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ABSTRACT Aiming at the problem that it takes too long to manually label numerous semantic segmentation
data sets of vehicle images, a fast and effective data augmentation for semantic segmentation is proposed.
Firstly, to solve the problem that traditional data augmentation algorithms are difficult to generate vehicle
images and corresponding labels at the same time, a vehicle image data augmentation for semantic
segmentation based on FCN (Fully Convolutional Network) and GCIoU (Generally Contour Intersection
over Union) is proposed, which can simultaneously generate vehicle images and corresponding labels.
Then, aiming at the problem that some low-quality data exist in the generated dataset, a data set quality
discriminator based on LQE (Label Quality Evaluation) head is proposed. The discriminator can distinguish
between low-quality and high-quality label files. Finally, aiming at the problem that the excessive weight
of the label file causes the calculation speed to decrease, a lightweight algorithm for the label file based on
BAS-DP (Beetle Antennae Search Douglas-Peucker Algorithm) is proposed. The lightweight algorithm can
greatly decrease parameters of the label file and improve availability of data-augmented results. Experimental
results show that the proposed data augmentation algorithm is better than DCGAN (Deep Convolutional
Generative Adversarial Networks), WGAN (Wasserstein Generative Adversarial Networks) and other data
augmentation algorithms in accuracy. The AP50 and AP75 of the proposed algorithm reach 0.924 and 0.41,
respectively. In addition, the proposed data augmentation algorithm still performs well in scenes with single-
object, multi-object and ultra-multi-object. Simultaneously, the proposed data augmentation algorithm has
three advantages, which are higher accuracy, faster speed, and less training data required.

INDEX TERMS Semantic segmentation, beetle antennae search algorithm, neural network, data
augmentation.

I. INTRODUCTION
With the development ofmodernization, vehicles are themain
means of transportation in cities, and vehicle identification
and detection are widely used in intelligent transportation [1].
Pixel-level labeling of vehicle data sets and semantic seg-
mentation of vehicle images are of great significance to the
study of various characteristics of vehicles. For example,
vehicle object detection, vehicle classification, license plate
recognition, vehicle speed measurement and vehicle color
recognition, etc [2]–[4].

The current vehicle image related data sets include: KITTI,
UA-DETRAC BDD100K data set, etc [5]. However, these
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data sets are mostly forward vehicles, which are not suit-
able for vehicle recognition tasks in all actual traffic situ-
ations [6]. When carrying out vehicle recognition in some
specific scenarios, it is necessary to personally collect vehicle
image data sets in the specific environment and label these
vehicles. For the task of semantic segmentation of vehicle
images, the required data set is huge. Compared with the
labeling time required for classification and detection tasks,
the time required for labeling semantic segmentation datasets
is often in hours. The amount of data required to train a
high-precision semantic segmentation deep neural network is
about 6000 or more. However, only 100 images of vehicles
in a transportation environment require more than 12 hours
of labeling time for a person. Manually labeling the data
set is time-consuming and labor-intensive, and the quality
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of the labeled vehicle data in the fatigue state is low [7].
This method is difficult to quickly and conveniently obtain
high-quality, large-quantity and satisfactory vehicle data sets.
Through the data augmentation method, the vehicle image
and the corresponding label file can be generated at the same
time, which greatly reduces the manual labeling time of the
data set [8].

Therefore, this article proposes a novel data augmen-
tation approach to generate numerous vehicle images and
corresponding label files. The vehicle image data augmen-
tation for semantic segmentation in this paper is as fol-
lows. First, a vehicle image semantic segmentation label
generation neural network based on GCIoU and SDE head
(Semantic segmentation data augmentation head) is pro-
posed. The neural network can learn how to label unla-
beled data sets from a small number of labeled samples.
We use this neural network to generate a large amount of
unlabeled data that is automatically labeled, and generate
a large amount of vehicle semantic segmentation labeled
files. Then, in order to obtain high-quality label files, a label
quality discriminator based on LQE head is proposed, which
can distinguish the generated high-quality and low-quality
data sets. Through this discriminator, a high-quality seman-
tic segmentation label data set can be obtained. Finally,
using BAS (Beetle Antennae Search) algorithm optimized
Douglas–Peucker algorithm proposed a BAS-DP-based label
lightweight algorithm, which can reduce the parameters of
the label file while ensuring the accuracy of the data [9], [10].
This algorithm can improve the usability of the generated data
set.

Therefore, the proposed data augmentation algorithm can
quickly generate high-quality and lightweight vehicle image
semantic segmentation data sets. At the same time, migration
learning is also used in the neural network training process,
which reduces the training time and the amount of training
data for the data augmentation network.

The main contributions of the paper are summarized
below:
• Aiming at the problem that the manual labeling of vehi-

cle semantic segmentation data takes too long, a vehi-
cle semantic segmentation data augmentation network
is proposed, which can automatically generate labeled
high-quality vehicle semantic segmentation data. First,
combining the SDE head and residual network, a data
augmentation network is proposed to generate a vehicle
semantic segmentation data. Then, in order to solve
the problem of uneven quality of the generated vehicle
semantic segmentation data, a discriminator based on
LQE head is proposed. Finally, the discriminator and
vehicle semantic segmentation data augmentation net-
work aremerged to form an end-to-end high-quality data
augmentation network that can simultaneously gener-
ate vehicle images and corresponding high-quality label
files. The high-quality data augmentation network has
the advantages of high data quality and less training data
required.

• Aiming at the problem that the weight of the
data augmentation result increases the training time,
a lightweight algorithm for label files based on BAS-DP
is proposed. On the basis of the above data augmentation
network, the lightweight algorithm further reduces the
weight of each label file of the data augmentation result.
On the premise of maintaining the accuracy of the
data augmentation results, the lightweight algorithm can
improve the network computing speed and increase the
availability of the data augmentation results. Finally, the
lightweight algorithm based on BAS-DP is combined
with the above data augmentation network to form a
novel high-quality vehicle data augmentation for seman-
tic segmentation.

The organization of the paper is follows. Firstly, the
related work of the predecessors was introduced in Section II.
Then, the general framework of the vehicle image data aug-
mentation for semantic segmentation is established in the
section III, and describes the specific implementation pro-
cess. The section IV is quantitative and qualitative compar-
ative experiments. Through comparative experiments, it is
proved that the proposed data augmentation algorithm has
the advantages of less training data, high speed and high
precision. Section V is the conclusion and expectation of this
article.

