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ABSTRACT Amonitoring system is essential for controlling temperatures under safe levels of operation. It is
often challenging to attach temperature sensors directly to drive chips owing to the operating environment
or geometric challenges. Based on this motivation, we present a model-based virtual thermal sensing
technique for the real-time temperature monitoring of the electronics package. A few real sensors located
far from the target position are utilized in this virtual sensing system. These are then connected to a
well-tuned finite element model for data augmentation utilizing an inverse heat conduction framework.
Therefore, the virtual sensor allows us to estimate the temperature without the aid of a sensor installed
inside. However, this technique has a stability issue because it is classified into an inverse problem
(i.e., an ill-posed problem). We propose a Tikhonov regularization method to address this challenge,
including an efficient ridge estimator. The ridge estimator is used to select an optimal regularization
parameter so that we can obtain the stable and reliable inverse solution. Since conventional ridge estimators
rely on total transient errors, they require a significant computation. The proposed estimator is based on
the bias and variance errors, not the total errors, which allow us to efficiently find the optimal parameter.
In this paper, the thermal model is modeled using the finite element method, and the Krylov subspace-based
model order reduction is employed to reduce the computational burden. Finally, the proposed virtual thermal
sensor was experimentally validated utilizing a sealed cylindrical structure in which the commercial servo
drive operated.

INDEX TERMS Electronic packages, finite element method, inverse heat conduction problem, ridge
estimator, Tikhonov regularization, virtual thermal sensor.

I. INTRODUCTION
This study presents a virtual thermal sensor (VTS) for the
real-time monitoring of electronic packages. Recently devel-
oped electronic packages are compact enough to fit in var-
ious limited spaces; thus, no control cabinet is required.
Accordingly, drive modules integrated with the electron-
ics package have been designed, leading to more critical
thermal challenges; therefore, it is necessary to monitor
temperatures of electronics package. However, it is chal-
lenging to attach temperature sensors directly (or appropri-
ately located) to the drive chips because of the enclosed
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structure or operating environment. The VTS can be uti-
lized to provide cost-effective alternatives to costly and/or
impractical physical measurement instruments. The VTS
solely requires a few temperature sensors installed at an
easily accessible location in the machine to estimate the
thermal quantity of interest. It can be applied in several appli-
cations, such as electric vehicle batteries, electric motors,
semiconductor manufacturing thermal processors, transform-
ers, etc. [1]–[4]. For a similar purpose, the virtual sen-
sor technique has also been studied for structural vibration
problems [5]–[8].

The proposed VTS is based on the inverse heat conduc-
tion problem (IHCP) [9], [10]. The inverse problem is the
process of calculating from a set of measurements and is
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widely used in image reconstruction [11]–[14] and virtual
sensing [5]–[8]. Developing the VTS starts from modeling
the heat transfer model. Updating thermal parameters and the
filtering measurement errors are particularly added for accu-
racy and stability, respectively. It is also essential to determine
the location and number of sensors. When estimating only
one heat source, the closer the sensor is to the heat source,
the better it is. Unconditionally increasing the number of
sensors rather amplifies the measurement noise and should
be avoided. When estimating multiple heat sources, it is
desirable to select the location and number of sensors to
have linearly-independent sensitivity coefficients with large
magnitude [9], [10].

For heat transfer modeling, the finite element method
(FEM) [15] is applied here. FEM provides highly accurate
numerical results, but it is challenging to be employed for
real-time monitoring because of its high computational bur-
den. This can be alleviated by using the lumped thermal
model [1], [3], [4], [16], but the lumped model may cause
significant estimation errors in the IHCP. Another popular
approach to reduce the computational cost is the model order
reduction based on the dominant basis [17], [18]. The eigen-
vectors are commonly used as the basis in structural problems
because they have physical meaning, i.e., structural mode
shapes. Since the responses of the domain in the frequency
band of interest are described principally by dominant mode
shapes in its frequency band, this basis is useful in struc-
tural vibration. However, unlike structural problems, thermal
modes do not exhibit resonance and hence, the behavior of
a thermal system at a frequency is generally not dominated
by a few number of eigenvectors. Therefore, for thermal
problems, it is recommended to use a Krylov basis [19]–[22]
rather than the eigenvector. The Krylov subspace technique is
the moment-matching method. This method requires locating
samples where the moments are matched, and the perfor-
mance of this method in thermal problems has been validated
by many studies.

