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ABSTRACT With the rapid growth of the semiconductor manufacturing industry, it has been evident that
device simulation has been considered a sluggish process. Therefore, due to downscaling of semiconductor
devices, it is significantly expensive to obtain the inevitable device simulation data because it requires
complex analysis of various factors. To develop a competent technique to analyze the performance of the
line tunnel field-effect transistors (TFETs), the 3-D stochastic device simulation is integrated with a machine
learning (ML) algorithm, named random forest regressor (RFR). Despite producing tremendous researches
by the RFR model in the field of computer vision, the adoption of these ML algorithms in the field of the
semiconductor industry has a lot of margin for progress. The ML-based RFR model is exploited to predict
the effect of variability sources of line TFET under different biasing conditions. Results are promising and
reducing the computational cost of device simulation by 99%. The prediction of effect of source variation
is less than 1% as compared to the device simulation of line TFET. The application of the RFR on the line
TFET device exhibits the power and flexibility of this approach because its evaluation with different bias
conditions shows outstanding results.

INDEX TERMS Artificial intelligence, random forest regressor, intelligent manufacturing, machine learn-
ing, line tunnel field-effect transistors.

I. INTRODUCTION
The electrical characteristics of tunnel field-effect transis-
tors (TFETs) outperform as compared to complementary
metal-oxide semiconductors [1]. However, for commercial
device manufacturing, TFETs still need to improve some spe-
cific electrical characteristics, i.e., on-state current (ION ) and
steep or average subthreshold swing (SSavg) while maintain-
ing controlled off-state current (IOFF ). Nevertheless, TFET
exhibits improved ION and SSavg that can inaugurate vari-
ous TFET applications regarding different device structures
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and material options [2]. The tunneling effects can be
enhanced through crucial factors such as material [3], oxide
(high-κ) [4], gate engineering (gate-all-around) [5], geo-
metrical options (nanowire or nanosheets through confined
width) [6], etc., [7]. In addition, the recent outbreak reveals
that the utilization of ferroelectric material in TFET devices
introduces the improvement of ION through internal voltage
amplification [8]. There is another way to improve the tun-
neling probability is by producing a stronger electrical field
by experiencing new and different options, such as vertical or
line tunneling mechanisms [9]. Other techniques such as the
utilization of 2D materials and multi-channel concepts can
enhance the performance of TFET [10], [11]. Owing to these
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options, we provide the promising structure of the line TFET
in our recent demonstration [12]. However, there is a few prior
research that can examine TFET performance exclusively by
implementing emerging machine learning (ML) technology
[13], [14]. For the first time, we analyze the effect of the line
TFET characteristics by varying several device parameters
such as source overlap length (Lov), epitaxy (n) thickness (tn),
oxide thickness (tox) and work function (WK). Thus, it is vital
to analyze the effect of these parameters of the line TFET by
implementing emerging ML techniques.

Recently, ML is becoming visible in all research areas
such as physics [15], mathematics [16], chemistry [17], etc.
As we know that, ML has already paved its path in computer
vision [18] and image processing [19]. But, ML has very
few legitimate applications in the semiconductor industry.
Therefore, in the field of semiconductor manufacturing, it has
a broad way to explore its harmony with device simula-
tion. In [20], the comparison of three different deep learning
(DL) algorithms, i.e., artificial neural network, convolutional
neural network and long short term memory, were imple-
mented using device simulation data of gate-all-around sil-
icon nanowire MOSFET and electrical characteristics were
predicted through the work function fluctuation of random
nanosized metal grains on MOSFET channel. Similarly,
in [21], the ML algorithm was applied to predict the ID-VG
curves obtained through device simulation of multichannel
gate-all-around silicon nanosheet MOSFETs. Moreover, in
[22], the DL model was implemented to predict five output
features obtained from I-V/C-V curves. In [23], the DLmodel
was investigated to predict the worst random discrete dopant
configuration obtained through the device simulation. In [24],
DL approach is utilized to estimate the work function fluctu-
ation of gate-all-around silicon nanoseheet MOSFETs with a
ferroelectric HZO layer. In our prior work [25], theML-based
random forest regressor (RFR) model was implemented on
simulation data of the line TFET while considering only two
device parameters, i.e., Lov and W with the fixed biasing
condition, i.e., VD = 0.5 V and the error rate between
predicted and simulated values was 5% which is recognized
as a huge number in the field of ML technology.