II. RELATED WORK
More and more researchers are constantly conducting
research on vehicle object detection and semantic segmen-
tation algorithms, which makes deep learning-based object
detection algorithms widely used [11], [12]. For example,
Faster R-CNN, Mask R-CNN and other object detection
algorithms have greatly improved intelligent transportation
and vehicle detection [13], [14]. However, these algorithms
require a large number of labeled datasets to train a precise
vehicle detection model [15], [16]. In response to the problem
of semantic segmentation methods requiring a large amount
of labeled data, researchers have given different solutions.
Yebes et al. used a lightweight two-stage object detection
network to achieve vehicle detection and object classification
on urban roads [17]. However, these methods reduce the
required training data through simpler network structures,
so the disadvantage is that the accuracy is reduced. Hu et al.
used a semi-supervised method to improve the accuracy
of the Mask R-CNN [18]. Wang et al. proposed a multi-
domain joint learning method using a semi-supervised learn-
ing framework, which can reduce the interference of noise
while requiring a small amount of training data [19]. Bang
proposed a novel image-to-image translation network that
reduces the amount of training data required and improves the
robustness of the algorithm [20]. Kim et al.Use unsupervised
lightweight neural network for vehicle detection. However,
the accuracy of these methods is not high, and pre-trained
models for transfer learning still require a large number of
labeled datasets for training [21]. Although, to a certain
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extent, the above methods can reduce the amount of training
data required, there is a bottleneck in the accuracy of these
methods. A more effective way to improve the accuracy of
the semantic segmentation network is to directly augment the
dataset [22], [23].

Semantic segmentation data augmentation methods are
mainly divided into two categories. One is traditional data
augmentation methods. Data augmentation is carried out
by flipping and transforming a small number of manually
labeled samples, random trimming, random pasting, color
dithering, translation transformation, scale transformation,
contrast transformation, noise disturbance and reflection
transformation [24]. When traditional data augmentation
algorithms perform color dithering and noise disturbance,
they will generate samples with a large gap from the real
samples, which will cause negative optimization of the net-
work. In addition, the method of randomly cutting and
pasting the vehicle object may cause the loss of the asso-
ciated information between the object and the environment.
For example, randomly cutting and pasting vehicle objects
into sky areas, roofs, indoors, etc., will destroy the asso-
ciated information between the vehicle and the road, and
will more likely cause the network to misjudge the vehicle
objects.

Another type of method is based on a generative adver-
sarial network, which generates more types of vehicle image
samples from a small number of samples [25]–[27]. There-
fore, the generated samples are easily constrained by the
original samples. The images and labels generated by the
generated confrontation network all come from a small num-
ber of labeled original samples. Numerous highly similar
samples make the network prone to overfitting. Moreover,
the poor quality of the labels generated by this method leads
to the need for manual secondary screening. Dumagpi et al.
used DGAN for data augmentation, which increases the data
volume of X-ray images and improves the detection accuracy
of X-ray images in Fast R-CNN. Ke et al. annotated numer-
ous images through WGAN, which increased the number of
images and improved the performance of deep convolutional
neural networks. Li et al. used DCGAN to augment the
dataset of spectral images, so that the deep learning model
can be better trained, thereby improving the accuracy of the
model [28]. Fang et al. used DCGAN to generate numerous
unlabeled samples and trained image recognition model. This
method can enhance the classification model and effectively
improve the accuracy of image recognition [29]. Zhou et al.
used LP-WGAN to generate competitive images earlier and
got higher evaluation scores [30].

In recent years, there are also some articles related to gen-
erative adversarial networks. Zhu et al. used GAN generate
numerous photo-realistic SAR images. The approach can ally
‘‘Clever Hans’’ phenomenon greatly caused by the spurious
relationship between generated SAR images and the corre-
sponding classes [31]. Zhang et al. augmented the dataset of
images by CF-GAN, which has higher accuracy than other
data augmentation approaches [32]. Wei et al. used GAN

to augment cancer images, increasing cancer classification
accuracy to 92.6% [33]. These data augmentation algorithms
based on generative adversarial networks are only suitable
for data augmentation of similar samples, perform poorly in
complex samples, and difficult to complete the labeling task
of semantic segmentation data.

Both of data augmentation algorithms have some
shortcomings, so that neither of them is suitable for data aug-
mentation of vehicle image semantic segmentation datasets.
Therefore, the article proposes a high-quality data augmenta-
tion algorithm for semantic segmentation data. And, we com-
pare the proposed algorithm with other data augmentation
algorithms and verify the performance advantages of the
proposed algorithm.

III. OVERALL FRAMEWORK OF VEHICLE IMAGE DATA
AUGMENTATION FOR SEMANTIC SEGMENTATION
The information recorded in the label file mainly has two
types of information, one is the key points on the outline
surrounding the object, and the other is the object category.
If you want to obtain high-quality label files, the accuracy
of the labeling of these two kinds of information must be
very high. Fig.1 is a vehicle image and corresponding tag
information.

The semantic segmentation label data augmentation algo-
rithm of vehicle image is shown in Fig.2. The specific steps of
the vehicle image semantic segmentation data augmentation
method are mainly divided into two parts: (1) The first part is
the vehicle image semantic segmentation data augmentation
network training. First, build a semantic segmentation label
generation network and a label file quality judgment network,
and build a vehicle semantic segmentation generation net-
work. Then, a very small amount of labeled data is selected
to train the data augmentation network. When training the
network, the pre-trainingmodel of the coco data set is used for
migration learning, reducing training time and preventing net-
work overfitting. Finally, select the appropriate vehicle image
feature extraction network and the best hyperparameters to
make the accuracy of the data augmentation model reach the
best. (2) The second part is the data augmentation of the
vehicle semantic segmentation label file. First, preprocessing
such as scale normalization is performed on a large number
of unlabeled vehicle images. Then, the semantic segmenta-
tion label generation model in the previous part of the data
augmentation model is used to initially generate a large num-
ber of semantic segmentation label files. At the same time,
the discriminant model in the data augmentation network is
used to filter out high-quality label files and discard low-
quality label files. Finally, use the BAS-DP-based label file
lightweight algorithm to reduce the size of the label file
while maintaining the accuracy of the label file, and enhance
the lightness of the label file. Finally, the vehicle semantic
segmentation tags and unsupervised data are combined to
form a large number of high-quality vehicle image semantic
segmentation data sets.
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FIGURE 1. Vehicle image and corresponding label file.