During the FEmodeling process, the thermalmodel param-
eters of the numerical model are tuned to reflect the real
model well. Test measurement data are used to revise the
FE model. This task is commonly referred to as the model
update [23], [24]. Most of this research has focused on two
approaches in thermal problems: the steady-state method [25]
and the transient method [26]–[29]. Steady-state methods
commonly require long duration experimental runs and it
is difficult to calibrate the specific heat capacity. Therefore,
the transient approach based on the IHCP with a relatively
brief duration experimental run is employed in this work
to achieve the real-time monitoring. The conjugate gradient
method based on the whole-time domain [10], [26], [27]
was used to solve the IHCP. Three thermal model param-
eters, namely, thermal conductivity, specific heat capacity,
and thermal contact conductance, are updated in the target
electronic packages. It is difficult to adjust the three parame-
ters simultaneously. Thus, at the component level, the thermal
conductivity and the specific heat capacity are concurrently

revised first, and the thermal contact conductance is adjusted
in the assembly model.

In addition, measurement errors should be carefully con-
trolled in VTS because small errors are dramatically ampli-
fied through the inverse problem. To address this issue,
many researchers have developed the stabilizers such as
the sequential function specification method (SFSM) [9],
regularization method (RM) [30], [31], iterative regulariza-
tion (IR) [32], combined SFSM-RM [33], and randomized
singular value decomposition [34]. These methods provide
good stabilization performance, but those may require addi-
tional computational burden at every time step to reduce the
ill-conditioning of the gain coefficient matrix. However, the
Tikhonov regularization method [30], [31] only has a com-
putational load when selecting the optimal Tikhonov param-
eter in pre-processing, not real-time sensing. Therefore, the
Tikhonov method is considered in the proposed VTS.

The optimal Tikhonov parameter can be selected by the
ridge estimator, such as the Morozov discrepancy princi-
ple [35], [36], generalized cross-validation (GCV) [37], [38],
and L-curve rule [39], [40]. Themost commonly usedmethod
is the Morozov discrepancy principle, which is relatively
accurate and easy to use. This method can only be used
when prior information is known [35], [36]. Currently, the
noise level of temperature is well known; thus, the Morozov
discrepancy principle is one of the best methods to recover
the temperature history as accurately as possible, but it can-
not guarantee the heat source estimation [41]. In addition,
if the system size and data measurement time are increased,
the conventional ridge estimator requires significant com-
putational costs. This is because the discrepancy principle
needs to calculate transient solutions at each regularization
parameter discretized over a specified range. To improve this
problem, we utilized an efficient ridge estimator proposed
in the optimal hybrid parameter selection algorithm [42].
The key advantage of an efficient ridge estimator does not
depend on FE transient solutions, unlike the conventional
ridge estimator. Thus, regardless of the operating time of the
system, the optimal Tikhonov parameter can be estimated
quickly. This is possible because it is not based on the total
square error but the sum of the bias and the variance errors.
Each of the two errors is a function of the maximum change
in heat flux and the noise level of the sensor, not transient
solutions. In this study, a new ridge estimator for temperature
estimation, rather than heat flux, is derived and used to maxi-
mize the performance of the real-time temperature sensing of
the VTS.

Finally, the proposed VTS can be applied for the real-time
monitoring of electrical machines with complicated heat
flows and is accurate and stable. The methodology is demon-
strated using a commercial servo drive, Gold Solo Twitter,
which delivers up to 5 kW . The commercial servo drive
operates inside a sealed cylindrical housing.

This paper is organized as follows. Section II reviews
the thermal modeling and presents a solution algorithm
that includes the block diagonal formulation based on the

50590 VOLUME 10, 2022



C.-U. Ahn et al.: VTS for Real-Time Monitoring of Electronic Packages in Totally Enclosed System

TABLE 1. Numerical model and thermal parameters.