RFR model has many advantages that make it an outstand-
ing ML model. It emphasizes the feature selection that can
help to give more importance to the valuable features and
can prune the noisy/unimportant features. The other main
advantage of RFR model is that it can handle non-linear
data as well whereas, the other ML models have lacked
this property. In this work, ML algorithms aim to overcome
the computational cost and non-holistic optimization of a
complex structure of the line TFET and its electrical charac-
teristics. Instead of the derivation of conventional complex
equations, ML algorithms are subsequently optimizing the
possible solution for the device parameters without any spe-
cific knowledge of the device physics. In order to overcome
the primary issues [26], three main contributions of this work
are: (1) overcoming the complexity and ambiguity of device
simulation at sub-3-nm technology node. (Nevertheless, the

FIGURE 1. An illustration and validation of device simulations with
experimentally measured data corresponding to Si0.85Ge0.15 TFET [30].

quantum confinement is crucial for the device dimensions
below the effective width (∼5-7nm) [31]. Our specifications
that fall under the sub-3-nm technology node are Lg = 15nm,
effective width >14 nm, and so on), (2) complex modeling
and optimal solution without compromising the ML model’s
prediction accuracy, and (3) holistic and optimized solution
for flexible design of the line TFET applications. In addition,
our explored ML model is also able to predict the region of
operation of the line TFET device by considering the ID-VG
values. Instead of encountering few device parameters, the
RFR model deals with the predictive inference using four
crucial device parameters of the line TFET, i.e., Lov, tn, tox
and WK.

This paper is structured as follows. In Section II, device
simulation and data collection procedures are explained.
Section III demonstrates themodeling of theMLmodel based
on the device simulation. Section IV presents the results and
the discussion and Section V defines the conclusions and
suggests the future work.

II. DEVICE SIMULATION AND DATA GENERATION
To provide the best accuracy of device simulation, the cali-
bration [31] is performed with experimental data, as shown in
Fig. 1. It can be seen that though the calibration is performed
with respect to si device the SiGe has minor variability espe-
cially in terms of tunneling mass and energy bandgap (which
are crucial for tunneling probability) [11]. Nevertheless,
the figure is updated by calibrating with SiGe device [31].
In this paper, our proposed scaled line TFET (SLTFET) with
nanosheet geometry is utilized, as shown in Fig. 2(a). 3-D
device simulations [11], [12], [28], [29] by considering the
band-to-band tunneling (BTBT) model of dynamic nonlocal
and trap-assisted tunneling (TAT) for effective estimation of
IOFF are utilized. The tunneling transport is determined by
the evaluation of the BTBT model and TAT models, espe-
cially in TFETs. Here, TAT model estimates the influence
of estimates the influence of trap-assisted-tunneling, which
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FIGURE 2. (a) An illustration of scaled line TFET for sub-3-nm technology node and (a’) shows the vertical as well as lateral gate field of line TFET,
(b) Various random sources and device parameter variability and 100 ID-VG curves obtained from each variability source, (c) A general ML model
that is fed by five crucial electrical and device parameters as input and drain current is taken as a target. It also demonstrates the possible
application of concatenation of the ML algorithm with the line TFET device simulation.

