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ABSTRACT This study optimized the latest YOLOVS framework, including its subset models, with training
on different datasets that differed in image contrast and cloudiness to assess model performances based on
quantitative metrics and image processing speed. The hyperparameter in the feature-extraction phase was
configured based on the learning rate and momentum and further improved based on the adaptive moment
estimation (ADAM) optimizer and the function reducing-learning-rate-on-plateau to optimize the model’s
training scheme. The optimized YOLOVSs achieved a better performance, with a mean average precision of
98.6% and a high inference speed of 106 frames per second. The ADAM optimizer with a detailed learning
rate (0.0001) and momentum (0.99) fine-tuning yielded a sufficient convergence rate (0.69% at 55th epoch)
to assist YOLOVS5s in attaining a more precise detection for underwater objects.

INDEX TERMS Image processing speed, object recognition, optimization model, tuning hyper-parameter,

underwater imaging.

I. INTRODUCTION

Analyzing captured images in video-sequence framing,
an image processing of real-time or recorded underwater
video becomes imperative for extracting underwater features.
However, real-time video processing is technically laborious
and time-consuming when performed on a serial processor
due to several factors. These factors include images com-
prising a large data set, and complex operations (e.g., design
space complexity and require a huge amount of labelled data)
are needed to process these images [1]-[4].

Meanwhile, data-driven classification models like neural
networks meet the requirement of automatic system and
non-destructive method as a tool for managing underwater
biodiversity [5]. However, unlike the atmospheric condition,
the underwater scenes comprise degraded illumination, low
contrast, and changes in visibility due to turbidity [6]-[8]
as depicted in Fig. 1. Therefore, it is crucial to overcome
such limitations and challenges for the underwater vision
system (UVS) by reducing the constrained scenes.
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Il. UNDERWATER OBJECT DETECTION AND CHALLENGES
Although underwater object detection using image capturing
is the most accessible approach, this method yielded several
challenges on extraction the detailed imaging information
through the integrations of marine vessels and robots with
advanced imaging technologies. Certain factors contributed
by the colors absorbance and scattering in underwater,
i.e., water properties and impurities, affected the quality
of the photographs captured by the underwater imaging
devices [48]. The water light attenuations may include and
thus processing of sea imaging data becomes more chal-
lenging. Certain studies showed that the existence of certain
intrinsic deficiencies is attributed to the appearance of objects
and ambient noise in underwater images [49]-[51]. Conse-
quently, it is difficult in a real-time system to distinguish
objects from their surroundings in these images.

A. OVERCOME THE CHALLENGES OF UNDERWATER
ENVIRONMENT

Complex nature of underwater environment poses biggest
challenge towards object detection and recognition of
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FIGURE 1. The quality of object detection in various luminosities at
different distances.

underwater images [55]-[57]. Advancements in camera and
video technologies have increasingly evolved into broad
applications with high quality and better resolution images,
leading to efficient and precise underwater analysis. How-
ever, manual extraction and analysis of each frame sequence
in the recorded video are labor-intensive, cost ineffective-
ness, and prone to fatigue error [2]-[4]. Main challenging
in underwater imaging is the limited availability of light,
which causes high variability of light intensity while yield-
ing poor luminosity, distortion, and light attenuation [6]—[9].
Other challenges include water murkiness and background
confusion of the underwater floor with marine organisms [4],
which decrease the accuracy of visual perception on the
recorded images. To overcome the challenges, deploying
a machine-learning algorithm of a computer vision system
could enhance the resolution of underwater imageries due
to high turbidity in the underwater environment [10], [42].
Other than improving the quality of underwater images, some
of computational algorithms could accelerate the automatic
detection in machine learning that will enhance the efficiency
of monitoring and analysis [3]. Several imaging methods have
been devised to specifically improve the imaging range and
quality of underwater imaging systems [58]-[60]. As exam-
ple, hyperspectral imaging method[61], [62] has been used in
underwater object detection since the spectral images avail-
able in different bands can provide researchers with a better
understanding of image information. Meanwhile, to solve
distorted underwater image due to scattering, absorption,
color loss, diffraction, polarization or light attenuation, image
restoration method has been suggested by [63]. Furthermore,
to cater water quality problem in underwater environment,
deep learning-based method [64] has seen promising results
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especially for monitoring a large number of mariculture
fish. Therefore, a computer-based methods is highly recom-
mended to solve the underwater environment issues in the
exploration of underwater research and engineering.

B. MACHINE LEARNING AND IMAGE PROCESSING FOR
UNDERWATER IMAGING

The underwater imaging deals with detecting instances in
an image or video, locating their position in a particu-
lar frame. However, detection and position location are
particularly challenging of accurate underwater classes in
recorded images of low resolutions. Several authors adapted
the convolutional neural network (CNN) models for devel-
oping smart UVSs and achieved satisfactory performance
[10]-[14]. These models comprise a stack of distinct layers
of convolutional layers, Rectified Linear Unit (ReLU) lay-
ers, pooling layers and a fully connected layer that trans-
form the input volume into an output volume (e.g. holding
the class scores) through a differentiable function. By con-
trast, most of the existing systems are designed for shallow
waters or well-illuminated areas in underwater environments
[7], [13], [14], where objects are visible.

To date, only a few researchers are investigating to resolve
issues of low light intensity and murky water while enhancing
image quality processing time to produce a more accurate
UVS. However, more computational capacity in classifying
object detection and algorithm processing is needed to resolve
these issues. Therefore, this study aimed to develop a new
optimized model using one of the network architectures for
deep learning, i.e., the features extraction stage. In this pro-
posed architecture, features would learn automatically from
the input data, eliminating the requirement and engineering
effort for hand-crafted feature selection and extraction.