Schur complement. Section III introduces the model update.
Section IV suggests the virtual sensing algorithm using the
Tikhonov regularization method and the ridge estimator.
Section V evaluates the feasibility and performance of the
proposed VTS. Section VI presents the conclusions.

II. THERMAL MODELING
This section briefly reviews the finite element model of the
heat equation and the time integration scheme. We then intro-
duce a model order reduction technique based on the Krylov
subspace techniques [19], [22] for real-time sensing.

A. FINITE ELEMENT MODEL
The governing equations for the temperature fields can be
approximated by the discretization method as the following
algebraic differential equation [15]:

CṪ(t)+KT(t) = q(t), (1)

where C and K are the heat capacity and heat transfer matri-
ces, respectively. T and q are the temperature and thermal
loading vectors, respectively. If the total number of degrees
of freedom (DOF) is defined as Ng, the matrix size of C and
K is (Ng × Ng). The vector size of T and q is (Ng × 1). The
relationship between the thermal parameters and the system
matrices is presented in TABLE 1.
To solve (1), we employ the Backward Euler method,

which is given:

Ṫm =
1
1t

(Tm − Tm−1) , (2)

where subscript m denotes a time step, and time t is rep-
resented as the discretized form tm. 1t denotes the time
step size (or measurement time interval) and is defined as
(1t = tm − tm−1). Then, we can obtain as follows:

Tm = A−1
(

1
1t

CTm−1 + qm

)
, (3a)

A =
(

1
1t

C+K
)
, (3b)

We can now construct a measure of the residual error
with Tm and the measured temperature data to estimate the
unknown parameters.

B. MODEL ORDER REDUCTION
The Krylov model reduction method is based on the conser-
vation of the transfer function of the system. Assuming K is
non-singular, Equation (1) can be rewritten as follows:

T−MṪ = b, (4a)

M = −K−1C, b = K−1q. (4b)

In the Laplace domain, the transfer function H(s) can be
defined with the Laplace variable s and its Taylor expansion
around s = 0 leads to

T(s) = H(s)b =
l−1∑
k=0

mk+1sk + o
(
sl−1

)
, (5a)

H(s) =
l−1∑
k=0

Mksk + o
(
sl−1

)
, (5b)

where the vectormk+1 is the moments of the transfer function
and defined as mk+1 = Mkb. Therefore, the Krylov sub-
space of a Ng-dimensional vector space has a l-dimensional
subspace where l ≤ Ng. The projection matrix V for model
reduction is defined as:

colspan {V} = Kl (M,b)

= span
{
b,Mb,M2b, · · · ,Ml−1b

}
, (6)

where colspan denotes the span of the columns. It can
be efficiently computed using Arnoldi [43] or Lanczos
algorithms [44].

Finally, we can obtain the reduced-order model using V as
follow:

C̃ ˙̃T+ K̃T̃ = q̃, (7a)

C̃ = VTCV, K̃ = VTKV, q̃ = VTq, (7b)

T = VT̃, (7c)

where the upper tilde ˜( ) refers to the reduced quantity.

III. MODEL UPDATE
This section introduces a method to calibrate the thermal con-
ductivity, specific heat capacity, and thermal contact conduc-
tance. The thermal conductivity and specific heat capacity are
tuned simultaneously, and the thermal contact conductance is
calibrated in an assembled state. The thermal parameters can
be updated by minimizing the squared residual errors, and the
sum of the squared residual errors is defined as:

S(P) =
M∑
m=1

[
Ym − T̄m(P)

]T [
Ym − T̄m(P)

]
, (8a)

Ym =
[
Y1,m · · · YI ,m

]T
, (8b)

T̄m =
[
T1,m · · · TI ,m

]T
, T̄m = LTm (8c)

P =
[
P1 · · · PN

]T
, (8d)

(8e)

whereYm and T̄m are the vectors containing themeasured and
calculated temperatures at a certain time step m, respectively,
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and, L is the Boolean matrix that maps the vector to the
components corresponding to the sensor positions. The super-
script T indicates the transpose of the vector. I , N , andM are
the number of sensors, the number of unknown parameters,
and the number of time steps, respectively.