FIGURE 2. Data augmentation algorithm for vehicle semantic segmentation label.

IV. VEHICLE SEMANTIC SEGMENTATION LABEL FILE
DATA AUGMENTATION NETWORK
The semantic segmentation data augmentation network of
vehicle images is shown in Fig.3, which mainly includes
three parts. The first part is the feature extraction stage of
the vehicle image. Used to extract semantic features in vehi-
cle images. The second part is the semantic segmentation

label file generation part, which is used to generate a large
number of semantic segmentation label files. The third part
is a discriminator, which is used to judge the quality of the
tags generated in the second part, and select high-quality
vehicle image semantic segmentation tag files as the result
of data augmentation. The following describes each part of
the network in detail.
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FIGURE 3. Vehicle image semantic segmentation data augmentation network.

A. FEATURE EXTRACTION BASED ON TRANSFER
LEARNING AND DEEP RESIDUAL NETWORK
Features are extracted from unlabeled vehicle images through
the backbone network, and multi-scale feature layers are
formed through FPN (Feature Pyramid Network) to enhance
the network’s ability to recognize small objects.

Among them, the backbone network can be a feature
extraction network composed of arbitrary convolutional lay-
ers, or a commonly used deep convolutional neural network
(Such as ResNet 50, ResNet101, VGG19, etc.). Through the
convolution operation, the size of feature map is transformed
from 1980 × 1080 × 3 into the 32 × 32 × 2048, which is
used as the input of the feature pyramid network. In order
to get the best feature extraction, corresponding comparative
experiments are carried out on three high-precision backbone
networks: ResNet101, ResNet50, and MobilNetV1 in the
experiment and analysis part.

Transfer learning is to assign initial values to the weights
in the network, which can effectively prevent overfitting,
reduce training data, and reduce training time. At the same
time, because most of the weights in the network are in the
feature extraction part. In order to improve the effectiveness
of extracting features and the training speed of the network.
First, train the backbone network part in the public data set
to obtain a pre-trained model. Then, transfer learning is used
to provide initial values for the feature extraction part of
the network to reduce the training time of the network and
prevent overfitting.

The images in the coco dataset are taken on urban roads
and contain many non-vehicle image categories, which can
improve the accuracy of the background and foreground
classification of vehicle images by the network. There-
fore, the coco data set is selected to train the pre-training
model, and the ablation experiment is carried out in the
experimental part to prove the effectiveness of transfer
learning.

This element pyramid network has five layers. From the
first layer to the fifth layer, the scale of the feature map will
gradually decrease. In this way, feature maps of different

scales are generated. Then, adjacent feature maps are merged
with each other to obtain a new feature map. The new feature
map not only contains the details in the low-level feature map,
but also contains the large receptive field of the high-level
feature map, thereby improving the feature extraction ability
of the small object network. We choose this new feature map
as the subsequent network input.

B. SEMANTIC SEGMENTATION LABEL DATA
AUGMENTATION BASED ON FCN AND GCIOU
Firstly, the positive and negative samples in the new feature
map are distinguished through the classification area of the
interested area, where the area belonging to the object is the
positive sample, and the area belonging to the background is
the negative sample.

Then, FCN is used to deconvolve the fourth-layer feature
map to obtain the mask of the positive samples in the original
image input by the network. Connect the points around the
mask to obtain the contour information of each vehicle object,
that is, the points on the object contour. This is also one of
two types of important information in the label file. At the
same time, the fully connected layer is used to classify each
different object area category in the feature map, and the
category information in the label file is obtained. Finally,
the object contour information and category information are
integrated into the label file to generate the vehicle semantic
segmentation label file.

The loss function is also vital to the training results of the
data augmentation network. The contour information in the
semantic segmentation label is to record the curve surround-
ing the object. Since the contour of the object is surrounded
by an irregular shape, the measurement of the accuracy of the
object contour is often converted into the measurement of the
accuracy of the irregular area surrounding the object in deep
learning. The traditional method of measuring the accuracy
of irregular images is MIoU, which imitates the IoU method
to judge the difference between the predicted area and the real
area by the value of the intersection ratio. TheMIoU is shown
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in formula 1. MIoU =
|A ∩ B|
|A ∪ B|

LMIoU = 1−MIoU

(1)

Among them, A is the real irregular object area. B is the
irregular object area predicted by the neural network.MIoU is
the value of MIoU. LMIoU is the loss function that measures
the coincidence degree of A and B.

There are two problems with MIoU as a metric function
and loss function for irregular object areas. First, if A and B
do not overlap,MIoU will be 0 and will not reflect the distance
between the two objects. In this case of non-overlapping
objects, if LMIoU is used as a loss function, there will be a sit-
uation where the gradient is 0 and cannot be optimized. Sec-
ond, MIoU cannot distinguish between the alignment of the
predicted bounding box and the true bounding box, and the
MIoU of overlapping objects with the same intersection level
in different directions will be completely equal. As shown in
Fig.4, the edge quality of the left image and the right image
are obviously different, but their corresponding MIoU values
are the same, which will affect the further optimization of the
network.

FIGURE 4. MIoU values under different overlapping conditions.

GCIoU is a new method for evaluating the quality of the
contour generation part of the label file. LGCIoU is the value
of its loss function, and its calculation formula is shown in
formula 2.GCIoU = MIoU −

|CAB − (A ∪ B)|
|CAB|

LGCIoU = 1− GCIoU

(2)

where, A is the real edge encircled area of the object, B is
the encircled area of the object edge predicted by the neural
network, and CAB is the smallest matrix area enclosing the
two bounding boxes of A and B. GCIoU includes calculating
the minimum closed area of A and B and the minimum
circumscribed matrix area. Even if A and B do not intersect,
GCIoU is still not zero. At the same time, it can accurately
reflect the degree of overlap between the predicted box B and
the real bounding box A.
Fig.5 shows the calculationmethod of GCIoU. Fig.5 shows

the corresponding GCIoU values under different overlap-
ping conditions. It can be seen from Fig.5 that GCIoU can
distinguish overlapping objects with the same intersection

FIGURE 5. GCIoU calculation schematic diagram.

level, which is conducive to the optimization of the semantic
segmentation network.

