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ABSTRACT Power systems have been evolving dynamically due to the integration of renewable energy
sources, making it more challenging for power grids to control the frequency and tie-line power variations.
In this context, this paper proposes an efficient automatic load frequency control of hybrid power system
based on deep reinforcement learning. By incorporating intermittent renewable energy sources, variable
loads and electric vehicles, the complexity of the interconnected power system is escalated for amore realistic
approach. The proposed method tunes the proportional-integral-derivative (PID) controller parameters using
an improved twin delayed deep deterministic policy gradient (TD3) based reinforcement learning agent,
where a non-negative fully connected layer is added with absolute function to avoid negative gain values.
Multi deep reinforcement learning agents are trained to obtain the optimal controller gains for the given
two-area interconnected system, and each agent uses the local area control error information to minimize
the deviations in frequency and tie-line power. The integral absolute error of area control error is used as a
reward function to derive the controller gains. The proposed approach is tested under random load-generation
disturbances along with nonlinear generation behaviors. The simulation results demonstrate the superiority
of the proposed approach compared to other techniques presented in the literature and show that it can
effectively cope with nonlinearities caused by load-generation variations.

INDEX TERMS Load frequency control, deep reinforcement learning, twin delayed deep deterministic
policy gradient (TD3), hybrid power system.

I. INTRODUCTION
The growing energy demand, environmental impacts, and
depletion of fossil fuels have led to large-scale use of renew-
able energy sources (RES). The utilization of these RES
results in complex and dynamic electric power systems [1].
Therefore, it is becoming more challenging for modern grids
to maintain the frequency and tie-line power within a speci-
fied limit in interconnected areas. The deviation in frequency
causes an imbalance between electric load and the genera-
tion [2]. As the load continuously varies and if there would
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not be an immediate action to mitigate the problem then
it could lead to a severe damage. Recently, due to large
penetration of intermittent renewable energy sources into the
grid led to a total blackout of the power system [3]. Hence,
effective control strategies are vital under uncertain condi-
tions in order to achieve a balance between the system reli-
ability and efficiency. Therefore, automatic load frequency
control (ALFC) plays an important role in maintaining load-
generation balance by regulating the tie-line power flow and
frequency oscillations between interconnected areas.

At present, classical proportional integral derivative (PID)
type controllers are being used by utilities for load fre-
quency control (LFC) because of their simple structure, high
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reliability, and better performance-to-cost ratio. PID con-
troller gain values are being tuned over the decades based
on experience, utilizing trial-and-error procedures and con-
ventional tuning methods such as Ziegler-Nicholas, but these
strategies perform poorly under random load variations and
wide range of operating conditions [4]. Over the years,
researchers have proposed several intelligent and optimized
based control strategies for LFC. Fuzzy logic and adaptive
neuro fuzzy inference system (ANFIS) are proposed to tune
the PID parameters in [5], [6]. However, a fuzzy system needs
field expertise to tune the membership functions and it is
difficult to acquire the specific knowledge due to its inadapt-
ability [7]. Recently, many advanced control techniques are
proposed for LFC, such as model predictive control (MPC)
[8], sliding mode control (SMC) [9], disturbance rejection
control [10], and variable structure control [11]. But these
controllers are complex and not widely used in the industry,
so it is required to improve the PID controller owing to its
widespread applications.

As unideal gains are the primary impediment in opti-
mum settings of PID controller, the gain values are there-
fore derived by heuristic approaches like genetic algorithm
(GA) [12], particle swarm optimization (PSO) [13], fire-
fly algorithm (FA) [14], grey wolf optimization (GWO)
[15], ant colony optimization (ACO) [16], etc. However,
mostly these schemes are only proposed for conventional
power systems without considering RES and nonlinear con-
straints. Apart from that, researchers also have proposed
cascade controllers for LFC in articles [17], [18], but these
types of techniques required additional controller that also
has to be tuned, so it increases the complexity of the
strategy.

In recent years, reinforcement learning (RL) based con-
trol techniques have been identified as a promising solution
for the modern grid. A critical literature review on electric
power system control using reinforcement learning has been
presented in [19]. Reinforcement learning exhibits superior-
ity over conventional control schemes because of its self-
learning approach via an interactive trial and error method
based on observations it gets from the dynamic environ-
ment. Hence, reinforcement learning can make decisions and
solve realistic control problems more effectively. There are
some studies proposed in the literature to control the fre-
quency of an interconnected area using reinforcement learn-
ing schemes. Data-driven RL based control techniques are
presented in [20]–[22] for LFC of multi-area power systems.
However, while designing traditional RL agents, the degree
of action discretization becomes crucial since control action
is taken from a low-dimensional action domain, resulting in
limited control performance [23]. Here, deep learning was
combined with RL to overcome these deficiencies, which
is called deep reinforcement learning. A new approach is
proposed in [24] for frequency control using DRL in the
continuous action domain, but this kind of technique lacks
a constant gradient signal due to the concurrent learning
behavior of agents [25].