is major contribution for the off-state current that arises
during zero-gate bias. The tunneling parameters according
to the material options (Si1−xGex with x as Ge fraction of
0.4) are calibrated and included in the device simulations.
i.e. effective mass based on conduction and valence band
density of states (mc and mv) are 0.328m0 and 0.421m0
for Si0.6Ge0.4. In addition, the Kane’s model (BTBT) direct
and indirect path parameters Adir, Bdir, Aindir, and Bindir
for Si0.6Ge0.4 are 1.341 × 1020cm−3S−1, 54.05 MVcm−1,
2.44×1015 cm−3S−1, and 16.8MVcm−1, respectively. More
discussion on these calibrations can be found in our recent
articles [11], [25].
Fig. 2 demonstrates the design of SLTFET using an

n-epitaxial layer over the channel and source and to improve
the vertical gate-field via a Lov. The working principle of the
explored TFET depends on both vertical (source-epitaxy) and
lateral (source-channel) tunneling mechanisms. During the
off-state; i.e. drain voltage (VD) = 0.5 V and gate voltage
(VG) = 0 V, the tunneling length (λ) is longer to have reason-
able BTBT across both the junctions. As long as the applied
potential increases (on-state; VD = VG = 0.5 V) the BTBT
rate exponentially increases for the generated gate vertical-
and lateral-fields as shown in Fig. 2(a’). Here, the magnitude
of the vertical field is stronger than the lateral field as long
as Lov exists. It is to be noticed that the key parameters of
TFET depend on energy bandgap, effective mass, tunneling
length, and so on, which are related to material engineer-
ing. However, the geometrical options with respect to struc-
ture selection influence Lov, tn, oxide thickness (tox), work
function, etc. [30]. Hence, we investigate the performance
of TFET through geometrical options rather than material
considerations. The significance of each device parameters
are described below.

A. SIGNIFIANCE OF OVERLAPPING LENGTH (LOV)
The significance of Lov is to modulate the vertical gate-field
as well as vertical tunneling via p++-n (refer to Fig. 1(a)).
The factor of Lov helps to improve the area of tunneling (Atun),

TABLE 1. List of the line TFET device parameters and their ranges with
their respective step size explored in ML RFR model.

i.e. Atun = Lov ∗ 2(W + tn), where tn andW are the thickness
and width of the channel. This refers to the proportionality of
tunneling or Atun with respect to Lov and device dimensions
such as tn and W . Here tn is varying as well as W is varied
accordingly, as listed in Table 1.

B. SIGNIFIANCE OF EPITAXIAL THICKNESS (TN)
The value of tn is also significant because the band align-
ment between p++-n will determine the tunneling barrier
length (λ). An appropriate band alignment is responsible for
a greater tunneling rate [29]. Other material factors that will
influence the tunneling rate are tox andWK.

C. SIGNIFIANCE OF OXIDE THICKNESS (T)OX
The factor of tox highly influences λ, as λ =

√
(εnstox tns)/εox ,

where εns and εox are the permittivity of nanosheet and gate-
oxide, respectively.

D. SIGNIFIANCE OF WORK FUNCTION (WK)
TheWK would make an effect on the subthreshold operation
of the device that influences with a low threshold (Vt ) and
deviation in SS values. Here, titanium nitride (TiN) is used for
makingWK as an n-type device structure. The work function
range of 4.2-4.4eV is considered to maintain a high ION /IOFF
ratio. This is because the TFETs suffer with low on-current
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TABLE 2. List of the hyperparameters utilized to train the ML based RFR
model.

at high WK. Therefore, it is meaningful to consider a low
work function range that implies steeper band banding (1φ),
proportionally high tunneling rate or on-current. In reality,
it has been identified that the variation in WK from low to
high with meaningful offset can be achieved through plasma-
ion implantation [33].

Hence we have specifically input these parameters into
the ML RFR model to understand the device structure of
line TFET. Furthermore, to improve the tunneling rate the
explored SLTFET is utilized with hetero-structure having
Si0.6Ge0.4 as the source and the rest with that of Si. The
data obtained through the device simulation is fed into the
RFR model such as the input features are VG, Lov, tn, tox and
WK. These input features are composed of different ranges
and each device parameter is generating 100 ID−VG curves,
as shown in Fig. 2(b). Therefore, our explored RFR model is
intrigued using 400 ID-VG curves. Similarly, the output fea-
ture is ID. After specifying the input and the output features
for the ML model, it is necessary to split the data into the
training and the testing sets. The split is user-specific as well
as ML model-dependent. Furthermore, the normalization of
a dataset is performed to compose the whole data into the
standardized range to improve the accuracy of theMLmodel.
Fig. 2(c) illustrates the input and output from the ML model
as well as the possible ML application for the line TFET
simulated data.

