when exposing the

sample to terahertz waves. This is caused by particle
nonuniformities such as irregular shape and different sizes,
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which affect the refractive index of the matter and, conse-
quently, the test results [126]. Grinding the specimen and
compressing it into fine, smooth particles enables one to
reduce the scattering effect.

C. NEED TO IMPROVE GENERALIZATION ABILITY AND
ROBUSTNESS OF MACHINE LEARNING MODELS

The effectiveness of machine learning is limited by the
quantity and quality of data used to train the model [127].
Model training may suffer from the “over-fitting,” which will
exert a certain impact on the accuracy and robustness of the
prediction model. On the other hand, the training accuracy of
the ML model depends on the selection and optimization of
parameters. Existing modeling methods [128], [129] require
a certain amount of training samples to accomplish tasks
such as parameter selection, learning and training, which
affects the accuracy and calculation speed of model analysis.
At present, the common machine learning modeling tools
only touch on a shallow structure. Since the in-depth analysis
of THz spectra and image features is a challenge, large-scale
application of these approaches has been limited up to date.

V. OUTLOOK

At present, it is imperative to keep developing novel
techniques by combining machine learning methods with
terahertz technology so as to overcome the bottlenecks
encountered in practical applications, which would allow one
to meet actual market demands[126, 130]. In spite of some
limitations, the constantly increasing availability of terahertz
systems and rapid development of terahertz technology in
various fields will gradually expand its application from
laboratories to workshops and households. In the future, the
advances of terahertz technology will be evident from the
following aspects.

A. IMPROVING PERFORMANCE OF TERAHERTZ SYSTEMS
Terahertz technology has developed into a means of fast non-
destructive testing. The performance of a terahertz system is
jointly determined by the imaging speed, spectral resolution,
spatial resolution, and the amount of information the system
can provide. However, due to hardware restrictions, the
sensitivity and imaging resolution of terahertz systems have
to be improved. In this respect, a cost-effective, high-
performance terahertz system has great application value.

B. COMBINING TERAHERTZ TECHNOLOGY

AND DEEP LEARNING

The commonly used modeling tools are mostly based on
machine learning algorithms that touch on the shallow
structures. The fact that gathering the in-depth feature
information from spectral images is a challenge affects
the accuracy and robustness of the prediction model, thus
limiting the application of these algorithms in many fields.
Therefore, it is recommendable that deep learning methods
are applied in terahertz technology. Currently, deep learning
algorithms can be divided into three types: convolutional
neural networks for image data analysis and processing,
recurrent neural networks for text analysis and natural
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language processing, and generative confrontation networks
for unsupervised learning. In the future, introducing them into
terahertz technology to improve the accuracy and robustness
of prediction models will be within the scope of many
research and practical projects.

C. ESTABLISHING TERAHERTZ DATABASE
Establishing standard databases of terahertz bands in various
research fields and developing effective methods for their use
is essential for a breakthrough of THz techniques.

Such databases can provide reference data to support
qualitative and quantitative analysis of substances, thereby
simplifying the prediction and detection processes.

D. OPTIMIZING THz SOFTWARE SYSTEMS

When it comes to analyzing and processing terahertz
spectrum and image data, it is necessary to test different
machine learning methods in order to find an optimal
model. Since this process is very time-consuming, the
future terahertz software systems should incorporate multiple
machine learning modeling methods to realize the automatic
data analysis, and be furnished with a standard tera-
hertz database, thus forming a human-machine interaction
platform with a set of functions including user manage-
ment, database, data reading, data preprocessing, and data
analysis.

E. APPLYING MACHINE LEARNING IN THE FIELD OF
TERAHERTZ COMMUNICATION

Terahertz (THz) band communication is considered a key
technology for next-generation wireless systems, and is
expected to support a wide range of delay-sensitive applica-
tions with various data requirements. Terahertz communica-
tion would play an important role in the next-generation 6G
systems due to the ability to provide extremely high data rates
and huge bandwidths[]. When terahertz technology is applied
in wireless communication, the system can transmit data at a
much higher speed than conventional wireless communica-
tion appliances. However, the management of networks and
services, such as huge network traffic, excessive resource
management pressure and energy inefficiency, will face great
challenges that can be overcome via new technologies and
efficient strategies.

Machine learning is an emerging field in the research
of Al-assisted networks. Being one of the best solutions
for managing large amounts of data, machine learning
enables one to achieve the higher level of sophistication in
network application monitoring and management, improve
operational efficiency, and make terahertz communication
system smarter. With the help of machine learning, it is
feasible to extract valuable information from a large amount
of raw data and support smarter control and optimization of
wireless communication networks.

VI. CONCLUSION

Terahertz technology can be used in the fields of agricul-
tural products\food quality inspection, biomedicine, security
inspection, and materials science, also having great potential
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for many other applications. Higher performance of terahertz
technology can be achieved when combined with machine
learning approaches. Since the development of terahertz
techniques is hindered by some shortcomings such as high
water absorption, low accuracy, limited spatial resolution, and
high cost, machine learning methods enable one to improve
the generality and robustness of models for analyzing
terahertz spectra and image data. In order to reduce the costs
of terahertz technology, a complementary study aiming to
improve detection accuracy, increase signal-to-noise ratio of
the instruments, establish terahertz database, and amplify
the performance of terahertz hardware and software systems
has to be conducted. Terahertz communication technology
is promising in short-distance ultra-high-speed wireless
communication due to its extremely high data rate and huge
bandwidth, offering a solution for some problems faced
by current wireless communication appliances. In the near
future, terahertz technology is expected to be extensively
practiced in more fields.
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