To solve the continuous control problems, deep deter-
ministic policy gradient (DDPG) was put forward by
Lillicrap et al. [23] and it does not necessitate the discretiza-
tion of both the states and actions. Recently, Yan et al. [26]
have proposed a multi-agent deep reinforcement learning
(MA-DRL) approach for multi-area LFC using DDPG. The
concept behind that article is an offline centralized learn-
ing and online individual application for each control area,
where the objective function is maximized by formulating the
controller as an MA-DRL problem. However, since DDPG
updates the Q-value in the same way as deep Q-networks
(DQN) does, it inherits the drawback of overestimation of Q-
values, which may lead to suboptimal policy and incremental
bias [27]. Moreover, as the authors [26] first implemented
the PID controller on the power system to collect the data
for initialization of the agent, so specific dataset may lead
to sub-optimum convergence under continuous variations
of load-generation. A grid-area coordinated LFC technique
based on an effective exploration with multi-agent DDPG
(EE-MADDPG) is presented in [28], but it cannot be prac-
tically implemented on actual grid due to abrupt changing of
power grid. Furthermore, as discussed earlier these types of
controlling schemes are not widely being used in the industry
compared to the PID controller.

Therefore, in this paper, we propose a twin delayed
deep deterministic policy gradient (TD3) based deep rein-
forcement learning approach to fine-tune the PID controller
parameters under uncertain conditions. TD3 resolves the
defects of DDPG by employing delayed actors update, dou-
ble critics and actors, and additive clipped noise on control
actions. Moreover, unlike the above papers that use DRL for
LFC, our proposed technique can directly interact with the
power system model to tune the PID gains for actual power
grid. Multi-TD3-agents are trained to minimize the frequency
and tie-line power deviations of the power system, where
each agent uses the local area control error information to
decide the action. Furthermore, for better performance we
replaced the actor-network’s fully connected layer with the
new layer consisting of function y = abs(weights) ∗ x. This
new layer ensures that the weights are positive, as gradi-
ent descent optimization may lead the weights to negative
values. Moreover, a new integrated hybrid power system
architecture is proposed for the interconnected system, which
comprises of wind, PV, electric vehicle, hydro and thermal
plants. Nonlinearities such as generation dead band (GDB)
and generation rate constraints (GRC) are also considered
because many of the existing studies ignored these realistic
nonlinear behaviors.

Our contributions in this paper can be summarized as
follows:
• To the best of our knowledge, this paper is the first work
that uses the deep reinforcement learning in continu-
ous control action to optimally tune the PID controller
parameters.

• We improve the twin delayed deep deterministic policy
gradient based agent to avoid negative PID gain values
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FIGURE 1. Two-area interconnected power system.

while training the agent for LFC, which considerably
reduces the computational process.

• We evaluate our novel approach on the given system
and compare the performance with metaheuristic and
DRL based techniques. In addition, a sensitivity analysis
is performed to verify the robustness of the proposed
scheme.

The rest of the paper is organized as follows. The mod-
eling of the two-area interconnected system is discussed in
Section II. In Section III, the preliminaries used in our work
are described. Our proposed TD3 scheme and its implemen-
tation is illustrated in Section IV, while the Section V covers
the simulation results and discussion of the proposed method.
Finally, the article is concluded in Section VI.

II. SYSTEM MODELING
This section briefly discusses the description of the proposed
renewable integrated power system. An unequal two-area
interconnected power system is under consideration for our
study. Area 1 consists of hydro, reheat thermal and diesel,
while area 2 integrates the wind, hydro, PV and electric vehi-
cle as shown in Figure 1. The differential equations for load
frequency control of two area systems are widely reported in

the literature [5]–[16], [29]–[31] and can be given as follows.