III. MODELING OF MACHINE LEARNING ALGORITHMS
Since 40 years ago, researchers have been struggling to
formulate the simple equation of the complex structure of
semiconductor devices. Therefore, to make a general model
based on multiple hyperparameters, the RFR algorithm is
implemented that can work for the SLTFET with the given
input and output vectors. The ML-based RFR model is tuned
with the help of various hyperparameters as listed in Table 2.
RFR model having a bunch of parallel decision trees has the
advantage to make a flexible model by varying the hyperpa-
rameters. In this work, the RFRmodel is based on 50 decision
trees, as shown in Fig. 3(a). Before feeding the training set
into the RFR model, the training dataset is preprocessed
such as shuffling, normalization, and splitting of data into an

FIGURE 3. An illustration of the ML algorithm explored for the line TFET
device simulation data. (a) The RFR algorithm based on 50 trees with
varying depth of each tree to predict the ID curve. (b) Data is splitting
between the training and the testing set. Input and output/target
parameters are also defined.

appropriate ratio for training and testing the model. In gen-
eral, the testing data remain unknown to the ML model.
Firstly, the ID−VG curves are shuffled so that theMLmodel is
able to be trained from each possible curve from all ranges of
device parameters. Secondly, the data is normalized to elim-
inate the outliers. The linear normalization is performed by
subtracting the data from its mean value and then dividing it
by its standard deviation. After normalization, all the training
dataset is in the range of -1 to 1. Thirdly, the data is split
into 80% for the training set and 20% for the testing set. The
partition of data into the training and testing set is presented in
Fig. 3(b). Notably, while training the RFR model and during
the evaluation of the trained RFR model, the mean squared
error (MSE) value is calculated as a loss function. Moreover,
in this work, the R2-score is also considered as the source
of evaluation of the trained ML model. The higher value
of the R2-score shows that the input variables are perfectly
correlated, whereas, a value closer to 0 shows that the ML
model is not valid and suffering from many problems related
to train/test data split, noise in the data, unavailability of tuned
hyperparameters of the ML model, and so on. Our approach
is to use the RFR model to predict the ID curves from the
given device parameters and the electrical characteristics. For
this purpose, the RFR model is trained with four different
datasets such as (1) the 400 ID − VG curves are collected
by varying one device parameter at a time while fixing the
rest of the three parameters, (2) among four crucial device
parameters, 200 ID − VG curves are generated by varying
Lov and tn with each other to show the correlation between
these two parameters, (3) the electrical characteristics are
investigated by varying the device parameters as well as drain
voltage (VD), and (4) approximately 2500 fluctuated devices
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TABLE 3. Comparison of various data split and their corresponding
accuracy (R2-score) of ML-RFR model.

are generated to collect the ID−VG curves with the variation
of all the device parameters to exhibit the relationship among
WK, tox , tn and Lov.
This proposed idea is more efficient and accurate because

many input features are investigated with respect to the hid-
den parameters of the ML model and the output reflects the
collective as well as individual effect of all device parameters,
i.e.,WK, VD, tox , tn and Lov. Notably, Table 1 lists the varying
range of the device parameters of the SLTFET device utilized
in the modeling of the RFR algorithm.

While optimizing the RFR model, there is no certainty to
obtain the controllable range of real semiconductor device
parameters because the training of the model does not relate
to any device physics and may try to find the optimal solution
for all the input features. To obtain the well-regulated range
of the predicted output, it is necessary to scale the input
features using Python’s library, i.e., Scikit-learn [18]. All the
experiments are operated in Python console on the computer
with Intel i7-10700KCPU (3.97 GHz) and 32.0 GByte RAM.