Tominimize S(P), we implement an iterative process based
on the Conjugate Gradient method [10], [27], and the iteration
step consists of the following steps:

1) Initialization of unknown parameters.
2) Construct the finite element heat transfer model:

C(r)Ṫ(r)
m +K(r)T(r)

m = qm, (9)

where superscript (r) denotes the number of iterations
of the CG method, and sets r to 1 at first.

3) Determine the sensor information and compute the
temperature using (3).

4) Calculate the gradient direction by differentiating (8a)
with respect to the unknown parameters:{
∇S(r)

}
j
= −2

M∑
m=1

{
X̄(r)
m

}T
j

[
Ym − T̄(r)

m

]
= 0, (10a){

X̄(r)
m

}
j
= L

{
X(r)
m

}
j
, (10b)

where
{
∇S(r)

}
j and

{
X(r)

m
}
j, j = 1, · · · ,N , are the

j-th gradient direction and the j-th sensitivity coeffi-
cient vector, respectively.

5) Compute the conjugation coefficient, which is given by
the Fletcher-Reeves [45] expression in the form:

γ (r)
=

∑N
j=1

{
∇S(r)

}2
j∑N

j=1
{
∇S(r−1)

}2
j

, for r = 1, 2, · · ·

γ (0)
= 0, for r = 0. (11)

6) Calculate the direction of descent d(r):

d(r) = ∇S(r) + γ (r)d(r−1) with d(0) = 0. (12)

7) Determine the search step size β(r):

β(r) =

∑M
m=1

[
X̄(r)
m d(r)

]T [
T̄(r)
m − Ym

]
∑M

m=1

[
X̄(r)
m d(r)

]T [
X̄(r)
m d(r)

] . (13)

8) Unknown parameters are updated as:

P(r+1)
= P(r)

− β(r)d(r). (14)

9) By the discrepancy principle [36], [46], the iterative
procedure is stopped when the following criterion is
satisfied:

S
(
P(r+1)

)
< ε, (15)

where ε is the tolerance. In general, the value of ε can
be obtained by the standard deviation of the measure-
ment noise using the assumption for the temperature
residuals in the discrepancy principle.

10) Increase r by one and go to the second step.

A. THERMAL CONDUCTIVITY AND SPECIFIC HEAT
CAPACITY
The thermal conductivity and the specific heat capacity are
temperature-dependent parameters in practice. If the linearity
of the material is strong within the operating temperature
range of the machine, these two parameters can be assumed
to be constant. In this case, the sensitivity coefficient matrix
in (10) can be defined as follows:

X̄(r)
m = L

[
∂T(r)

m

∂cv
,

∂T(r)
m

∂k

]
,

= L
[{

X(r)
m

}
1
,

{
X(r)
m

}
2

]
, (16)

with{
X(r)
m

}
1
=

1
1t

{
A(r)

}−1 [
C(r)

{
X(r)
m−1

}
1
−
∂C(r)

∂cv
1T(r)

m

]
,

(17a){
X(r)
m

}
2
=

{
A(r)

}−1 [ 1
1t

C(r)
{
X(r)
m−1

}
2
−
∂K(r)

∂k
T(r)
m

]
,

(17b)

1T(r)
m =

(
T(r)
m − T(r)

m−1

)
, (17c)

where the sizes of X(r)
m and X̄(r)

m are (Ng × N ), and (I × N ),
respectively.

B. THERMAL CONTACT CONDUCTANCE
The factors influencing the thermal contact conductance
include contact pressure, interstitial material, surface defor-
mation, surface roughness, waviness, and flatness [47], [48].
Since the quantification of these factors can only be mea-
sured in a statistical sense, it is very challenging to consider
all. Therefore, we assume thermal contact conductance as a
constant and estimate the constant based on the inverse heat
conduction problem. To do this, the following assumptions
are considered to address the inherent complexity of the
thermal contact problems:

1) Contact surfaces are clean.
2) Only bulk material cases are considered, not thin-film

material.
3) Contacting solids have isotropic thermal and physical

properties.
4) Contact surfaces are not warped or broken in the operat-

ing temperature range, and thermal resistance changes
due to increased temperature may be ignored.