1ṖGi =
−1
TGi

1PGi +
−1
RiTGi

1fi +
−1
TGi

ui (1)

1ṖTi =
−1
TTi
1PGi +

−1
TTi
1PTi (2)

1ḟi =
KPi
TPi

1PTi +
−1
TPi
1fi −

KPi
TPi

1Ptie −
KPi
TPi

1Pdi

(3)

where 1PGi is the governor position for ith area, 1PTi is the
power generation level for ith area and 1fi is the frequency
deviation for the ith area. The tie-line connects two areas for
power sharing and any particular variation of load in any area
can be compensated by the neighboring areas through this tie-
line. Mathematically tie-line power can be expressed as

P012 =

∣∣V 0
1

∣∣ ∣∣V 0
2

∣∣
X

sin(δ01 − δ
0
2) (4)

under any perturbation the tie-line power deviates to

1P12 = T12(1δ01−1δ
0
2) (5)

where T12 is

T12 =

∣∣V 0
1

∣∣ ∣∣V 0
2

∣∣
X

cos(δ01 − δ
0
2) (6)
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The final relationship between power angle of machine and
frequency deviation will be

1P12 =
2πT12
S

[1f1(s)−1f2(s)] (7)

ACE is the area control error, which is usually the input to
the controller that is denoted by

ACE1 = B11f1 +1Ptie (8)

ACE2 = B21f2 + a121Ptie (9)

B1 and B2 in Figure 1 are the frequency bias parameters
that can be described as Bi = (1/Ri) + Di, whereas Ri
is the governor speed regulation parameter and Di is the
dependency parameter. The area size ratio is shown as ‘a′12 =
−Pr1/Pr2, where P is the power capacity (MW) for each
area. The detailed information of the parameters used for
simulation is listed in the Appendix and taken from [29]–[31].
The block diagrams and transfer functions of the conven-
tional power system are extensively discussed in the litera-
ture [5]–[16], whereas we have integrated the electric vehicle
(EV), wind and PV into the system, and their details are given
below.

A. ELECTRIC VEHICLE MODEL
An aggregate model of the EV comprised of a battery charger
and primary frequency control is illustrated in Figure 2.
EV fleets can compensate the unscheduled load by exchang-
ing power between battery and the grid via a charger. The
dead band function along with droop characteristics is taken
into account since there is a possibility that all EVs may
disconnect from the grid resulting in frequency deviation. The
upper and lower limits of the dead band are set to 10 mHz
and -10mHz respectively, whereas the droop coefficient (Rev)
value is taken same as other plants. KEV represents the EV
gain and the value of KEV (between 0-1) determined by the
EVs’ state of charge (SOC), while the battery time constant is
represented by TEV.1PmaxAG and1PminAG are the maximum and
minimum power outputs of the EV fleets and these reserves
can be calculated as follows [32].

1PmaxAG = +

[
1

NEV
× (1PEVi)

]
(10)

1PminAG = −

[
1

NEV
× (1PEVi)

]
(11)

FIGURE 2. Block diagram of electric vehicle model.

The incremental generation change of EV in the area is
denoted by PEV. NEV indicates the total number of electric
vehicles connected to the system.

B. WIND GENERATION MODEL
A wind turbine (WT) based on a doubly-fed induction gen-
erator (DFIG) is investigated in this study. Wind turbines
convert wind energy into electricity and the output power can
be characterized as follows.

PW = 0.5ρACPV 3
W (12)

Here ρ, A, Cp and V represents the air density, blade
swept area, power coefficient and wind speed respectively.
The wind turbine power coefficient is:

Cp(λ, β)= (0.44−0.0167β)sin
(
π (λ−2)
15−0.3β

)
−0.00184(λ−3)

(13)

where β is the blade pitch angle, and λ is the tip speed ratio.
The transfer function can be written as [33]

Gw =
Kw1(1+ sTw1)Kw2

(1+ sTw2)(1+ s)(1+ s)
(14)

A wind energy system can cause instability in the system
due to its intermittent nature; hence continuous power fluctu-
ation can be handled by a battery. Battery energy storage sys-
tem (BESS) stores excessive electrical energy and if equipped
with a large battery bank, it can offer a great amount of power
supply for a longer length of time. The simplified transfer
function of the BESS is expressed as follows.

GBESS =
KBESS

(1+ sTBESS )
(15)

C. PHOTOVOLTAIC MODEL
Photovoltaic (PV) modules are solar energy-generating com-
ponents. The relationship between voltage and current is non-
linear because of the variation in solar radiations throughout
the day. Therefore, to increase the output power of the PV
panel, a maximum power point tracker (MPPT) must be used.
The following is a description of the PV plant’s transfer
function with MPPT [34].