C. UNDERWATER IMAGING USING THE DEEP-LEARNING
METHOD

Currently, the most frequently used algorithm for object
detection is the model known as You Only Look
Once (YOLO) due to its high efficacy and accuracy
[15]-[18]. As a subset of the CNN model, YOLO employs a
single forward propagation through a neural network to detect
objects in real-time, i.e., the entire image is predicted in a sin-
gle algorithm run for training and validation [43]. This study
used the CNN model to predict various class probabilities
and bounding boxes simultaneously for two reasons. First, the
latest version of algorithm-based YOLO, particularly version
3 or higher, is appropriate for improving object detection with
more accurate positioning, faster speed, and more accurate
classification. Second, comparative studies on these models
for object detection under different underwater environments
are yet available.

However, an improvement on YOLO models is more
significant based on the tuning parameters of the model’s
optimizer. Tunable parameters that can improve the YOLO
performance are the image of input size, number of epochs,
batch size, learning rate, momentum, and activation function.
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Also, tuning hyper-parameters, such as learning rate and
momentum, during training algorithm would significantly
reduce training time and improves performance of the
model [44]. Otherwise, the model would be underfitting
or overfitting as the effect of poor hyper-parameter tuning.
(i.e. increase regularization, increase training speed, cause
instability). Thus, this study aimed to generate a robust
YOLO model for underwater detection by improving its opti-
mizer, learning rate, and momentum tuning. In this study,
among all YOLO series, YOLOVS has been selected for the
model optimization due to several reasons:

i the most advanced target detection algorithm with two
content security policy (CSP) structures (CSP1_X and
CSP2_X) [52] that able to extract generic features par-
ticularly in underwater image,

ii able to adaptively change the depth and width of the
network by changing parameters to its own data vol-
ume scale [53] (self-adaptation to small underwater
objects),

iii can guarantee good training result [54] of highest detec-
tion accuracy as proved in this study (Table 5).

D. YOLO VERSION 5 (YOLOVS5)
The latest version of the YOLO family is YOLOVS, which is
extended from YOLOv4 [34].
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FIGURE 2. The framework and architecture of YOLOv5.

In general, the architecture of YOLOvVS and YOLOv4
is somewhat similar, especially in the backbone, neck, and
head (Fig. 2). These two models use the same cross-stage
partial, CSP connection in their backbone to generate a rich
gradient combination while reducing computational usage.
CSP portions the feature map of the base layer, splitting
the gradient flow for propagating through different paths.
Implementing the CSP connection in a deep network will
enhance the learning ability of CNN and hence, improve
the accuracy while being light-weighting [35]. Also, CSP
clears the computational bottleneck by uniformly distribut-
ing the computation in each layer of CNN. Besides, CSP
will help downsize the memory costs by using cross-channel
pooling to compress the feature maps during the generation
of the feature pyramid via the model neck. These feature
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pyramids help identify identical objects with different sizes
and scales. In this respect, YOLOVS uses the path aggregation
network (PANet) as the model neck, and it is particularly
beneficial for instance-segmentation in preserving the spatial
information accurately. This accuracy helps locate the pixels
correctly. Additionally, PANet provides a bottom-up path
using clean horizontal connections from lower layers to the
top ones (green dot) [36]. The path is called the ““shortcut”
connection, comprising ten layers only. In the section head,
YOLOVS uses a similar dense prediction as in YOLOv4 and
YOLOV3. The final prediction consists of a vector containing
the coordinates of the predicted bounding box and its confi-
dence score, and the label. The output processing is carried
out by getting rid of boxes with a low score (i.e., below
the confidence threshold) and selecting only one box out
of several that overlap with each other while detecting the
same object based on the architectural variation. YOLOVS
comprises several models, namely YOLOvSs, YOLOvVS5m,
YOLOVS5], and YOLOvSx, with alterations in the depth and
width in each model. However, this study used only two
models, namely, YOLOv5s and YOLOv5m. In general, each
model was scaled for the portions of the network indepen-
dently with two configurations tuned for each model, namely
depth multiple and width multiple. Depth multiple repre-
sented the model’s depth factor, while the width multiple
constituted the layer channel multiple used to scale up the
backbone and feature network of the model.

lll. THE PROPOSED METHOD

In this study, all YOLO models were trained, validated, and
tested using the same platform through Jupyter notebook in
Google Collaboratory or Google Colab. This platform allows
users to prototype machine-learning models on devices such
as Graphical Processing Units (GPUs) and Tensor Processing
Units (TPUs) [22]. The training and testing of all YOLO mod-
els were performed using Nvidia Tesla T4 with a memory size
of 16 GB Graphics Double Data Rate (GDDR6) and Compute
Unified Device Architecture (CUDA) graphic features.

A. COMPARING AND SELECTING YOLO MODELS

This study compared the models of YOLOv3, YOLOvV4,
and YOLOVS and selected the best-tested one over three
open-source datasets to benchmark. The training and val-
idation were performed using the default configuration of
each model. Upon the completion of training, each model
was evaluated using the test dataset to assess its performance
towards never seen dataset. Table 1 shows the three public
datasets used to train the YOLO architecture. These datasets
were Open Image Dataset V6 [23], Aquarium Dataset [24],
and The Brackish Dataset [25]. An Open Image Dataset
V6 were employed in this study to investigate the YOLO
models performance towards detection capability in different
environments between underwater and non-underwater. The
complexity and diversity characterized by all the images
could provide ample challenge in testing each YOLO model’s
architecture in terms of different input image characteristics.
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A non-underwater dataset of 2732, 341 and 342 images from
the Open Image Dataset V6 used for training, validation and
testing respectively. Whilst underwater dataset of 510, 64,
64 images from Aquarium Dataset used for training, vali-
dation and testing, meanwhile 11615, 1451 and 1452 image
from The Brackish Dataset. The process of separating the
dataset fraction was executed by taking an image list as
input and randomly splits it according to the provided per-
centages which are 80% (0.8) training, 10% (0.1) validation
and 10% (0.1) test. In data splitting, the ratio value of 1 for
train, valid and test was verified before splitting the dataset.
This separation verified and compared the performance of
YOLOvV3, YOLOv4, YOLOVS, and their sub-models that
were structured and designed using the CNN multilayer. This
performance was indicative of the behavior of YOLO models
and tuning the optimizer’s hyper-parameters improved the
selected model.