5) The contact pressure and thermal interface material are
uniformly applied in the defined contact surfaces.

The sensitivity coefficient matrix is now constructed to
calibrate the value of the thermal contact conductance and
is defined as:

X̄(r)
m = L

[
∂T(r)

m

∂h(1)
, · · · ,

∂T(r)
m

∂h(j)
, · · ·

]
,

= L
[{

X(r)
m

}
1
, · · · ,

{
X(r)
m

}
j
, · · ·

]
, (18)
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in which{
X(r)
m

}
j
=

{
A(r)

}−1 [ 1
1t

C(r)
{
X(r)
m−1

}
j
−
∂K(r)

∂h(j)
T(r)
m

]
,

(19)

where h(j), j = 1, · · · ,Nc, is the thermal contact conductance
specified on the j-th contact surface. Nc denotes the number
of contact surfaces.

IV. VIRTUAL THERMAL SENSOR
The updated numerical model described in the previous
section is used to estimate the unknown heat source and tem-
perature distribution. Such time-varying function estimation
is obtained by minimizing the ordinary squares norm based
on the sequential time–domain. The estimated solutions
based on the sequential time–domain method are extremely
sensitive to measurement errors, causing severe oscillation
in estimated solutions. We use a Tikhonov regularization
method to reduce this instability. Therefore, we incorpo-
rate the zeroth-order regularization term into (8) and then
obtain [9]:

Sm =
[
Ym − T̄m

]T [
Ym − T̄m

]
+ α1PTm1Pm, (20a)

1Pm = Pm − Pm−1,

Pm =
[
gTm fTm

]T
,

gm =
[
g1,m · · · gk,m · · ·

]T
,

fm =
[
f1,m · · · fl,m · · ·

]T
, (20b)

where gk,m is the internal heat rate generated inside the
k-th body at time tm, and fl,m is the surface heat flux imposed
on the l-th surface at time tm. Sm and T̄m are the functions
of Pm. The second term on the right-hand side of (20a)
is a zeroth-order regularization term. α is a regularization
parameter.

By solving the minimization problem in (20), the matrix
normal equation and estimated solutions are derived as
follows:

1Pm =
(
X̄T X̄+ αI

)−1
X̄T

[
Ym − T̂s,m

]
, (21a)

Pm ≈ Pm−1 +1Pm, (21b)

Tm ≈ T̂m + X1Pm, (21c)

in which

X = A−1
∂qm
∂Pm

, X̄ = LX, (22)

where T̂m is the virtual temperature under a uniform load
condition (Pm = Pm−1), and Pm is the estimated heat
source vector. Tm is the estimated temperature vector that
contains information on the regions without sensors attached.
(∂qm/∂Pm) is the unit heat flux matrix and does not change
over time in linear problems (i.e., the thermal material prop-
erties are constants).

A. REGULARIZATION PARAMETER FOR STABILITY
The regularization parameter α in (21a) controls the degree
of filtering of the amplified measurement noise. If the value
of α is too large, a significant amount of information in the
solution is lost. Therefore, it is important to select the opti-
mal α. In this work, we propose an efficient ridge estimator
for the temperature estimation.

The efficient ridge estimator is based on the sum of the
squares of the bias and variance errors. It is already well
known that the Tikhonov regularization method [30], [31] is a
bias-variance trade-off approach. The square of the total error
can be calculated as:

T 2(α) = D2(α)+ V 2(α), (23)

where T , D and V are the total, the bias, and the variance
errors, respectively, and are functions of α.