IV. RESULTS AND DISCUSSION
50 trees-based RFR model using five input nodes and hav-
ing an adjustable depth for each decision tree, has been
implemented via Python’s library, i.e., Scikit-learn. While
implementing the RFR model, the number of trees and the
depth of each tree has been determined by the number of
ID − VG curves to learn the relationship between the device
parameters and the target value. In addition, to achieve robust
results, the number of training samples and hyperparameters
must be in an appropriate manner to avoid both overfitting
and underfitting of the RFR model.

Generally, the dataset is split into three subsets, i.e., train-
ing set, testing set and validation set. Validation and test
set play an important role but sometimes validation set is
not required when dataset is small and the error rate for
training as well as testing data are in good agreement. Before
feeding the dataset into the ML model, the dataset is split
into the training and testing set. It is a complicated task
especially when the dataset is small. The training and testing
data split affects the various attributes of the ML model. For
example, the accuracy and the best fitting of the ML model
depend on the appropriate selection of train/test split. The
appropriate train/test split tune the hyperparameters in such

FIGURE 4. An illustration of performance of the ML-RFR model using
RMSE value by varying the number of trees. It shows that the minimum
RMSE value is achieved at 50 number of trees.

a way so that it can produce the best accurate predictive
ML model. Therefore, while investigating the 400 ID-VG
curves, to determine the best splitting ratio, the R2-score
of the training of the explored ML model is calculated by
considering varying dataset splits, as listed in Table 3. It can
be seen that the most appropriate split for our small dataset
is the case (d) and case (e). Therefore, randomly 320 ID-
VG curves are selected as a training dataset and the rest of
the curves are utilized for the evaluation of the trained RFR
model. The RFR model is trained by considering the case d.
The tunned hyperparameters utilized by case d are listed in
Table 2. Moreover, Fig. 4 shows that 50 trees have the mini-
mum root mean squared error (RMSE) for this dataset. Thus,
our explored RFR model is constructed by using 50 number
of trees. During the training of the RFR model, we stop
splitting the nodes in the trees based on the generalization
of the performance of the MSE value. For example, if the
MSE value remains the same for the previous nodes, then
the output is taken from that node. We repeat this process
for several decision trees and output is obtained by taking an
average of all the acceptable outcomes. As it has been known
that the RFR model is stochastic, therefore, its performance
can vary by the initial random parameter values. To avoid
overfitting and for the best accuracy performance, the RFR
model is trained and evaluated by initializing with different
parameter values. The training of the ML model is physics-
free, i.e., it is working without any knowledge of the device
physics. ID-VG curve is evaluated by using the RMSE value
and R2-score. RMSE value measures the difference between
the true value/simulated value and the predicted value (output
from the RFR model). The lesser the RMSE value, the more
accurate is the performance of our explored model. Similarly,
R2-score is a statistical measure that reflects the fitness of the
MLmodel. Its value ranges between 0 to 1. Moreover, a value
closer to 1 exhibit the best performance of the ML model and
vice versa. Notably, the training and the testing of the RFR
model using different device parameters are illustrated in
Fig. 5. In this proposed idea, each device parameter has differ-
ent ranges, however, in Figs. 5(a)-(h), solid line (-) shows the
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FIGURE 5. An illustration of training and testing of the RFR model. (a) and (b) represent the ID-VG curves
during training and testing of the line TFET by considering device parameter, i.e., tn = 1 to 5 nm with 0.1 step
size, obtained through device simulation, respectively, (c) and (d) represent the ID-VG curves during training
and testing of the line TFET by considering device parameter, i.e., WK = 4.2 to 4.4 eV with 0.025 step size,
obtained through the device simulation, respectively, (e) and (f) represent the ID-VG curves during training and
testing of the line TFET by considering device parameter, i.e., Lov = 0.1 to 10 nm with step size of 0.1 nm,
obtained through device simulation, respectively, and (g) and (h) represent the ID-VG curves during training
and testing of the line TFET by considering device parameter, i.e., tox = 1 to 6 nm with 0.05 step size, obtained
through the device simulation, respectively.