C. DATA SET QUALITY DISCRIMINATOR BASED
ON LQE HEAD
It is not enough to use the second part to simply generate label
files for data augmentation. Any data generation network will
produce some poor quality data. Failure to judge and process
the generated data will make the results of data augmentation
mixed into a large amount of low-quality data. Therefore,
a discriminator is proposed next to distinguish the quality of
the generated data and obtain a high-quality labeled data set.

Therefore, a discriminator is designed, which is used to
evaluate the quality of the label file. The content of the
evaluation mainly includes the accuracy of the contour of
the object and the accuracy of the object classification. Then,
by setting the quality threshold, the labels whose quality is
lower than the threshold are discarded, and the labels whose
quality is higher than the threshold are retained. Finally, the
tags above the threshold and the corresponding vehicle image
data are combined to form a vehicle semantic segmentation
data set, which is also the result of data augmentation of the
network.

The first is to evaluate the accuracy of the object contour
in the label file. Since the contour of the object is surrounded
by an irregular shape, using the regression principle of the
convolutional neural network, a LQE head is designed to
regress the accuracy of the object contour in the generated
data. The convolutional neural network can not only extract
the features in the image, but also can be used to regress the
similarity of the two images, using the LQE head to regress
the true contour (Truth contour) and the predicted contour
(predict contour), and calculate each The GCIoU value of
the difference between the real contour of the object and the
predicted contour. Then, normalize GCIoU to get SIoU. SIoU is
the evaluation quality of the contour, and its range is between
0 and 1. By setting different SIoU thresholds, object contours
of different quality can be obtained. The closer the SIoU value
is to 1, the better the object contour prediction effect.

1) THE STRUCTURE OF THE DISCRIMINATOR
BASED ON LQE HEAD
It consists of 4 convolutional layers and 3 fully connected
layers. For 4 convolutional layers, the kernel size and the
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FIGURE 6. LQE head structure.

number of filters of all convolutional layers are set to 3 and
256, respectively. For 3 fully connected layers, set the output
of the first two fully connected layers to 1024 to connect all
neurons, and the C of the last fully connected layer is the
number of categories to be classified. Finally, the LQE head
outputs the contour quality SIoU of each object.

2) INPUT STRUCTURE OF LQE HEAD
Take Truth-contour and predict-contour together as the input
of LQE head. Among them, Truth-contour has a feature map,
and predict-contour is the contour output by SDE head. Since
the output size of the SDE head is different from the size of the
feature map, two input structures are designed. Fig.7 shows
the two input structures of LQE head.

FIGURE 7. Input structure of LQE head.

Where, in the left picture of Fig.7, the input structure of
the designed LQE head is that the feature layer output by
the SDE head is subjected to maximum pooling through a
convolution kernel with a size of 2 and a stride of 2. Then,
the pooling result is concatenated by a feature map to get the
input of the LQE head, and the feature map size is 14× 14×
256. In the right picture of Fig.7 is another LQE head input
structure. The feature layer output by the SDE head is directly
concatenated to the feature map with a larger size to obtain
the input of the LEQ head. This structure does not need to go
through max pooling. Both structures can be used as input to
the LQE header.

Since the label file includes two kinds of information, the
object contour and the object category, the discriminator is
required to evaluate both types of information well: (1) The
contour accuracy of the object in the label file needs to be
evaluated. (2) It is necessary to evaluate the classification

accuracy of the object in the label. First, LQE head is used
to obtain the profile accuracy evaluation index SIoU. Then,
the confidence of the object classification result is normalized
between 0 and 1. Take it as the category accuracy evaluation
index of the generated data, which is Scls. In order to use one
objective function to express the two tasks, the two indicators
are multiplied, as shown in formula 3, which is the final
output result of the discriminator for each object.

SDE = Scls × SIoU (3)

Among them, SDE is the accuracy of the discriminator for
each object in the tag file. Scls represents the category accu-
racy index in the label file. SIoU represents the contour accu-
racy index in the label file. The set SDE threshold is 0.9.When
the SDE of each object in a label file is higher than 0.9, the
quality of the generated label is higher. When the SDE of the
label file is lower than 0.9, the quality of the generated label
is lower.

D. LOSS FUNCTION OF DATA AUGMENTATION NETWORK
The vehicle image semantic segmentation data augmentation
network is mainly composed of feature extraction part, SDE
head, LQE head and other parts. Therefore, the loss function
formula of this network is shown in formula 4.

L = Lclass + Lp + Lr + LLQE (4)

where, Lclass is the category loss in the generated label, Lp is
the loss of the feature extraction network, and Lr is the weight
regularization loss. LLQE is the LQE head loss function.

E. A LIGHTWEIGHT ALGORITHM FOR LABEL FILES
BASED ON BAS-DP
Through the vehicle semantic segmentation data augmenta-
tion network, a large number of high-precision vehicle image
semantic segmentation data sets can be obtained. Since the
label file mainly records the category information of the
object and the outline information of the object. If you save
all the points on the object edge into the label file, it will
cause too many parameters in the label file. Too many label
parameters will cause the neural network to take a long time
when reading the label file, which is not conducive to the
use of the label file. Therefore, a lightweight algorithm for
label files based on BAS-DP is proposed. The algorithm
converts the contour curve surrounding the object into the best
approximation positive polygon. The number of coordinate
points contained in the polygon is small, and the number of
parameters in the label can be reduced while the accuracy
of the generated label is guaranteed, so that the label file is
lighter.

Fig.8 shows the result of reducing the number of key points
on the object edge. Using the best approximation positive
polygon to replace the curve is the most direct and effective
method. Therefore, it is necessary to use a polygonal approx-
imation algorithm to convert the contour curve of the object
into a polygon, and then re-record the key point coordinates
on the polygon in the label file.
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FIGURE 8. Optimization of the number of key points on the edge of the
object.