First, the square of the bias error is defined as:

D2
=

1
M

M∑
m=1

(
δTbias,m

)T (
δTbias,m

)
, (24)

in which δTbias,m is the bias error vector. To calculate the bias
error vector, the gradient of (20a) is set to zero, which yields

α1Pm = X̄T [Ym − T̄m
]
, (25)

where T̂m can be defined as follows:

T̄m = Ym − δTbias,m, (26)

Here, δTbias,m is the bias error vector of the temperature
corresponding to the sensor positions and is a function of α.
When α is zero, δTbias,m becomes a zero vector, which
indicates that T̂m is over-fitted to Ym. Substituting (26)
into (25) gives

δTbias,m = α
(
X̄X̄T

)+
X̄1Pm, (27)

where
(
XsXT

s
)+ is the Moore-Penrose generalized inverse

of XsXT
s . The inverse solution of the heat source tends to

deviate initially and to become parallel to the exact solution.
Using this characteristic, we assume that 1Pm equals the
exact heat source change when ignoring the deviated error.
We then consider only the maximum heat source change to
calculate the maximum bias error. Note that it is not reason-
able to ignore the deviated error when the sensor position
is far from the heat source [42]. Therefore, a sensitivity
analysis is essential to find appropriate sensor location [9].
Equations (24) and (27) can be redefined as:

D2
= (δTbias)T (δTbias) , (28a)

δTbias = α
(
X̄X̄T

)+
X̄1Pmax , (28b)

1Pmax := {1Pm}max , for 1 ≤ m ≤ M . (28c)

Second, the square of the variance error is defined as:

V 2
=

1
M

M∑
m=1

(
δTvar,m

)T (
δTvar,m

)
, (29)
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where δTvar,m is a variance error vector of the temperature.
To calculate the propagation and accumulation of the mea-
surement error over time, Equation (21a) can be rewritten
using LTm instead of T̄m, as follows:

1Pm = G

Ym − L

BmT0 +

m−1∑
p=0

BpA−1q0


+

(
m−1∑
i=1

i∑
k=0

BkX1Pm−i

)}]
, (30a)

G =
(
X̄T X̄+ αI

)−1
X̄T , (30b)

B =
1
1t

A−1C, (30c)

where T0 and q0 are the initial temperature and thermal
loading vectors, respectively. The initial errors of T0 and
q0 are negligible if the thermal boundary condition is clearly
defined with a well-established experimental environment.
Equation (30a) could then be defined using only the measure-
ment error:

δ1Pvar,m = G

[
δYm − L

m−1∑
i=1

(
I− Bi+1

)
DδYm−i

]
,

(31a)

D = (I− B)−1XG, (31b)

where δ1Pvar,m is the variance error of the heat source
change. δYm+1 is the measurement error vector and is nor-
mally distributed with zero mean and standard deviation,
denoted by δYm+1

∼ N (0, σ 2), where σ is an I -dimensional
standard deviation (i.e., the measurement noise level of the
sensors) vector.

The summation term in (31) represents the propagation
and accumulation of errors, and it entails high computational
resources. To solve this problem, we assume δYm as a regular
oscillation:

δYm = (−1)m σ . (32)

By substituting (32) into (31), we can obtain the
time-independent variance error of the heat source
change:

δ1Pvar = G
[
I+ L

(
I+ BMa

)
(I+ B)−1 B2D

]
σ , (33a)

where δ1Pvar is the vector of the time-independent variance
error of the heat source.Ma is a time step at the moment when
the norm of AMa is less than one. Equation (33) is derived
whenMa is odd, and in a similar manner, the equation can be
derived whenMa is even.

Equation (21c) indicates that the variance error of the
temperature is determined by the variance error of the heat
source change. To compensate for the assumption in (32),

FIGURE 1. (a) Finite element model of each component, and (b) Gold solo
twitter has six MOSFETs located on a metal PCB.

the variance error of the temperature can be defined as
follows:

δTvar = ξ (α)δ1Pvar , (34a)

ξ (α) =

√√√√∑Ms
m=1 |δTs,m|

2∑Ms
m=1 |δ1Pm|2

, (34b)

where δTs,m and δ1Pm are the temperature and the heat
source change vectors with zero mean, respectively, and are
calculated by δYm, which is the measurement noise data
with zero mean. This equation can be calculated more effi-
ciently through the Krylov model reduction method intro-
duced in (7). Using (34), we can redefine (29) as follows:

V 2
= (δTvar )T (δTvar ) . (35)

Finally, the total error of the temperature is calculated as
the sum ofD2 and V 2 defined in (28a) and (35), respectively.
Note that Equations (28a) and (35) do not depend on the
temperature history, and thus, this approach can be utilized
for the initial estimation without collecting measurement data
in advance. It is also important that the bias error is a function
of the heat source change and α, and the variance error is a
function of the measurement noise and α.