GPV =
sKPV1 + KPV2

(s2 + sTPV1 + TPV2)
(16)

KPVi and TPVi represent the gains and time constants of
the PV system respectively. Incremental conductance (IC)
method is used to extract MPP from the PV system under the
following conditions.

dPPV
dV PV

> 0 at right

dPPV
dV pv

= 0 at MPP

dPPV
dV PV

< 0 at left

(17)

D. NONLINEAR GENERATION BEHAVIORS
Generation rate constraint (GRC) and dead band (GDB) are
incorporated into the system for a more realistic approach.
Power generation can only vary at a certain limit called GRC,
on the other hand, GDB is the steady-state speed change until
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the governor valves position changes. GDB has a significant
effect that may lead to randomfluctuation, and the factors that
contribute to it are backlash in different governor linkages
between servo piston and camshaft, and valve overlapping
in hydraulic relays [35]. The nonlinear models are shown in
Figure 3, and for thermal plant the values of GRC and GDB
are taken as ±3% /min and 0.06% (0.036 Hz), respectively.
The GRC lowering and raising values of hydropower plants
are 360%/min and 270%/min, respectively, whereas GDB
limit is 0.02%. Thermal unit’s GDB is incorporated in the
governor transfer function as given below

GT =
N1 + (N2/w0)s

1+ sTT
(18)

where N1, N2 and w0 are computed as 0.8, -0.2 and π
respectively.

FIGURE 3. GRC and GDB model for (a) Thermal and (b) Hydro.

Moreover, the area participation factor (apf) for each plant
is considered to determine howmuch each unit will contribute
to the nominal loading. KH, KT, and KD of area 1 are the apfs
of hydro, thermal, and diesel plants, respectively. Similarly,
the apfs for area 2 are specified, where sum of these factors
must be equal to 1 for each area. The apfs for each unit are
listed in the Appendix.

III. PRELIMINARIES
In this section, a brief description of the deep reinforcement
learning techniques that will be used in our study are pre-
sented.

A. DEEP DETERMINISTIC POLICY GRADIENT
DDPG is an improved class of deterministic policy gradient
that combines DPG and DQN, and is a model free off-policy
actor-critic algorithm. Moreover, it can be used in continuous
space using policy-function (actor) and Q-function (critic)
framework, which is essential for analysis of the power sys-
tem as it operates in continuous action because of varying
load and generation. A general network of actor and critic is
shown in Figure 4. The critic uses temporal difference (TD)
technique to update its parameters in the same way as DQN
does, whereas DPG algorithm is used to update the actor via
α = µ(s|θµ)+ N , here N represents random noise function.

FIGURE 4. Actor and critic networks.

Exponential smoothing is used to update the corresponding
θµ and θQ parameters of the actor and critic network as stated
below [36].

θµ′ = τθµ + (1− τ )θµ′ (actor)

θQ′ = τθQ + (1− τ )θQ′ (critic) (19)

The learning stability may be improved owing to slow and
smooth variations of the target network and hyperparameters.
Using critic framework, the action values can be estimated
with the Bellman equation.

Q′(s, a) = E
[
r(s, a)+ γQ′(s′, a′)

]
(20)

Next, y = r + γQ′(s′, a′) is used as a TD-error with a
discounting factor γ �1, and to update the critic parameters
minimize the loss function across all samples.

L =
1
M

M∑
i=1

(yi − Q(si, ai))2 (21)

For training, DDPG employs the experience relay (ER)
technique, in which a random dataset is selected from
the reply buffer and trained in a mini-batch scheme.
Through mapping the state of the provided action, the
current network’s actor parameters are updated via action
value function and then updated them using the neu-
ral network gradient backpropagation. To maximize the
expected discounted reward, the following policy gradient is
used [23].

∇θµJ ≈
1
M

M∑
i=1

[
∇aQ(s, a)|s=si,a=µ(si|θµ)∇θµµ(s|θµ)|si

]
(22)

To learn the parameterized policy, the Actor-Critic tech-
nique converts Monte Carlo based updates into TD. Mean-
while, classic on-policy is transformed to off-policy by
adding experience replay from DQN and a target network,
which enhances sample efficiency.

B. TWIN-DELAYED DEEP DETERMINISTIC
POLICY GRADIENT (TD3)
The performance of Q-learning method is known to be
affected by overestimation of the value function, so the pol-
icy update will be negatively affected if the overestimation
persists throughout training. Because of these limitations,
approaches such as double Q-learning and double DQN are
developed, which employ two value networks to separate
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Q-value and actions’ selection updates. Twin delayed DDPG
(TD3) [37] solves the overestimation of Q-value using the
following three techniques.