TABLE 1. The configuration of the image dataset for non-underwater and
underwater environments in the YOLO learning.

Dataset No of Object Detection Total images
Classes

Open Image 6 Car, motorcycle, building, traffic 3415

Dataset sign, traffic light, and streetlight
Aquarium 7 Fish, jellyfish, penguin, shark, 638

Dataset puffin, stingray, and starfish

The Brackish 6  Big fish, small fish, shrimps, crabs, 14,518
Dataset jellyfish, and starfish

The YOLO algorithm was fed with 416 x 416 input
images, running them through backbone blocks and layers
that learned to extract statistical features for locating objects
along with their labels. During the training, the batch size
was set at 64, representing the number of samples/images
propagated through the YOLO network before updating the
model’s internal parameters. Additionally, all three models
used the stochastic gradient descent (SGD) as the default
optimizer. During the training, the model tuned the weight
of the YOLO model since this parameter would decide the
amount of output that could be affected by the input while
minimising the loss function through the optimizer. Mean-
while, all YOLO models in this study used a similar head
structure, i.e., the head of YOLOV3. In a single-stage detector,
the head section performed dense prediction composing the
coordinates of the predicted bounding box, the prediction’s
confidence score, and the class label. In this study, the confi-
dence score was set to 0.25 and Intersection over Union (IoU)
threshold 0.5 for the detection. The training was run with
the same 65 epochs at an image input size of 416 x 416,
a batch size of 64, and the default SGD optimizer. This
forward- and backward-pass cycle represented the number of
updating the algorithm’s parameters. Table 2 summarizes the
configuration of all training parameters.

During the training, validation, and testing, the per-
formance of each YOLO model was tested and evalu-
ated through evaluation metrics. Detections were evaluated
via ground-truthing. Each frame in the tested images was
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TABLE 2. The default configuration of training parameters for the YOLO
model.

YOLO Model Learing Momentum Activation Function

Rate

YOLOv3 0.001 0.900  Leaky ReLU

Tiny-YOLOv3  0.001 0.900  Leaky ReLU

YOLOv4 0.001 0.949  Mish

Tiny-YOLOv4  0.001 0.900  Leaky ReLU

YOLOVSs 0.010 0.937  Hidden layers — Leaky ReLU

Final detection layer - Sigmoid

YOLOv5m 0.010 0.937  Hidden layers — Leaky ReLU

Final detection layer - Sigmoid

calculated based on the value of true positive (TP), false pos-
itive (FP), and false negative (FN), generating four standard
evaluation metrics to determine two performance parameters,
i.e., precision and recall, as denoted in Equations 1 and 2,
respectively [25].

TP

Precision = —— (1)
TP 4 FP
TP
Recall = —— 2)
TP + FN

The precision represents the usefulness of the detection;
a high precision indicates that the trained model returns a
truly-detected object rather than a falsely detected one, while
the recall defines the truly-detected object that the model
returns [25]. A high precision shows a low value of FP, while
the recall is usually related to a small number of FPs. There-
fore, a higher percentage of precision and recall indicates that
a model performs better [22]. The model’s performance was
evaluated using the F1-score given by Equation 3 below [45].

Precision x Recall

Fl-score = 2 — 3)
Precision + Recall

This F1-score represents the harmonic mean of precision
and recall, and a higher F1-score shows a better performance.
All models were then evaluated with the mean average preci-
sion (mAP) using Equation 4 below [25], [45].

k
_ Zi:l AP;
k

Averaging the average precision (AP) for all classes
involved in the trained model yields mAP. A sufficiently
well-performed model tends to produce a higher accuracy.
Finally, the performance of processing rate was calculated
using frame per second (FPS) with Equation 5 below [45] to
evaluate the model speed in processing the input in real-time
applications.

mAP “

Number of Frames

FPS = : -
Total Detection Time(s)

&)

In general, the higher the FPS, the faster the model in
detecting an object. Upon all training, a robust model was
selected via the comparative performance. Hence, the model
would be improved based on the tuning of the optimizer to
increase the model’s precision.
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B. TUNING THE HYPER-PARAMETERS OF LEARNING RATE
AND MOMENTUM

Fig.3 shows the proposed work for improving the selected
model. In this proposed method, the YOLO model was opti-
mized using hyper-parameter tuning.

/ Selected \
YoLO Modcl/
—
r v Y
Optimizer Algorithm
Training

l : ) Hyper-parameter Tuning
. e — N
: | LeamingRateand | l Testing s Performance Analysis »J Improved Model |
| Momentum | |
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FIGURE 3. The proposed method for optimizing the YOLO model by tuning
the hyper-parameter in the optimizer and the learning rate on plateau.

The selected YOLO model was improved based on the
optimizer algorithm, focusing on the learning rate and
momentum since both features contributed to the perfor-
mance accuracy and the speed of processing rate. The train-
ing hyper-parameter, i.e., the optimizer algorithm, was used
to reduce the losses of regression problem while provid-
ing estimation as accurately as possible. Since YOLO is a
CNN-based neural network that transmits output error in
a hidden layer to each neuron through backward propaga-
tion, it updates the connection weights of each neuron iter-
atively [24]. Updating the weight to reduce erroneous values
was performed through the gradient descent type of optimiser
algorithm. By default, the optimiser in the YOLO model used
SGD with momentum. SGD computes the gradient of the cost
function for the parameters 6 for the entire training dataset,
as given in Equation 6 below [46]. SGD minimised the objec-
tive function, J(9) parameterised by a model’s parameters
6 € R?, and updated the parameters in the opposite direction
of the gradient of the objective function, V6J(0), for the
parameters [46]. The learning rate, n, determined the size of
the steps to reach a local minimum. Equation 7 below gives
the update of a parameter by SGD for each training example,
x' and label y' [46].