The Douglas-Peucker algorithm is a classic polygon
approximation algorithm that can approximate a closed curve
as a polygon and reduce the number of points as much as
possible. It has the advantages of translation and rotation
invariance. The calculation steps of the Douglas-Puck algo-
rithm are as follows:

Step1: Calculate the two points M and N with the furthest
distance on the closed curve, and connect the two points
M and N to form a line segment DMN.

Step2: Find the point q with the largest distance from the
DMN line segment among the remaining points of the closed
curve, and calculate the distance Dq between q and the DMN.

Step3: Compare the distance Dq with the predetermined
threshold Dthreshold. If Dq is less than Dthreshold, then use
the line segment DMN as a straight line similar to the curve.

Step4: If the distance Dq is greater than Dthreshold, use
point q to divide the curve into two straight lines, Mq and Nq
(points M, N, and q are called key points), and perform steps
1 to 3 for Mq and Nq respectively.

Step5: When all the curves have been processed, connect
the key points to form a polygon, which is the approximation
of the original closed curve.

When the Douglas–Peucker algorithm calculates Dq,
it needs to solve all the key points on the curve one by
one, which requires a lot of calculation time. The bionic
algorithm can reduce the calculation time by optimizing the
Douglas–Peucker algorithm.

The BAS algorithm is a bionic algorithm that realizes
efficient optimization by simulating the beetle foraging. The
BAS algorithm does not need to know the specific form of the
function, and does not need gradient information to achieve
optimization. Compared with other population algorithms,
BAS algorithm only needs one individual to realize the opti-
mization. This reduces the calculation time of the algorithm.
The specific steps of the BAS algorithm are as follows.

Step1: Initialization of parameters in the BAS algorithm.
Initialize the attenuation factor E ta, the step size Step, the
ratio of the step size and the whisker c, the number of itera-
tions n, and the number of parameters k .
Step2: According to formula 5, randomize the direction

dir of longhorn beetle and the distance d0 between the two
antennas of beetle.

Step3: According to formula 5, calculate the function val-
ues fl and fr corresponding to the position of the left antennae
xl and the position of the right antennae xr of the beetle, and
calculate the value of the position x of the beetle in the next
step.

Step4: Repeat steps 2 and 3 for n times. Finally, the opti-
mized function value corresponding to the last position x of
longhorn beetle is obtained as the optimal solution.

dir = rand(k, 1); d0 = step/c
xl = x + d0∗dir/2; xr = x − step∗dir/2
f1 = f (xl); fr = f (xr)
x = x − step∗dir∗sign(fl − f r )

(5)

Then, we use the BAS algorithm to optimize the Douglas–
Peucker algorithm, and propose a lightweight algorithm for
label files based on the BAS-DP algorithm. This lightweight
algorithm can reduce the weight of data augmentation results
by reducing the number of parameters in the label file. The
calculation process of the label file lightweight algorithm is
shown in Fig.9.

This algorithm can greatly reduce the parameter amount of
the label file, improve the usability and lightness of the label
file, and maintain the accuracy of the label file.

Finally, the BAS-DP algorithm is combined with the data
augmentation network proposed in the previous section to
form a vehicle image data augmentation algorithm for seman-
tic segmentation, which can generate high-quality vehicle
image semantic segmentation datasets and corresponding
high-quality label files. At the same time, the proposed algo-
rithm has the advantages of requiring less training data, fast
running speed and high accuracy.

V. VERIFICATION AND ANALYSIS
In order to verify that the proposed data augmentation algo-
rithm has the advantages of less training data, fast running
speed and accuracy, this paper conducts relevant experiments
in this chapter.

Part A is the data acquisition and data preprocessing of the
training data. Part B is an ablation experiment with hyperpa-
rameter selection. Firstly, the optimal hyperparameters and
backbone network of the proposed data augmentation algo-
rithm are selected. Then, the comparative experiments of Test
9 and Test 10 verify that the proposed data augmentation algo-
rithm has the advantage of requiring less training data. Part C
is the qualitative analysis experiment. Comparing the results
generated by data augmentation with the results of manual
labeling, it is qualitatively verified that the proposed data
augmentation method has the advantages of high accuracy
and fast speed. Part D is the speed comparison experiment.
In a quantitative way, to verify that the proposed data aug-
mentation algorithm has a faster speed. Part E is the precision
comparison experiment. The proposed data augmentation
algorithm is compared with DCGAN and WCGAN, and it
is quantitatively verified that the proposed data augmentation
algorithm has the advantage of high precision.
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FIGURE 9. A lightweight algorithm for label files based on BAS-DP.

A. COLLECTION AND PREPROCESSING OF
TRAINING DATA
Before training the vehicle data augmentation algorithm for
semantic segmentation, the training data should be collected
and preprocessed.

First, a segment of vehicle video is collected, and two
frames of vehicle images are extracted every second as a
training dataset. The collected training dataset is a seman-
tic segmentation dataset of vehicle pictures, in which the
amount of data is 1200. The categories of the dataset are
Bus, Car, MicroBus, SUV (Sports Utility Vehicle), Truck and
Sportscar.

Then, since the semantic segmentation dataset not only
has vehicle pictures, but also has corresponding label files,

which mark the categories and contours of vehicles. So, the
vehicle images were manually labeled using software called
‘Labelme’. The dataset of vehicle data augmentation algo-
rithm for semantic segmentation is shown in Fig.10. The left
side of Fig.10 shows the labeling results for each categories
of vehicle. The right side of Fig.10 is the labeling result of
each image.

B. ABLATION EXPERIMENTS FOR BEST
HYPERPARAMETERS AND BEST BACKBONE
NETWORK SELECTION
In part B, 13 groups of ablation experiments were performed,
which completed the following3 tasks:

• Through 10 groups of ablation experiments, the optimal
hyperparameters of the proposed algorithm are obtained,
and it is verified that the proposed algorithm has the
advantage of requiring less training data.

• It is verified that transfer learning has a positive impact
on the proposed algorithm.

• Through three groups of ablation experiments, the opti-
mal backbone network of the proposed algorithm is
obtained.