To begin, the concept of double Q-learning is imitated by
the TD3, which computes the next state value by creating two
Q-value networks as given below.

y1 = r + γQθ ′1 (s
′, µ′(s′|θµ′ ))

y2 = r + γQθ ′2 (s
′, µ′(s′|θµ′ )) (23)

To compensate the overestimation of Q-value, the target
Q-value is taken as the clipped minimum of two values and
then put into the Bellman equation to compute the loss func-
tion (same as stated in Eq. 21) and the TD-error as shown in
Figure 5 and given below [38].

y = r + γmini=1,2Q
′
i(s
′, a′) (24)

Even though this Q-value update rule may result in an under-
estimating bias when compared to the classic Q-learning
technique, the action values will not be openly passed on via
policy update.

FIGURE 5. Architecture of Twin-delayed DDPG (TD3).

Moreover, to achieve better convergence the target network
is set up being a deep function approximator that offers
constant objectives while learning phase. On the other hand,
the observed states are sensitive to divergence if the error
is integrated. Therefore, compared to the value network the
policy network is intended to update at a lower frequency
in order to limit the error propagation, hence a high-quality
update can be obtained.

Finally, to avoid overfitting, the Q-value computation
needs to be smoothed in order to resolve the trade-off between
bias and variability. Hence, for each action a clipped normal
distribution noise is applied as a regularization, resulting in
the revised target update as shown below [37].

y = r + γQθ (s′, µ′(s′|θµ′ )+ ε)

ε ∼ clip(N (0, σ ),−c, c) (25)

IV. PROPOSED METHOD
The twin delayed DDPG-based agent is trained to act as
an LFC controller to optimally tune the PID parameters.

Multi-agents have been trained where each area has its own
frequency controller (agent) in the proposed interconnected
system, and the elements involved in this formulation are
stated as follows.

A. ENVIRONMENT
Everything in an interconnected power system apart from
the agent is referred to as an environment. An agent takes
the environment’s state as information at every time step to
choose an appropriate action, and then the environment gives
back a reward and new state against that particular action.

B. OBSERVATIONS
The frequency response that will be used by the TD3 algo-
rithm, policy, and reward function is represented by the state
or observations.

C. REWARD
To evaluate the agent’s behavior against each state the envi-
ronment gives the feedback to determine whether or not
the system is converging its objectives. As a result, reward
function directly influences the agent to take actions that
maximize the values in order to approach objective function.

D. ACTION
It is the agent output in the form of a control signal to the
power plant and its value decided by the policy to maximize
reward at a certain state.

The implementation of the twin delayed DDPG agent is
illustrated in Figure 6. The area control error (ACE) is the
input/state for each agent in the proposed interconnected sys-
tem. The state (s) or observations are given as proportional,
integral, and derivative of the ACE to calculate the action (a)
of each agent in both areas. Based on reward function and
frequency response the agent tries out different PID values
to interact with the power system and this action exploration
remains continuous until its approach specified objectives.
To get the optimal PID parameters the reward function plays
an important role in effectively taking the actions toward
solving the defined load frequency control problem because
reward affects the Bellman equation (Eq. 24) of the proposed
TD3 algorithm. As the agent learns all by itself by continu-
ously updating its parameters, so the proper reward function
will help in fast convergence with less computation and high
performance. In this paper, the absolute sum of frequency
deviation and tie-line power is defined as the objective/reward
function to minimize the fluctuation of tie-line power and
frequency in both areas. The reward function is stated as
follows.

R = −
T∑
i=1

[∣∣Bi1f i∣∣+ |1Ptie|] (26)

where negative will minimize the error, thus maximizes the
reward. If a particular agent’s action is not taken towards
minimizing the error, then a penalty will be applied which
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FIGURE 6. Workflow of the proposed TD3 approach.

will reduce the reward, so the RL agent keeps exploring the
action/PID values that will maximize the reward.

E. DESIGN OF TD3-BASED CONTROLLER
As the primary goal of the scheme is to minimize the fre-
quency and tie-line power under uncertain conditions, the
dynamic environment is created by integrating RES and
selecting random step disturbance in the power system to
train the TD3 agent. The agent receives frequency response
from the environment in the form of proportional, integral,
and derivative of ACE, and gives the control signal to the
environment as an output. The agent consists of critic and
actor networks where an actor is known as a policy structure
to decide action and the critic is estimated value function.
To create the TD3 agent the actor and critic are created
as deep neural networks. In actor, we mimic the neural
network as PID controller where the feature-input layer is
with proportional, integral and derivative of ACE as input
and fully connected layer as controller output. Furthermore,
we improved the TD3 agent by replacing fully connected
layer in actor-network with the new layer that consists of
function y = abs(weights) ∗ x. This new layer ensures that
the weights (PID gains) are positive, as gradient descent
optimization may lead the weights to negative values. The
parameters which are considered while creating actor and
critic networks for the TD3 agent are listed in Table 1.