0 =6 —n.VoJ() 6)
0 =0 —n.VoJ(0;x";y) @)
Equation 8 shows that adding a fraction, y of the update

vector, v; of the past time step to the current update vec-
tor accelerates SGD in relevant directions while dampening
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oscillations [46]. This modification gives the updates of
Equation 9 [46].

vi = yvi—1 +nVeJ(0) ®)
0=0—v ©)

The extension of SGD is the adaptive moment estima-
tion (ADAM) [6] that computes the decaying averages of
past, m;, and the past squared gradients of v;, as shown in
Equations 10 and11, respectively [46].

my = Bim—1 + (1 — Br)g: (10)
vi = Bovic1 + (1 — Bo)g? (11)

Estimates of m; and v; would yield the first moment (the
mean) and the second moment (the uncentered variance) of
the gradients, respectively. These estimates would update the
parameter based on the rule of ADAM in Equation 12 [46].
In general, B represented the exponential decay rate for the
first moment estimate, 8, was the exponential decay rate for
the second moment estimate, and g was the gradient on the
current mini-batch [46]. The ADAM optimiser proposed a
default value of 0.9 for 81, 0.999 for 8,, and is 1078 for e.

U

AU+ €

Focusing on optimising the model, this study compared
two optimisers for training the selected YOLO model
(YOLOVS), focusing on optimising the model. The default
SGD optimiser was compared with the implemented ADAM
optimiser. The first execution step of ADAM was used
to tune the best-fit parameters for model training. During
the training, the learning rate and momentum affected the
behaviour of ADAM. The tuning involved training for dif-
ferent values for both parameters. A range of learning rates
and momentums were experimented with ADAM to deter-
mine the best combination value for better training perfor-
mance for the selected YOLO. The learning rate ranged
between 1076 and 1.0 [37], while the momentum and com-
mon values used in practice were 0.5, 0.9, and 0.99 [38].
Based on these references, this study employed a combination
of the learning rate and momentum, and parameters were
named in alphabetical order of upper and lowercase letters
(Table 3). The YOLOvVS5s with ADAM and all combinations
of hyper-parameters were trained using the same configura-
tion except for the optimiser, learning rate, and momentum.
Besides, the ADAM configuration of zZ was compared with
the SGD default value to study the effect of the same learning
rate and momentum on different optimisers. Each experi-
mented model was trained using the Brackish dataset. After
training with all varying hyper-parameters, training perfor-
mances were compared. This step was essential for choosing
the best-fit combination for the optimizer for the selected
YOLO model and later in the subsequent improvement of the
model.

0y =01 — + my (12)
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TABLE 3. The configuration of the ADAM optimizer for improving the
YOLO model.

Optimizer Learning Rate Momentum
zZ 0.01" 0.937
aA 0.9
aB 0.99
aC 0.001 0.999
aD 0.9999
bA 0.9
bB 0.99
bC 0.0001 0.999
bD 0.9999
cA 0.9
cB 0.99
oC 0.00001 0.999
cD 0.9999
dA 0.9
dB 0.99
aC 0.000001 0999
dD 0.9999

“Default: the SGD optimizer

C. HYPER-PARAMETER TUNING OF THE LEARNING RATE
ON A PLATEAU

Besides using ADAM as an optimizer to adapt the learning
rate for each weight, this study improved the behaviour of the
learning rate on each epoch during the training using the tech-
nique of reducing-learning-rate-on-plateau. This technique
improved the model accuracy, descending into areas of lower
loss by monitoring the loss during the training. The learning
rate would be reduced if the loss was stagnant for several
epochs. The term plateau was indicative of the point when
the change in the loss for training iterations was below the
threshold, 6. In short, the curve of epoch against loss became
flat and did not improve Since a specific parameter setting
was yet available for the YOLOvV5 model, therefore, in this
study, the implementation was executed using the module of
ReduceLLROnPlateau in PyTorch. By default, the first training
parameter mode was set as a minimum (min) to reduce the
initial learning rate (LR;) once the loss stopped decreasing.
Secondly, the factor (by which learning rate will be reduced)
was used to reduce the new learning rate (LRy,,) by this ratio,
or given by Equation 13 below [47].

LRyew = LR x factor (13)

Thirdly, the patience parameter reduced the learning rate
when the model showed no improvement after the 8 epoch.
Finally, the threshold measured the new optimum, focusing
only on remarkable changes. Table 4 summarises the value
for each parameter. In general, a precision-recall (PR) curve
interprets the performance metrics for object detection that
symbolizes the trade-off between two metrics (precision and
recall) through different confidence thresholds [42]. From
the trade-off, an object detector model is robust in locating
correct bounding boxes if its precision stays high as its recall
increases, as shown by the area under the curve. Since detect-
ing underwater animals requires high precision and recall, the
area under the curve in a PR curve will need to be as big as
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possible. In this study, this PR curve was plotted using the
validation dataset.

TABLE 4. The tuning of learning parameters.

Parameter Setting
Mode Min
Factor 0.1

Patience 10

Threshold le-4

IV. RESULT AND DISCUSSION

A. PERFORMANCE OF YOLO MODELS

Fig. 4 shows the test images detected using YOLO models
performed on the Open Image V6 dataset. These images con-
sisted of three objects of multiscale ground truth to evaluate
the learning capability of each YOLO model for detecting far
and a small-scale traffic sign. YOLOv3, Tiny-YOLOv3, and
YOLOv5m detected two bounding boxes, while YOLOv4
and Tiny-YOLOV4 could not detect the far-end traffic signs.
Thus, YOLOvSs was the only model that could detect all
three bounding boxes, contributing to TP value for improv-
ing the model precision. Fig. 5 shows the detection output
using the testing dataset for the Aquarium Dataset. YOLOV3,
YOLOvV4, and YOLOVS5s detected all fishes and stingrays
with multiscale that varying of sizes in the image, and essen-
tially able to detect the targets at different scales. In addition,
all the three models are also able to deal with the complexity
of differentiating between the stingray and the background.
Among all YOLO models that detected the underwater ani-
mals (stingray), YOLOv4 showed the highest confidence
value of detection (0.99), followed by YOLOVS (0.90) and
YOLOV3 (0.81).