simulated data and marker (o) represents the predicted value
from our explored RFR model. It can be noted that the ID-VG
curve fitting outperforms for all the device parameters and
due to the rigorous R2-score, the RMSE value is diminished
as well. Therefore, it can be concluded from Fig. 5 that, our

explored RFR model learned the complex equations of the
SLTFET for the given range of device parameters. Moreover,
our well-trained RFR model can predict the ID-VG curves for
the unknown device parameters but in the same perturbation
range of simulated data.
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FIGURE 6. Linear regresssion plots of the testing dataset obtained through the evaluation of the RFR model using all explored device
parameters. (a), (b), (c) and (d) represent the comparison of the predicted and the simulated values of WK, Lov , tox and tn, respectively.

FIGURE 7. An illustration of the combined effect varying ranges of Lov and tn. It also
shows the effect of these two device parameters on the prediction of ID-VG curves.
It shows that the testing of the combined effect is two device parameters also outperform
in terms of RMSE value and R2-score for fixed biasing condition, i.e., VD = 0.5 V.

Fig. 6 illustrates the output regression lines of the RFR
model. It can be seen that Figs. 6(a)-(d) exhibit the linear
performance for all explored device parameters by comparing
the simulated values and the predicted values. Moreover,
in Fig. 6, the relationship between the predicted and device
simulated ID values is approximately linear which shows
that the predicted ID values are close enough to the simu-
lated (test) values. Therefore, it can be seen that our explored
RFR model outperforms in terms of accuracy.

After exhibiting the effect of source of variation inde-
pendently using 400 fluctuated devices, the second dataset
is investigated, i.e., 200 fluctuated devices by varying Lov
and tn simultaneously (WK, tox remain constant) to study
the relationship between them. Fig. 7 presents the ID-VG
curves obtained through the device simulation as well as the
prediction via theML-RFRmodel. It can be observed that the
R2-score is approximately equal to 99% and the RMSE value
is very close to 1% as well. Thus, it can be concluded that
our explored ML-RFR model performs well with two device
parameters as well.

Thirdly, in order to demonstrate the compatibility and
physics-free modeling of our explored RFRmodel, the model
is trained and evaluated by different biasing conditions such
as VD = 0.5, 0.05, and 0.005 V. It can be seen from Fig. 8 that
the prediction of the ID-VG curve is outstanding in terms of
RMSE value and R2-score. In short, it can be concluded that

FIGURE 8. An illustration of testing of the RFR model by predicting the
ID-VG curves of the line TFET by considering device parameters, i.e, WK =

4.4 eV, tox = 3 nm, Lov = 5 nm and tn = 2 nm, having different biasing
conditions, i.e., VD = 0.5, 0.05 and 0.005 V. It shows that our well-trained
model performs well on the unknown biasing conditions as well.

ML modeling is physics-free and does not require an exact
equation to predict the target values.

Furthermore, to establish the relationship between all the
explored device parameters, the model is trained by splitting
the 2500 curves into 80% for training and 20% for testing
the RFR model. Before feeding into the RFR model, the
dataset goes through the preprocessing steps (as we already
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FIGURE 9. An illustration of training and testing of the RFR model with
varying all explored device parameters, i.e., Lov , WK, tn, and tox ,
by predicting the ID-VG curves of the line TFET. (a) the training of the RFR
model and four ID-VG curves are illustrated. The detail of
case (a) –case (d) is shown in Table 4. (b) shows the testing of the RFR
model and for the sake of visualization four cases are shown. Detail of
the device parameters of the testing curves is listed in Table 4.

discussed). The same hyperparameters are utilized in training
the RFRmodel except for the number of trees. In this training,
100 number of trees are explored for the converged solution.
It can be observed from Fig. 9 that the training and the testing
of the RFR model outperform. The RMSE value and the
R2-score show that the performance of the RFR model by
varying all the device parameters is approximately similar
to Fig. 5 and Fig. 7. Therefore, we can conclude that the
relationship between all the explored device parameters is
uncorrelated with each other. Notably, for the sake of visu-
alization, out of 2500 fluctuated devices, only four ID-VG
curves are shown in Fig. 9, for the training and the testing
of the ML model.