First, ResNet50 is selected as the backbone network, and
10 groups of ablation experiments are performed. The param-
eters and results of the 10 groups of experiments are shown
in table1. Among them, mAP and mIoU are used to evaluate
the performance of the proposed algorithm. mAP is short
for mean average precision, and mIoU is short for mean
Intersection over Union. mAP is the average of the accuracy
precision for each category and is often used to evaluate the
performance of an algorithm. To more rigorously evaluate
the performance of the proposed algorithm, the thresholds of
mAP are set to 0.5 and 0.7, respectively. Those greater than or
equal to the threshold are true positive, while those less than
the threshold are false positive. In Table 1, themAP andmIoU
of each group of experiments are shown below the last three
rows, which are used to analyze the experimental results and
algorithm performance in detail.

The 10 groups of ablation experiments are shown in table 1.
OTrain andOVal correspond to the number of vehicle objects in
the training dataset and validation dataset, respectively. ITrain
and IVal correspond to the number of images in the training
dataset and the validation dataset, respectively. Epochs corre-
sponds to the number of iterations during training, and Cmini
corresponds the minimum area to wrap the object. Isize corre-
sponds to the size of the input image, and RScales corresponds
to the scale of the anchor point. Pretraining model indicates
whether to add a pre-training model, which is obtained by
training the coco dataset. In the field of image processing,
the coco dataset is a commonly used public dataset. The
following will analyze the results of 10 groups of ablation
experiments

Test1 and Test2 use different Epochs, but other parame-
ters are the same. Epochs of Test1 and Test2 are 100 and
200 respectively. With the increase of Epochs, the value of
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FIGURE 10. Vehicle dataset of data augmentation for semantic segmentation.

TABLE 1. Ablation experiment of vehicle data augmentation for semantic segmentation.

mAP (IoU > 0. 5) increased from 0. 569 to 0. 586. The
number ofEpochs is doubled, and themAP is only increased by
0.017, which has great stability. Therefore, when the number

of Epochs is small, the proposed algorithm is still easy to con-
verge, which explains the great convergence of the proposed
algorithm.
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In Test3, more amount of data is increased compared to
Test1, and other parameters remain unchanged. The results
show that both mAP (IoU > 0.5) and mAP (IoU > 0.7)
are reduced. Then, by increasing the number of Epochs
in Test4, the value of mAP is improved, and its mAP
(IoU > 0.5) is 0.565.
In Test5, compared to Test4, in order to evaluate the influ-

ence of image width and height, the size of the training image
is increased from 1024∗800 to 1920∗1080. The learning rate
is from the default value of 0.001 to 0.02, and the rest of
the parameters are like Test4. The results showed that mAP
(IoU > 0.5) was low. This explains that in the parameters
of test5, the proposed algorithm is less adaptable to high-
resolution images.

In Test6, compared to Test3, we still use images with a
resolution of 1024∗800 and reduce the size of Cmini from
56× 56 to 28× 28. The results show that the performance of
the proposed algorithm is improved.

Therefore, in Test7, we reduced the value of RScales com-
pared to Test5, and increased the Cmini to 28 × 28, while
keeping the resolution of the image at 1920∗1080. It is found
that the performance of the proposed algorithm is greatly
improved. This explains that reducing Cmini can improve the
performance of the proposed algorithm on high-resolution
images.

In Test8, compared with Test 7, we further reduce RScales,
and other parameters remain. The results show that the per-
formance of the proposed algorithm is greatly improved, and
the best RScales are (8, 16, 32, 64).
In Test9, to explore the effect of reducing the number of

training data on the performance of the algorithm, we only
reduced the amount of training data compared to test8. The
results show that the performance of the proposed algorithm
degrades significantly. Therefore, we followed upwith Test10
to improve the performance of the algorithm.

In Test10, comparedwith Test9, the amount of training data
is further reduced, and other parameters remain unchanged.
However, we used a pretrained model for transfer learning,
which was previously trained on the COCO dataset. The
results show that both the mAP (IoU > 0.5) and mAP (IoU >

0.7) values of Test10 are higher than those of Test8, indicat-
ing that Test10 has achieved higher precision. However, the
amount of training data for Test10 is only half that of Test8.
It is verified that the proposed algorithm has the advantage of
requiring less training data.

Summarizing 10 groups of ablation experiments, it is found
that the hyperparameters in Test10 are the best hyperparam-
eters for the proposed algorithm. 100 Epochs is enough to
achieve the convergence of the proposed algorithm. Further,
transfer learning can improve the accuracy while greatly
reducing the amount of training data required by the pro-
posed algorithm. Therefore, through 10 groups of ablation
experiments, the optimal hyperparameters of the proposed
algorithm are obtained, and it is verified that the pro-
posed algorithm has the advantage of requiring less training
data.

Then, the backbone network is to better extract features
from pictures, which has a greater impact on the perfor-
mance of the proposed algorithm.Therefore, the backbone
network selection experiments are next performed, and the
parameters used are those in Test10. ResNet50, ResNet101
andMobileNet V1 are all high-precision convolutional neural
network structures, which are composed of residual blocks
and have better feature extraction capabilities. Through resid-
ual learning, they can simplify the architecture, reduce the
computational cost, and solve the problem of gradient disap-
pearance well. In order to choose the best backbone network
and maintain a balance between speed and accuracy, these
three backbone network networks were tested. Further, the
performance is compared from 4 aspects: training time, data
augmentation speed per image, model weight and accuracy.

TABLE 2. Performance comparison of three backbone networks.

As shown in table 2, In terms of training time, the
shorter the time, the better the algorithm performance. Using
ResNet50 as the backbone network, the training time is the
shortest, which is 12.65 hours. In terms of data augmentation
speed, the faster the speed, the better the algorithm perfor-
mance. The speeds of these three backbone networks are
6.25 FPS, 4.6 FPS, and 5.2 FPS, respectively, and ResNet50
is the fastest. In terms of model size, the lighter the size,
the better the network performance. The model size dis-
tributions for the three backbone networks are 186.75MB,
268.86MB, and 207.82MB. Using ResNet50 as the backbone
network, theweight of the algorithm is the lightest. In terms of
accuracy, using ResNe50, ResNet101 and MobileNet V1 as
the backbone network, the accuracies are 93.4%, 93.8% and
84.5%, respectively. ResNet101 has the highest accuracy, and
the accuracy of ResNet50 is close to that of ResNet101.