Fig. 6 shows the detection outputs of YOLO models on the
Brackish Dataset. In general, tiny models were inefficient in
detecting two crabs; Tiny-YOLOV3 located three bounding
boxes, and Tiny-YOLOv4 uncovered just one. Tiny-YOLOv3
gave FP to the model, and Tiny-YOLOvV4 yielded FN, thus
reducing the precision of Tiny-YOLOvV3 and the recall of
Tiny-YOLOVA4.

Table 5 shows the test performance of each YOLO model
and its subsets. Compared to other models, YOLOv3 gave
high values of precision, while YOLOVS5s attained the highest
mAP for Open Image Dataset V6 at 56.4%, followed by
YOLOV4 at 55.9%.

Meanwhile, YOLOv4 achieved the highest mAP on the
Aquarium Dataset, i.e., 78.5%, outperforming YOLOVS5s at
75.7%. YOLOV3 yielded the highest precision (82.0%) and
Tiny-VOLOV3 the lowest (64.0%). YOLOv4 achieved the
highest recall, i.e., 76.0%, followed by YOLOvS5s at 75.8%,
YOLOvV5m at 68.5%, YOLOvV3 at 63.0%, Tiny-YOLOv4 at
57.0%, and Tiny-YOLOV3 at 47.0%. In the most challeng-
ing underwater dataset, i.e., the Brackish Dataset, YOLOVS5s
outperformed other models with the highest mAP at 97.7%,
and followed by YOLOvS5m at 97.5%, YOLOv4 at 97.3%,

52823



IEEE Access

1. S. Isa et al.: Optimizing Hyperparameter Tuning of YOLOv5 for Underwater Detection

TABLE 5. The performance of YOLO models trained on different images of datasets.

Dataset Model Precision Recall F1-Score mAP@0.5 FPS Weight/MB
YOLOV3 0.820 0.630 0.710 0.654 533 239.0

The Tiny-YOLOV3 0.640 0.470 0.540 0.538 87.0 33.1
Aquarim  YOLOv4 0.760 0.760 0.760 0.785 54.0 2443
Dataset Tiny-YOLOV4 0.750 0.570 0.650 0.614 84.7 225
YOLOVS5s 0.662 0.758 0.707 0.757 125.0 14.1

YOLOvVSm 0.710 0.685 0.697 0.711 76.9 413

YOLOV3 0.620 0.410 0.490 0.493 535 239.0

The Open  TIMY-YOLOV3 0.560 0.310 0.400 0.388 777 332
Tmage YOLOV4 0.510 0.540 0.520 0.559 577 2443
Datrest Tiny-YOLOv4 0.460 0410 0.430 0.438 88.0 225
YOLOVSs 0.436 0.655 0.524 0.564 90.9 14.1

YOLOv5m 0.353 0.598 0.444 0475 66.7 413

YOLOV3 0.970 0.960 0.965 0.964 56.3 235.0

The Brackish ~ Tiny-YOLOvV3 0.810 0.800 0.810 0.872 87.4 33.1
Dataset YOLOv4 0.940 0.970 0.955 0.973 46.6 2443
Tiny-YOLOv4 0.940 0.820 0.876 0.886 76.0 225

YOLOVSs 0.904 0.979 0.940 0.977 106.4 14.1

YOLOv5m 0.874 0.976 0.922 0.975 82.0 413

(b)

Tratfic sign .82

(d) (e)

FIGURE 4. Detection outputs tested on the Open Image V6 Dataset:
(a) YOLOv3, (b) Tiny-YOLOV3, (c) YOLOv4, (d) Tiny-YOLOv4, (e) YOLOv5s,
and (f) YOLOv5m.

YOLOV3 at 96.4%, Tiny-YOLOv4 at 88.6%, and Tiny-
YOLOvV3 at 87.2%. Even shallow network models, such as
Tiny-YOLOvV3 and Tiny-YOLOv4 mAP values above 87%.
Despite the blur image of the Brackish Dataset, all models
correctly understood the semantic representation pixel by
pixel for detecting the object.

In the Open Image Dataset V6, the YOLOvS5s model
recorded the highest FPS, i.e., 125.0, through Tesla T4 GPU,
while YOLOv4 was the lowest at 46.6 in The Brackish
dataset. YOLOvS5s also outperformed other YOLO models in
all datasets with an excellent execution speed. Other primary
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FIGURE 5. Detection outputs tested on the Aquarium Dataset:
(a) YOLOv3, (b) Tiny-YOLOV3, (c) YOLOv4, (d) Tiny-YOLOv4, (e) YOLOVS5s,
and (f) YOLOv5m.

models, i.e., YOLOv3 and YOLOvV4, performed at half of the
YOLOVSs speed. Besides, the weight size affected the speed
substantially on some models. For example, YOLOvS5s, with
the smallest weight size of 14.1 MB only, allowed it to execute
the deep network rapidly in Open Image dataset (FSP: 125.0).
By contrast, all YOLOv3 and YOLOv4, with a weight size of
235.0 MB, 239.0 MB, and 244.3 MB, respectively, yielded
a slower FPS, i.e., 56.3, (53.3 and 53.5), and (54, 57.7, and
46.6), respectively. In general, tiny models had a smaller
weight size than their primary models. On average, the weight
size of Tiny-YOLOv3 models was 86% than YOLOV3, while
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FIGURE 6. Detection outputs tested on the Brackish Dataset: (a) YOLOv3,
(b) Tiny-YOLOV3, (c) YOLOv4, (d) Tiny-YOLOv4, (e) YOLOV5Ss, and
(f) YOLOV5Sm.