Lastly, to demonstrate the holistic and flexibility of our
explored RFR model, the model is tested with the randomly
generated device parameters. Firstly, after training the model
with the specific range (listed in Table 1) of device parame-
ters, the model is evaluated with unknown device parameters.
Thus, we have tested our trained ML model with random
values (unknown to the model) as shown in Fig. 10, Lov =
0.15 nm, tox = 3.04 nm, tn = 2.04 nm, WK = 4.44 eV.
Notably, these device parameter values are not included in
our simulated dataset, although, these values lie in the range

FIGURE 10. An illustration of evaluation of the well-trained ML-RFR
model by testing through the random device parameters. The error rate
for Lov = 0.15 nm, tox = 3.04 nm, tn = 2.04 nm, WK = 4.44 eV, is less than
1%. The difference between the ideal line and the scattered predicting
points shows that it is possible to evaluate the model using any value
within the specific range of device parameters.

TABLE 4. List of the device parameters shown (in Fig. 9) by training and
testing of the RFR model.

of our explored parameters. The comparison is established
between the simulated values and the predicted values for
random cases. The regression line shows the ideal scenario
and the closeness of predicted values to the ideal line exhibits
the outstanding performance of the ML model. Fig. 10 con-
cludes that the evaluation of our explored ML model using
randomly selected parameters outperforms. The error rate
between the predicted and the tested values are not greater
than 1%which is considered a remarkable achievement in the
field of ML and semiconductor device simulation. Moreover,
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TABLE 5. List of simulated and predicted minimum subthreshold slope
(SSmin) obtained from device simulation and ML algorithm, respectively.

after accurate prediction of the ML-RFR model, the cru-
cial parameter, i.e., minimum subthreshold slop (SSMIN ) is
extracted from the simulated data as well as from the pre-
dicted ID-VG curves. The extracted SSMIN of line TFET
device and predicted values are listed in Table 5.

Our explored RFR model takes 150 seconds to be well-
trained and 20 seconds to be evaluated. Whereas, device
simulation takes 5 hours to generate 100 ID-VG curves with
one device parameter at a time. Hence, it can be concluded
that ML modeling can accelerate the complex device sim-
ulation with an error rate of less than 1% and reduction of
computational cost by around 99%. Moreover, innovative
ML techniques can model the complex device structure and
can find the optimal solution easily. Moreover, our trained
model can accelerate the fabrication process because TFET
is a complex and time-consuming device simulation process
due to its quantum tunneling models. Therefore, predicting
the ID-VG curve from our well-trained ML model is reliable
to accelerate as well as minimize the computational cost
of the fabrication process by demonstrating the electrical
characteristics of any specific parameter within seconds.

V. CONCLUSION
In this work, the ML algorithm has been utilized to optimize
the solution for the complex device simulation of the line
TFET by training the RFR model with each possible fluctu-
ated device having a specific range of device parameters. Five
crucial device parameters, i.e., Lov, tox , tn, WK and VD were
explored to predict the ID variation. Therefore, from the pre-
dictive results, it has been concluded that the ML algorithm
is an efficient and flexible approach to predict the behavior
of the line TFET for the sub-3-nm technology node. In addi-
tion, it performs well by evaluating the device parameters
on other bias conditions. Therefore, it has been shown that
our explored ML model is physics-free and high compatible
with other device conditions as well. Furthermore, it has been
accepted that the accuracy of the predictive model is far better
than the human expert’s optimization algorithms using device
simulation. Our explored RFR model converges faster than
the other traditional algorithms. The R2-score of the well-
trained and evaluation model is above 99%, similarly, the

error rate for training and testing the line TFET simulated data
is less than 1%which is considered computationally efficient.
Moreover, it has been concluded that all the explored device
parameters are independent of each other and a generalized
algorithm has been modeled for the line TFET device with
specific device parameters which will be extended further in
a near future by adding more material parameters as well as
the process voltage temperature variations.
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