TABLE 1. Hyperparameters of proposed TD3.

The critic network shown in Figure 6 is made up of total
9 layers, as it receives the frequency response (s) and actor’s
action (a), so feature-input layers are used for both inputs.
Then, a concatenation layer is added to link both inputs
followed by fully connected layers for each input. Rectified
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linear unit (ReLU) is used between each fully connected layer
as an activation function. Adam optimizer is applied to update
the parameters of actor and critic networks, while the glorot is
used as weights initializer for fully connected layers. To for-
mulate the TD3 agent two critic networks (Q1(s, a),Q2(s, a))
are created and these two networks help the agent to estimate
long-term reward based on states and actions. The structures
and parameters of the target actor and target critics are taken
similar to the actor-critic. The target actor and target critics
parameters are continuously being updated by the agent to
improve the optimization’s stability. The steps used in imple-
menting the proposed TD3 algorithm for LFC are briefly
discussed as follows:

Step 1. Create critic and actor functions for the agent to
estimate the value function and policy during training at each
time step.

critic Q (s, s | ∅) ,Qt (s, s | ∅t)

actor µ (s | θ) , µt (s | θt)

Step 2. Specify the agent options such as experience replay
buffer length, mini-batch size, and Gaussian noise.

Step 3. Based on specified parameters in step 1 and step 2,
create the TD3 agents for both areas.

Step 4. To train the TD3 agent the following algorithm is
used.

Once the training is completed the actor network’s
absolute weights are fetched as the proportional, integral,
and derivative gains of the PID controller. The flowchart
in Figure 7 illustrates simplified representation for PID
tuning.

FIGURE 7. Flowchart of PID tuning using proposed TD3.

V. RESULTS AND DISCUSSION
The two-area interconnected system shown in Figure 1 is
developed inMATLAB/Simulink and the TD3 agent is imple-
mented as a controller for each area in the system to get
the optimal PID gains. The configuration of the proposed
scheme is illustrated in Figure 8. During training, the algo-
rithm runs the simulation for every episode and the simulation
for a single episode continues until it reaches the window’s
length or triggered the threshold limit. After every episode,

Algorithm 1 Twin Delayed DDPG.
1: Initialize actor µ (s | θ) and critics Q (s, s | ∅) networks
2: Initialize target actor µt (s | θt) and target critics
Qt (s, s | ∅t) using primary actor-critic networks’
parameters
3: for each episode = 1,. . . ,M do
4: Simulate the environment with random

load-generation disturbance
5: Observe the current state as [ACE(s), ACE(s)/s,

ACE(s)/s+1] and store in experience buffer
6: Initialize random exploration noise (Gaussian) Nt
7: for t= 1,. . . , T do
8: Choose an action at = µ(s|θ )+Nt based on current

observations/state
9: Execute the action and get the details of the reward

rt and next state st+1
10: Store values (st , at , rt , st+1) in experience

replay buffer
11: Sample the randomminibatch of store values from

replay buffer

12: Put yi =
{
ri IF st+1 is terminalstate
ri + γmini=1,2Q

′
i(s
′, a′) otherwise

13: Update each critic parameters by minimizing the
loss function stated in Eq. 21.

14: Update actor parameters using

∇θJ ≈ 1
M

M∑
i=1

[
∇aQ(s, a)|s=si,a=µ(si|θ )∇θµ(s|θ)|si

]
15: Update target actor and target critic parameters

using smoothing factor
θµ′ = τθµ + (1− τ) θµ′
θQ′ = τθQ + (1− τ ) θQ′

16: end for
17: end for

FIGURE 8. Multi-agent TD3 implementation for LFC.

each agent gets the reward based on control action. The
reward’s performance while training both agents is shown
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TABLE 2. Pid controller gains for both areas.

FIGURE 9. Moving average of rewards while training.