Tiny-YOLOv4 models were 90.8% smaller than YOLOv4
models. Tiny models performed better in FPS, i.e., more
than 20% faster than primary models. Thus, FPS and weight
seemed to be correlated, i.e., the smaller the weight size, the
faster the execution speed of a model.

B. TRAINING EFFICIENCY BASED ON THE TUNING OF
HYPER-PARAMETERS ON THE LEARNING RATE

AND MOMENTUM

YOLOVS5s was selected as the model for further develop-
ment based on its performance. Model optimization was
based on the Brackish Dataset only since this study aimed to
improve underwater animal detection in low light and murky
environments.

Fig. 7 compares the training progress between ADAM
and SGD optimizers. The SGD-based model outperformed
YOLOv5s-zZ with a faster convergence speed in YOLOvVS5s-
SGD. Besides, at the final epoch, YOLOvS5s-zZ did not yield
a consistent performance with mAP and barely exceeding 0.9.
Such a fluctuating performance was due to inadequate gener-
alization in YOLOvV5s-zZ with an increment in the training
time. Thus, a good fit in the learning rate and momentum
values for one model did not apply to another model of a
different optimizer. This behavior indicated that the two SGD
and ADAM optimizers performed differently, even though
they were set at the same learning rate and momentum value.

Fig. 8 shows the tuning of the learning rate and momen-
tum of each YOLOvSs model. Among all four trained
models, YOLOvS5s-aA achieved nearly similar performance
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LR=0.01, M=0.937

02 4

0
103 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 S5 57 59 61 63 65
Epoch

e YOLOV5s-SGD === YOLOV5s-zZ

FIGURE 7. Comparison of SGD and ADAM optimizers in the YOLOv5s
model (learning rate = 0.01 and momentum = 0.937).

as YOLOv5s-SGD towards the end with less fluctuation
starting at the 20" epoch. Meanwhile, YOLOv5s-aC and
YOLOv5s-aD converged at a lower speed in execution, indi-
cating that the learning rate and momentum values would
need additional epochs to produce better performance for
generalization. Meanwhile, Fig. 9 shows that YOLOv5s-bA
trained with a learning rate of 0.0001 and a momentum of
0.9 performed excellently. Its performance was comparable
to YOLOV5s-SGD, starting from the 34" till the last epoch.
This finding became the focal point for tuning the ADAM
optimizer in this study because it represented a workable
combination of learning rate and momentum. Throughout
the training, this combination consistently gave a smoother
convergence than YOLOvVS5s-SGD. By contrast, YOLOvSs-
SGD fluctuated at smaller epochs. Also, YOLOv5s-bB with
a momentum of 0.99 yielded a well-trained model towards
the end of the epoch, despite a slower convergence speed at
the 50" epoch.

LR=0.001, M=0.9,0.99,0.999 and 0.9999

mAP@O.5

J

o
5 35 41 43 45 47 49 51 53 55 57 59 61 63 65
Evach

= YOLOvS5s-SGD === YOLOvS5s-aA === YOLOv5s-aB YOLOvSs-aC ™==YOLOv5s-aD

FIGURE 8. Comparison of SGD and ADAM optimizers in the YOLOv5s
model (learning rate = 0.001 and momentums = 0.9, 0.99, 0.999,
and 0.9999).
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LR=0.0001, M=0.9,0.99,0.999 and 0.9999

103 5 7 9 1113 15 17 15 21 23 35 27 29 31 33 35 37 35 41 43 45 47 43 51 53 55 57 53 61 63 &5
Epoch

m— YOLOVSs-SGD ™ YOLOv5s-bA YOLOvSs-bB YOLOvSs-bC ™ YOLOv5s-bD

FIGURE 9. Comparison of SGD and ADAM optimizers in the YOLOv5s
model (learning rate = 0.0001 and momentums = 0.9, 0.99, 0.999,
and 0.9999).

Fig.10 shows that all the four YOLOvS5s models with a
learning rate of 0.00001 struggled to converge, and their
mAP values were below 80%. For example, YOLOvS5s-cA
yielded a 75% mAP only during the final epoch. Besides, all
the models experienced under-fitting with lower mAP value
when the training epoch increased. This result indicated that
all the models would require more learning iteration with
additional training times to give optimal performance. Also,
Fig. 11 shows that a learning rate of 0.000001 and momentum
variations of 0.9, 0.99, 0.999, and 0.9999 for the ADAM opti-
mizer yielded poor convergence for all the models, i.e., these
values were incompatible.

LR=0.00001, M=0.9,0.99,0.999 and 0.9999

103 5 7 9 1113 15 17 19 21 23 25 27 20 31 33 35 37 39 41 43 45 47 49 51 53 55 ST S0 61 63 65
Epoch

YOLOvSs-bB

mm— YOLOv5s-SGD ™ YOLOvSs-bA YOLOvS5s-bC ™ YOLOv5s-bD

FIGURE 10. Comparison of SGD and ADAM optimizers in the YOLOv5s
model (learning rate = 0.0001 and momentums = 0.9, 0.99, 0.999,
and 0.9999).