Summary of Backbone Network Comparative Experi-
ments. In terms of training time, data augmentation speed
per image, and model weights, the performance of ResNet50
is the best. In terms of accuracy, although ResNet50 is not
the best, it is only 0.4% lower than the highest accuracy
ResNet101, which is very close to ResNet101. Therefore,
through comprehensive comparison, ResNet50 is selected as
the best backbone network

Summarizing 13 sets of experiments, and the parameters in
Test10 are determined as the best parameters of the proposed
algorithm, and ResNet50 is determined as the best backbone
network. At the same time, it is verified that the proposed
algorithm has the advantage of requiring less training data.
Next, we conduct qualitative and quantitative comparative
experiments using the obtained optimal parameters and the
optimal backbone network.

52172 VOLUME 10, 2022



F. Wang, Z. Wang: Fast and Efficient Data Augmentation for Sematic Segmentation Based on LQE Head and BAS-DP

C. DATA AUGMENTATION RESULTS QUALITATIVE
ANALYSIS AND COMPARATIVE EXPERIMENTS
There are two main types of evaluation methods for data
augmentation. One approach is qualitative evaluation, which
is judged by comparing the quality of images and labels in
data augmentation results. Another method is quantitative
evaluation, which evaluates the results of data augmentation
through fixed parameters.

In Part C, we conduct qualitative analysis and comparative
experiments. In Part D, we perform quantitative analysis and
comparative experiments.

Usually vehicle semantic segmentation datasets are manu-
ally labeled. The data augmentation algorithm proposed in
this paper is to replace manual labor, so the results of the
proposed algorithm must be close to the results of manual
labeling in accuracy. Firstly, the results of the proposed algo-
rithm are qualitatively compared with those of the manual
method.

In order to visually compare the difference between the
results of the proposed method and the results of artifi-
cial methods, we qualitatively compare the two results in
‘‘labelme’’. Then, we use ‘labelme’ to open the output of
the proposed data augmentation algorithm. Further, manually
label the same vehicle image using a manual method, then
also open with ‘labelme’. The first is a single-object qualita-
tive comparison experiment.

As shown in Fig.11, Fig.11(a) is the result of manual
labeling, and Fig.11(b) is the result generated by the proposed
data augmentation algorithm. As shown in the figure, the
result of data augmentation is close to the result of manual
labeling.

FIGURE 11. Comparative experiment of a single-object.

Further, the polygon around the object is to distinguish
the object from the background as much as possible at the
pixel level. The object is inside the closed area, and the
background is outside the closed area. Therefore, the more
accurate keypoints on the polygon, the higher the quality of
the semantic segmentation dataset.

As shown in Fig.11, there are few keypoints marked in
Fig.11(a). The number of keypoints marked in Fig.11(b) is
more, and the keypoints are all in accurate positions. There-
fore, the results generated by the proposed method can better
distinguish the object from the background, and its quality
is higher than that of the manual method in the single-object
comparison experiment.

In order to further discover the data augmentation effect of
the proposed algorithm in multi-object, we carried out multi-
object qualitative comparison experiments in three scenarios:
single-object, multi-object and ultra-multi-object.

Fig.12 is the data augmentation comparison experiment for
multiple objects, Fig.12(a) is the result of manual labeling,
and Fig.12(b) is the result of the proposed method. The
labeling effect of Fig.12(b) and Fig.12(a) is close. Further,
we conduct speed comparison experiments. For Fig.12, man-
ual labeling takes 42 seconds to label, while the proposed
algorithm only takes 1.2 seconds. Finally, it is proved that the
proposed data augmentation algorithm has good performance
in multi-object scenarios, and the proposed method is faster
than manual labeling.

FIGURE 12. Multi-object data augmentation contrast experiment.

In order to better evaluate the performance of the proposed
algorithm, we next conduct related experiments in the ultra-
multi-object scenario.

The data augmentation comparison experiment in ultra-
multi-object scenario is shown in Fig.13, which contains
77 vehicle objects and 6 types of vehicles. The data augmen-
tation comparison experiment of ultra-multi-object is shown
in Fig.13, which contains 77 vehicle objects and 6 kinds
of vehicles. And there are large objects, small objects and
severely occluded objects in Fig.13, which is a complex ultra-
multi-object environment. As shown in Fig.13, Fig.13(a) is
the result of manual labeling. Fig.13(b) is the result of the
proposed algorithm. Through careful qualitative comparison,
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FIGURE 13. Data augmentation comparative experiment in
ultra-multi-object scenario.

the effect of the proposed method is close to that of manual
labeling. Further, in terms of labeling time, manual labeling
takes 10 minutes and 23 seconds, while the algorithm only
needs 43 seconds. Finally, in the ultra-multi-object scenario,
it is demonstrated that the proposed data augmentation algo-
rithm has great performance, and the speed of the proposed
method is much faster than manual labeling.

To summarize Part C, we qualitatively compare the effects
of the proposed algorithm and manual labeling in single-
object, multi-object, and ultra-multi-object scenarios. The
results show that the proposed data augmentation algorithm
can well replace manual labeling and can complete the data
labeling task. At the same time, we find that the proposed
method is much faster than the manual method in terms of
speed.

D. SPEED COMPARISON EXPERIMENT OF VEHICLE
IMAGE SEMANTIC SEGMENTATION DATA AUGMENTATION
In order to verify that the proposed algorithm has the advan-
tages of high speed, and to accurately measure the label-
ing speed of the proposed algorithm in different scenarios,
a speed comparison experiment was carried out.

First, we collect 20 hours and 40 minutes of vehicle videos
in different scenes, and extract 10,880 unlabeled vehicle
images from the vehicle videos. And the resolutions of these
unlabeled vehicle images are all 1920∗1080. Then, the 10,880
images are divided into four categories: no object, single-
object, multi-object, and ultra-multi-object.