FIGURE 10. Frequency deviation of Area 1 with 1% SLP.

in Figure 9. We have given [0 0 0] as initial PID gains
to initialize the model, therefore starting episodes received
high negative rewards as an error penalty. Area-2 is more
heavily penalized due to the presence of RES. The agent tries
to maximize the reward by choosing optimal PID gains as
control actions. As shown in the figure the model performing
better after 200 episodes but to get better results and converge
the system at optimal solution 800 episodes are carried out.
After training the model, the robustness of the proposed
scheme is tested under different scenarios and the results

FIGURE 11. Frequency deviation of Area 2 with 1% SLP.

FIGURE 12. Tie-line power deviation with 1% SLP.

are compared with conventional meta-heuristic and DRL
techniques. Table 2 shows the obtained PID controller gains
across each algorithm which are taken into consideration for
comparison against the proposed approach. While training
the model, the lower limit [0 0 0] and the upper limit [5 5
5] of the PID gains are set for every algorithm for a fair com-
parison. The IAE values in Table 2 show that the proposed
TD3 approach gives the minimum error among all listed
algorithms.

The random output power fluctuations of RES are provided
for system analysis. The power of EV fleet is shown in
Figure A1, which illustrates the charging and discharging
states of EVs to compensate the unscheduled load by
exchanging power between battery and the grid via a control-
ling charger. To compare the control performance, firstly 1%
step load perturbation (SLP) is applied in area 1. The results
shown in the Figure 10 clearly indicate the superiority of the
proposed TD3 approach, where -0.006 Hz and 0.0011 Hz
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FIGURE 13. Frequency deviation of Area 1 with random SLP.

FIGURE 14. Frequency deviation of Area 2 with random SLP.

are the under-shoot (US) and over-shoot (OS) frequency
responses of the system The frequency settling time (Ts) is
7.5s compared to the other techniques, which require more
than 14s to stabilize the response. The DDPG’s US and OS
are -0.011 Hz and 0.003 Hz, respectively. The PSO and GA
provide nearly identical findings, with a minor variation in
frequency responses, where -0.01 Hz and 0.0017 Hz are US
and OS of the PSO compared to the GA’s -0.009 Hz and
0.0017Hz, respectively.Moreover, the proposed TD3 scheme
efficiently compensated the oscillations while stabilizing the
frequency deviations. The detailed LFC performance com-
parison of all the considered techniques is demonstrated in
Table 3.

Furthermore, the robustness of the proposed approach is
tested under random step load disturbances in both areas
as shown in Figure A2. The responses of frequencies and
tie-line power are shown in Figures 13-15. The proposed TD3
method performed better compared to other techniques in
terms of minimum undershoot, overshoot and settling time.
The GA, PSO, and DDPG exhibit poor performance when the
random load disturbance is applied in area 2. The maximum
US, OS and Ts for TD3 under random SLP in area 2 is -
0.023 Hz, 0.008 Hz and 9s, respectively. For DDPG, the
values are -0.059 Hz, 0.022 Hz and 13.5s, respectively. While
the PSO’s US, OS and Ts are -0.05 Hz, 0.018 Hz and 14s,
respectively. The GA performed poorly under random step
load disturbance as shown in Figures 13-15, therefore we only
considered PSO in further results owing to its slightly better
performance than GA. Finally, the performances of all three

TABLE 3. Comparative performance analysis.

FIGURE 15. Tie-line Power deviation with random SLP.

techniques are assessed under continuous load-generation
variations. The given results in Figures 16-18 indicate that
the proposed TD3 approach to optimally tune the PID con-
troller parameters outperforms other techniques and provides
minimum under-shoot and over-shoot deviation with less
oscillations.

The maximum and minimum frequency deviation val-
ues in both areas for the proposed TD3 is not crossed
60.05 Hz and 59.95 Hz, respectively. However, for DDPG
and PSO the maximum and minimum frequency devia-
tions are 60.19 Hz, 59.83 Hz and 60.15 Hz, 59.84 Hz,
respectively. The tie-line power deviates ±0.002 (p.u) in
the case of proposed TD3 approach, while for DDPG
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FIGURE 16. Dynamic frequency response of Area 1.

FIGURE 17. Dynamic frequency response of Area 2.

FIGURE 18. Dynamic tie-line power response.

and PSO the deviation is ±0.01 (p.u) and ±0.008 (p.u),
respectively. Hence, these results verify the superior-
ity of the proposed TD3 approach against fluctuations
of the renewable integrated energy sources into the
system.