V. EXPERIMENTAL RESULTS
In this Section, the proposed model-based virtual thermal
sensor is experimentally validated using a sealed cylindrical
structure in which a commercial servo drive operates. The
cylindrical structure comprises three parts that are assembled
by the thermal contact: the middle and bottom parts are made
of aluminum 6061 T-6, and the top part is made of 303 stain-
less steel. A commercial servo drive is located inside this
structure with the heat-sink as illustrated in Figure 1 and is
used to control the ECmotor, brushless, 400W . We utilized a
Gold Solo Twitter (ElmoMotion Control, Petah Tikva, Israel)
that delivers up to 5 kW power in an average 1.87 in3 compact
package, and a flat heat-sink provided by Elmo Inc. was used
to dissipate the heat. The Gold Solo Twitter (GTWI) has six
MOSFETs located on the metal PCB, shown in Figure 1b.
It is necessary to monitor the temperature of the MOSFET
because most of the heat is generated there. However, it is not
easy to attach the temperature sensor directly. Even if a sensor
can be inserted inside, the GTWI is designed to be compact,
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FIGURE 2. (a) Chamber and (b) vacuum pump. In all experiments, the
degree of vacuum and internal temperature of the chamber were set at
100 mbar and 50◦C , respectively.

FIGURE 3. Schematic of the experimental setup for each case: (a) spatial
configuration, (b) virtual sensing, (c) model update (Assembly), (d) model
update (Bottom), (e) model update (Top).

making it difficult to attach the bead of the sensor directly
to the MOSFET. Therefore, we use a virtual thermal sensor
to estimate the temperature and heat source of the MOSFET
without the aid of a sensor installed inside.

A. EXPERIMENTAL SET-UP AND NUMERICAL MODELING
This study strictly controls the experimental environment
to eliminate unpredictable error factors. First, the heat dis-
sipation by convection and jig should be well established.
Convection is the source of non-white noise, which is difficult
to filter. Therefore, it is desirable to remove the effects of
convection using a vacuum chamber; thus, we utilized the
chamber and vacuum pump in Figure 2.

In all the experiments, the degree of vacuum and the cham-
ber’s internal (= ambient) temperature are set at 100mbar

FIGURE 4. Experimental boundary conditions and sensor locations for
model update process of Top part.

FIGURE 5. Experimental boundary conditions and sensor locations for
model update process of Bottom part.

FIGURE 6. Experimental boundary conditions and sensor locations to
update the thermal contact conductance of the three contact surfaces.

TABLE 2. Information of finite element models.

and about 50◦C , respectively. In these chamber condi-
tions, the convective heat transfer coefficient, τ , is about
6.16W/m2K [49], [50]. We minimize the heat dissipation
by the jig using a thread with low thermal conductivity,
as illustrated in Figure 4. T-type thermocouples (Copper-
Constantan) were used, and the sampling rate is 2Hz for
all experiments. This type of thermocouple (TC) has a
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TABLE 3. Experimental setup conditions in each process.

FIGURE 7. Comparison of results before and after the model update
process to calibrate k and cv of Top made of 303steel. (a) Temperature
results and (b) mean squared error (MSE) of sensors.

continuous temperature range from −250 up to 350◦C and
maximum error of ±1.0◦C or ±0.75%. For the numerical
modeling of the VTS, we consider the three-dimensional
heat transfer problem and implement finite element modeling
with eight-node hexahedral elements. The information for the
FE models is listed in TABLE 2, and herein, the DOF per
node is one. The experimental setup conditions for the model
update process and the virtual sensing are listed in TABLE 3,
and The detailed spatial information of sensor location is
described in Figure 3.