To explain further, no object is the absence of a vehicle
in the image. Single-object means that there is only one
vehicle in the image. Multi-object means that there are no
more than 30 vehicles in the image. Ultra-multi-object means
that the number of vehicles in the picture is more than 30.
Since there are no vehicles in the no-object images, only
single-object, multi-object, and ultra–multi-object need to be
labeled. Mixed categories are unclassified, unlabeled vehicle
images, which contain 4 classes of no-object, single-object,
multi-object, and ultra-multi-object. In the mixed category,
the number of no-object is more than half. Although images
of no-object do not need to be labeled, they still take up time
for manual labeling or algorithm recognition. Therefore, the
mixed category not only considers the time for multi-object
labeling, but also considers the time required to identify no-
object pictures.

As shown in table 3, we calculated the average time and
average speed of manual labeling and the proposed algorithm
labeling, respectively. Average time is the average time to
label a group of images. The average speed is the average
speed for only labeling one image. In the manual labeling
experiment, we selected 30 people to label images of three
categories, all of whom are very skilled in labeling methods
for semantic segmentation. Further, the average time and
average speed of manual labeling in the three categories
are obtained by statistics. In the labeling experiments of the
proposed method, we use the proposed algorithm to label
images with 30 sets of experiments for each category. Further,
the average time and average speed of the proposed method
are obtained by calculation. In the mixed category, if there is
no vehicle in the picture, it goes directly to the next picture
for labeling. The mixed category takes into account the time
it takes to recognize no-object pictures.

As shown in table 3, in the single-object category, the
speed of the proposed algorithm is 94.91% faster than that
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TABLE 3. Data augmentation speed comparison experiments.

of manual labeling. In the multi-object category, the speed
of the proposed method is 96.58% faster than that of manual
labeling. In the Ultra-multi-object category, the speed of the
proposed method is 94.16% faster than that of manual label-
ing. In the mixed category, the speed of the proposed method
is 95.3% faster than that of manual labeling.

E. ACCURACY COMPARISON TESTS OF
DIFFERENT METHODS
In part E, first, a qualitative verification test of the quality
of data augmentation result is carried out. Second, a com-
parative experiment with other data augmentation algorithms
was carried out. These two sets of experiments verify that the
proposed algorithm has the advantage of high accuracy.

A direct way to verify the performance of data augmen-
tation is to test the results of data augmentation in other
networks. If the accuracy of the test network is improved after
data augmentation, it means that the proposed data augmen-
tation algorithm performs well. At the same time, it can also
prove that the new dataset generated by the proposed data
augmentation algorithm has great performance.

In qualitative verification experiments of the quality of data
augmentation results, E-net is chosen as the test network.

Then, 800 pieces of data are manually labeled as the data
set before data augmentation, which is called the original
data, which is called the original data. Further, we perform
data augmentation on the original data using the proposed
algorithm and generate 2200 new labeled data. The original

800 pieces of data and these 2200 pieces of labeled data are
merged to form a new dataset, called data-augmented data.
Finally, the dataset is divided into training set, validation set
and test set according to 8:1:1. The original data and the
data-augmented data were sent to E-net for training, and the
accuracy of the two data sets after training was compared.
Table 4 shows the accuracy comparison experiment before
and after data augmentation.

TABLE 4. Validation testing of the quality of data-augmented results.

As shown in Table 4, after data augmentation, AP50
is increased from 0.832 to 0.924, and AP75 is increased
from 0.36 to 0.41. Validation test results show that the pro-
posed data augmentation algorithm can generate high-quality
labeled datasets, which can improve the accuracy of semantic
segmentation algorithms. This proves that the proposed algo-
rithm has the advantage of high accuracy.

In order to verify that the proposed algorithm has the
advantage of high precision compared with other methods,
the proposed algorithm is compared with other data augmen-
tation algorithms, which are DCGAN, WGAN, and tradi-
tional data augmentation methods. Further explanation, the
traditional data augmentation algorithm performs data aug-
mentation by cropping, flipping, changing the brightness, and
panning and zooming the labeled data set. Traditional data
augmentation methods create new data by simply transform-
ing the original data, which preserves the characteristics of
the original data to the greatest extent. DCGAN and WGAN
are two deep learning-based data augmentation algorithms
that generate new images through a generative adversarial
network, and then manually label the new images as a result
of data augmentation. In terms of accuracy, the comparison

TABLE 5. Accuracy comparison test of different data augmentation
methods.
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results of the four data augmentation methods are shown in
Table 5.

Where AR is the average recall in the range of IoU from
0.5 to 0.95. The proposed algorithm is the data augmentation
algorithm for semantic segmentation proposed in this paper.
As shown in Table 5, the AP50 of the proposed method is
0.924. The AP75 of the proposed method is 0.4, and the AR
of the proposed method is 0.54. The proposed algorithm
achieves the highest performance in three evaluation metrics.
Therefore, compared with other data augmentation methods,
this comparative test verifies that the proposed algorithm has
the advantage of high accuracy.

VI. CONCLUSION
Manually labeling vehicle semantic segmentation datasets
is slow, and training a well-performing data augmentation
algorithm for vehicle image semantic segmentation requires a
large amount of training data. Aiming at these problems, a fast
and efficient data augmentation algorithm for vehicle image
semantic segmentation based on LQE head is proposed.
The proposed algorithm can simultaneously generate vehicle
images and corresponding labels. Furthermore, the size of
the label file is too huge, which can cause the calculation
speed of the algorithm to decrease. Aiming at this problem,
a lightweight algorithm for the label file based on BAS-DP is
proposed. The lightweight algorithm can enormously reduce
the size of the label file. The experimental results demonstrate
that the proposed data augmentation algorithm can generate a
high-quality vehicle semantic segmentation dataset with only
a small amount of training data. In addition, the proposed
algorithm performs well in the following three scenarios:
single-object, multi-object and ultra-multi-object. Compared
with other data enhancement algorithms, the proposed algo-
rithm has three advantages, which are higher accuracy, faster
speed, and less training data required.

The proposed algorithm also has a few limitations. Firstly,
it belongs to supervised learning, so the proposed algorithm
still requires a limited amount of labeled data for training.
In the future, wewill train an unsupervised data augmentation
algorithm with unlabeled data. Secondly, the proposed data
augmentation algorithm has been only applied to vehicle
objects and has not been applied to other types of objects.
For example, animal objects are different from vehicle objects
in terms of appearance, so the performance of the proposed
algorithm applied to animal objects is unknown. In the future,
we will try to apply this data augmentation algorithm to
animal objects and other types of objects.
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