A. SENSITIVITY ANALYSIS
In this subsection, a sensitivity analysis is carried out to
illustrate the robustness of the proposed approach by vary-
ing the system parameters and system operating conditions.
Since changing the conditionsmay lead to severe disturbance,
the controller parameters should be robust enough to toler-
ate these changes. To test the proposed approach, param-
eters such as time constants (Th, Tgr, Tw), gain constants
(KPV, KEV), R, and coefficient D are varied in the range
of ∓50% from nominal values. The optimal PID gains

TABLE 4. Sensitivity analysis with proposed TD3.

obtained at nominal operating conditions are used to eval-
uate the performance while varying the system parameters.
For sensitivity analysis, only one parameter at a time is
changed to 25% while the other parameters are kept at
nominal values. The Table 4 shows the control performance
of 1f1, 1f2, and 1Ptie in steps of 25% parametric vari-
ations. The comparison of all listed responses with nomi-
nal values reveals the robustness of the proposed approach
against system parameters variations, where frequency
and tie-line responses are almost overlapping with minor
differences.

The parametric variation responses with TW and R are
illustrated in Figures 19 and 20 respectively, which confirm
the robustness of the proposed TD3 approach against any
system parameter variations.

VI. CONCLUSION
In this paper, a novel approach is proposed to optimally tune
the proportional-integral-derivative (PID) controller gains for
load frequency control of renewable integrated hybrid power
system using the deep reinforcement learning (DRL) method.
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FIGURE 19. Sensitivity analysis response under variation of TW.

FIGURE 20. Sensitivity analysis response under variation of R.

A twin delayed deep deterministic policy gradient (TD3)
algorithm based multi DRL agents are trained, which act as
controllers for each area to decide optimal PID values via
an interactive trial and error method. The performance of
TD3 was compared with deep deterministic policy gradient
and meta-heuristic techniques such as genetic algorithm and
particle swarm optimization. The results under various sce-
narios clearly show that our proposed approach outperforms
the abovementioned schemes. The TD3 approach gives a sig-
nificant reduction of almost 50% to 60% in settling time and
under/overshoot deviations. All the considered techniques are
unable to stabilize the tie-line power under random step load
perturbation except the TD3 which certifies its superiority
under dynamic variations. Moreover, the proposed scheme
greatly compensates the steady-state error and increases the
system stability under continuous load-generation variations
compared to the conventional control schemes. Furthermore,
the sensitivity analysis also indicates that the obtained gain
values were robust enough to withstand any system paramet-
ric variations.

As the traditional electric grid is undergoing a major tran-
sition that incorporates computation in grid operations for
better reliability, it brings the key challenge of cyber security.
In our future work, we will develop a cyber-attack detection
model for LFC to improve the reliability of the system.

APPENDIX
See Figures 21 and 22 here for A1 and A2, respectively.

FIGURE 21. Charging/Discharging of electric vehicle.

FIGURE 22. Random step load disturbance for both areas.

Rated power = 2000 MW, nominal loading = 1000 MW,
(frequency) f = 60 Hz, (inertia constant) H = 5, (frequency
sensitive load coefficient) D= ∂Pd/∂f = 0.00833, (Area bias
parameter) Bi = 0.425 p.u.MW/Hz, (Tie-line coefficient)
2πT12 = 0.545, (Power system gain) KPi = 1/D = 120,
(Power system time constant) TPi = 2H/f D = 20s, (Droop
constant) Ri = 2.4 Hz/p.u.MW, a12 = -1.

A. HYDRO PLANT
(Hydro governor time constant) Th = 48.7s, Trs = 0.513s,
Trh = 10s, (Penstock water starting time) Tpt = 1s, KH =

0.45.

B. THERMAL PLANT
(Governor time constant) Tgr = 0.08s, (Reheater time and
gain constant) Tre = 10s, Kre = 0.33 Hz/p.u.MW, (steam
turbine time constant) Ttr = 0.3s, KT = 0.45.

C. DIESEL PLANT
KD = 16.5, (Diesel engine speed governing mechanism
time constants) Td0, Td1, Td2, Td3 = 1 s, 2 s, 0.025 s, 3s,
KD = 0.1.

D. WIND PLANT
(Time constants of wind turbine) Tw1, Tw2 = 6s, 0.041s,
(Gain constants of wind turbine) Kw1, Kw2 = 1.25, 1.4,
Kpc = 0.8, KW = 0.25.
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E. PV PLANT
(solar PV time and gain constants) TPV1, TPV2 = 100s, 50s
and KPV1, KPV1 = −18, 900, KP = 0.2.

F. ELECTRIC VEHICLE & BESS
KEV = 1, TEV = 1s, KE = 0.1, KBESS = −0.0033,
TBESS = 0.1s.
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