Table 6 tabulates the testing performance using different
combinations of learning rates and momentums on all the
trained YOLOvVSs models. YOLOvVS5s-zZ yielded a slightly
lower mAP value (91.5%) than YOLOv5s-SGD (97.7%)
despite these two models having a similar learning rate and
momentum. YOLOvVSs-zZ struggled to generate a fast and
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LR=0.000001, M=0.9,0.99,0.999 and 0.9999

02

0
13 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 S5 ST 59 61 63 65
Epoch

= YOLOwv5s-SGD ™ YOLOvSs-bA == YOLOw5s-bB YOLOvS5s-bC ™= YOLOv5s-bD

FIGURE 11. Comparison of SGD and ADAM optimizers in the YOLOV5s
model (learning rate = 0.000001 and momentums = 0.9, 0.99, 0.999,
and 0.9999).

smooth convergence speed, leading to a lower performance
during the testing. Hence, it was a poor generalization model.
Meanwhile, YOLOv5s-aA and YOLOvS5s-bA, with a mAP
value of 97.7% and 97.6%, respectively, had nearly similar
performance as YOLOv5s-SGD. These two models were
replicated with the best performance during the training
at an optimum learning rate of 0.001 and 0.0001, respec-
tively, and a momentum of 0.9. In comparison, when trained
with a learning rate of 0.000001 and momentum of 0.9999,
YOLOv5s-dD yielded a 21.5% mAP only, with the worst
performance through the never-seen dataset.

TABLE 6. The performance of testing using different combinations of
learning rates and momentums on YOLOv5s models.

YOLOvVSs Model Optimizer Learning Rate  Momentum mAP@0.5%

YOLOv5s-SGD SGD 0.01 0.937 91.7
YOLOvVSs-zZ ADAM 0.01 0.937 91.5
YOLOvSs-aA  ADAM 0.001 0.9 97.7
YOLOv5s-aB ADAM 0.001 0.99 96.9
YOLOvSs-aC~ ADAM 0.001 0.999 92.5
YOLOvSs-aD ~ ADAM 0.001 0.9999 80.4
YOLOv5s-bA  ADAM 0.0001 0.9 97.6
YOLOVS5s-bB ADAM 0.0001 0.99 96.9
YOLOvS5s-bC ~ ADAM 0.0001 0.999 85.5
YOLOv5s-bD ~ ADAM 0.0001 0.9999 74.1
YOLOv5s-cA ADAM 0.00001 0.9 75.6
YOLOvVS5s-cB ADAM 0.00001 0.99 69.0
YOLOvVSs-cC ADAM 0.00001 0.999 54.0
YOLOv5s-cD  ADAM 0.00001 0.9999 39.7
YOLOvS5s-dA  ADAM 0.000001 0.9 35.7
YOLOvSs-dB ADAM 0.000001 0.99 28.4
YOLOvSs-dC ~ ADAM 0.000001 0.999 21.6
YOLOv5s-dD ~ ADAM 0.000001 0.9999 21.5

Overall, YOLOv5s-bA showed an outstanding perfor-
mance in the training of mAP together with a smoother train-
ing curve and faster convergence than other ADAM-based
models or even the default YOLOVSs. A smoother training
result was probably due to the ADAM algorithm’s capability
in adapting the gradient descent after each iteration, allowing
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it to remain in control and unbiased throughout the training.
Consequently, it could efficiently process huge input data,
such as detecting underwater animals that required a large
image sample for model development.

Fig. 12 shows the effect of the learning rate on the testing of
mAP with a fixed momentum value. In general, the learning
rate increased/reduced the mAP performances in YOLOvVSs.
Meanwhile, Fig.13 shows that when the momentum was
set as 0.9, the testing yielded the best and optimum value
for the ADAM-based YOLOvS5s model. Also, at the same
learning rate, an increased in momentum reduced the mAP
performance. Each momentum value would change the steps
taken to the minimum by enforcing previous updates into a
current one. Such a change in the size of steps depended on
how momentum worked in ADAM by adjusting the direction
from the updates made for fast descent towards the minimum
point [28], [47].

Learning Rate of 0.001

Learning Rate of 0.0001

— mAP@0.5

mAP@0.5
mMAP@O.5

m— L caming Rate T LeamingRate
(a) (b)
Learning Rate of 0.00001 Learning Rate of 0.000001

MAP@O.S
mMAP@0.5

s mAP@0.S s LeamingRate — mAPZ0S s LeamingRate

(c) ()

FIGURE 12. The effect of learning rate effect on the testing of mAP with
the best model: (a) YOLOv5s-aA, YOLOv5s-bA, (b) YOLOv5s-aB,
YOLOv5s-bB, (c) YOLOv5s-aC, YOLOv5s-bC, and (d) YOLOv5s-aD,
YOLOvV5s-bD.

Momentum of 0.99

Momentum of 0.9

MAP@O.S
MAP@O.5

e Leaming Rate

(b)
Momentum of 0.9999

MAP@O.5
MAP@O.S

s Lcaming Rate

e Leaming Rate

(c) (d)

FIGURE 13. The effect of momentum on the testing of mAP with the best
model: (a) YOLOv5s-aA, YOLOv5s-bA, (b) YOLOv5s-aB, YOLOv5s-bB,
(c) YOLOv5s-aC, YOLOv5s-bC, and (d) YOLOv5s-dA, YOLOv5s-dB.

C. TRAINING EFFICIENCY BASED ON THE REDUCTION OF
LEARNING RATE ON A PLATEAU

The YOLOvVS5s-bA model with a reduced learning rate on
a plateau was designated as YOLOv5s-bA-LRP. Fig. 14
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compares the training curves of YOLOvS5s-SGD,
YOLOv5s-bA, and YOLOvV5s-bA-LRP. In early epochs of
eight to 21, the YOLOvS5s-bA-LRP curve showed bet-
ter feature extraction performance than YOLOvV5s-SGD
and YOLOvS5s-bA. For example, the performance of
YOLOVS5s-bA was 3.9% better than the two other models
at the 9" epoch and 3.6% higher at the 17™ epoch. Since
better training performance was produced at earlier epochs,
the speed of YOLOvVS5s-bA-LRP converged faster than
YOLOV5s-bA. Then, from the beginning of the 18" epoch
to the 26" epoch, the curve showed a plateauing behavior,
triggering the function reduce-learning-rate-on-plateau to
work on the YOLOvVS5s-bA-LRP model. Consequently, at the
26™ epoch, the learning rate was reduced by a 0.1 ratio.
Therefore, YOLOv5s-bA-LRP yielded the best performance
with a 0.41% increment upon reaching the 27" epoch and
increased further by 0.51% at the 28 epoch. The improve-
ment was then set below the threshold for eight consecutive
epochs, activating the function again at the 36™ epoch 36.
Hence, mAP at the 38" epoch increased by 0.35%. Subse-
quently, the auto-tuning of the function reducing-learning-
rate-on-plateau was stimulated at the 53™ epoch as the
YOLOV5s-bA-LRP model reached the 8! patience set due
to its below-threshold improvement for mAP. Finally, Fig. 15
shows the performance of YOLOvV5-SGD comprising curves
of all classes, and the overall classes curve was calculated
from the average of all mAP classes. YOLOvSs-bA-LRP
improved from 0.9779 to 0.9844 at the 55" epoch, with
a 0.69% improvement in mAP, indicating that by reducing
the learning rate, the network took smaller steps to continue
developing the learning progress.

YOLOVS5s-bA-LRP Comparison with YOLOv5s-SGD and YOLOvVSs-bA
/—
08
/!

02

0.41% '0A51% 0.35% 0.69%

0 i ! H
13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65
Epoch

—YOLOVSS-SGD e YOLOVSS-DA s YOLOVSS-DA-LRP

FIGURE 14. Comparison of YOLOv5s-bA-LRP, YOLOv5s-SGD, and
YOLOv5s-bA.

Fig. 15 shows the performance of YOLOvV5-SGD compris-
ing curves of all classes in the PC curve, and the overall class
curve was calculated from the average of all mAP classes.

Also, Fig. 16 shows a similar pattern in the PR performance
of YOLOv5s-bA with a larger area under the curve, thus
denoting an excellent detection by YOLOv5s-bA. Besides,
this model yielded a mAP value similar to YOLOv5s-SGD
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FIGURE 15. The precision-recall curve of YOLOvV5s-SGD.

with a slight increment of 0.001. This finding showed
that YOLOvVS5s-bA could reach high precision and recall as
YOLOv5s-SGD. However, Fig. 17 shows that among all
tested models, YOLOv5s-dD had the lowest area under the
curve in the PR curve, i.e., YOLOv5s-dD could achieve a sat-
isfying recall value exceeding 0.8 but hardly achieved 0.7 in
precision. In other words, although the YOLOvV5s-dD model
detected most of the positive samples correctly, it generated
many FPs. Therefore, a low area under the curve led to a low
mAP performance of 0.214 only for all classes.
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FIGURE 16. The precision-recall curve of YOLOv5s-bA.

D. PERFORMANCE OF THE OPTIMISED YOLOv5s-bA-LRP
Figure 18 compares the testing performance of mAP on
the improved YOLOv5s-bA-LRP model, YOLOv5s-SGD,
and YOLOv5s-bA. Overall, YOLOv5s-bA-LRP outper-
formed the other two models, attaining the highest mAP
of 98.6%. Although the mAP value of YOLOvS5s-bA-LRP
was just 1% higher than YOLOvS5s-bA and YOLOv5s-SGD,

52828

10
" ﬁL\ YOLOv5s-dD
— —— Fish
Y8 —— small Fish
L —— Shrimp
—— Crab
— — Jeliyfish
06 \ —— Starfish
g _L L] m— 3l classes 0.975 MAP@0.5

\_

Precision
v

0.4

0.2

0.0 .
0.0 0.2 0.4 0.6 0.8 1.0
Racall

FIGURE 17. The precision-recall curve of YOLOv5s-dD.
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FIGURE 18. Comparison of testing performances among YOLOv5s-bA-LRP,
YOLOvV5s-SGD, and YOLOv5s-bA.
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FIGURE 19. Output detection of the optimized YOLOv5s-bA-LRP model
that could differentiate non-animal objects from (a) small animals,
(b) large animals, (c) animals at the seafloor, and (d) blur animals.

implementing the ADAM optimizer was suffix to stop the
learning rate from reducing on a plateau, and hence, improved
the model performance.
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Figure 19 shows the final validation of the optimised
model via output detections from the test dataset, confirm-
ing that YOLOvVS5s-bA-LRP located bounding boxes in the
challenging underwater environment. Specifically, the multi-
scale detection further reinforced the efficiency of its head
section and backbone competency in learning the feature
complexity, i.e., differentiating the underwater animals and
the background.

V. CONCLUSION

This study improved the performance of YOLO models by
optimizing the tuning of learning rate and momentum in
optimizer algorithm. Compared to all models, YOLOvS5s
produced the highest mAP at 97.7% with respective FPS of
106.4 that remarks outstanding model for detection underwa-
ter object in blur image. Furthermore, the improved model
presented as YOLOvS5s-bA consistently yielded a smooth
training curve and faster convergence throughout the training
phase with optimized parameters of learning rate 0.0001 and
momentum at 0.9 producing the highest mAP at 97.6%.
However, the superiority of the improved model based on
ADAM is inadequate since the default SGD optimizer (learn-
ing rate of 0.01 and momentum at 0.937) is closely produced
mAP at 97.7%. Thus, implementing the reduce-learning-rate-
on-plateau function into the improved YOLOVSs (namely
as YOLOv5s-bA-LRP) facilitated the tuning of the learn-
ing rate for the model to descend into areas of lower
losses. YOLOVS5s-bA-LRP improved to 98.6% mAP at the
55th epoch, indicating that by scaling down the learning rate
over time, YOLOvVSs yielded better convergence, produc-
ing a high-performance rate for underwater detection. Since
the learning rate setting is not a one-size-fits-all parame-
ter, the practicality of reducing the learning rate scheme by
cutting the step size by a constant ratio in the absence of
progress would become difficult in building a deep learning
model. Overall, implementing hyper-parameter tuning into
the YOLOv5s optimizer and reducing the learning rate on a
plateau enhanced the training for optimizing the underwater
detection model more effectively.
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