B. MODEL UPDATE
The model update process was performed to minimize mod-
eling errors. The model parameters were tuned in the range
of 50◦ to 65◦C considering the operating temperature range
of the housing. After calibrating the thermal conductivity

FIGURE 8. Comparison of results before and after the model update
process to calibrate k and cv of Bottom made of AL6061. (a) Temperature
results and (b) mean squared error (MSE) of sensors.

and the specific heat capacity before assembly, the thermal
contact conductance was tuned by assembling. The exper-
imental setup for tunning the two parameters is illustrated
in Figures 4 and 5, and the Figure 6 describes the experi-
mental setting for updating the thermal contact conductance.
The mean squared error (MSE) of the sensors is adopted to
evaluate the performance of the model update and is defined
as:

(MSE)m =
1
I

I∑
i=1

[
Yi,m − Ti,m

]T [Yi,m − Ti,m] , (36)

where i and m denote the sensor number and the time
step. The initial and updated values of the two parameters
for each material are listed in TABLE 4, and the typical
values of each material are also indicated. The updated
values of the thermal contact conductance are shown in
TABEL 5. Note that material properties are depend on the
manufacturing quality, and thus, there may be a signif-
icant difference between the typical and updated values.
Figures 7a, 8a, and 9a show only the temperature results
of the two thermocouples for a clear comparison, and
Figures 7b, 8b, and 9b shows the MSE results evaluated by
the three thermocouples.

C. VIRTUAL THERMAL SENSING
The updated model is utilized to construct the processing
unit of the VTS. Algorithm is programmed using MATLAB
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FIGURE 9. Comparison of results before and after the model update
process to calibrate the thermal contact conductances. (a) Temperature
results and (b) mean squared error (MSE) of sensors.

TABLE 4. Initial and updated values of thermal parameters for each
material.

TABLE 5. Initial and updated values of thermal contact conductance at
contact surfaces.

software on a processing unit equipped with Intel i7-8700K
CPU@3.70GHz and 64.0GBRAM. EtherCAT protocol is uti-
lized for communication between devices. The chamber con-
ditions are similar to the previous experiments, and the GTWI
drives the motor at 2500rpm in a torque-controlled environ-
ment at 0.843Nm. At this time, the continuous output current
of the GTWI is 8 to 8.5A, and the bus voltage is 24VDC . Elmo
Inc. provides the information that the control of the GTWI
consumes 2.5 to 4W , depending on the encoder’s loading and
on the type of communication and the GTWI is designed such
that the maximum heat-sink temperature should be no higher
than 80◦C to 85◦C .

FIGURE 10. A temperature sensor for virtual sensing is attached to the
floor of the measurement target, and four temperature sensors are used
to validate the VTS.

FIGURE 11. Standard deviation error results of the ridge estimators when
α is varied. The average elapsed times to estimate α by the Morozov and
the proposed methods are 16.13 hours and 4.85 min, respectively.

FIGURE 12. Heat source of the MOSFET estimated by a virtual thermal
sensor with a T-type thermocouple. The regularization parameter α
adopted for stability is 2.16 × 10−17.

One thermocouple (TC 16) is used for virtual sensing,
and the location of the sensor is illustrated in Figure 10.
This measured temperature corresponds to Ym in (21a). The
regularization parameter α used for stability is 2.16× 10−17,
obtained by the proposed ridge estimator in Section IV-A. The
optimal α value selected by the proposed ridge estimator is
compared with the Morozov discrepancy principle to prove
that it is reasonable. The results are shown in Figure 11
and indicate that the optimal α values estimated by the two
methods are similar. The average elapsed times to estimate α
by the Morozov and the proposed methods are 16.13 hours
and 4.85 min, respectively.
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FIGURE 13. Compare temperature results measured by the thermocouple
and the virtual thermal sensor for validation. (a) Temperature results and
(b) mean squared error (MSE) of sensors.

FIGURE 14. Processing time per time step in the processing unit for
virtual sensing. The measurement time interval of the thermocouple data
logger is 0.5sec .

First, we estimate the heat source of the MOSFET
using the VTS with one thermocouple (TC 16) attached
to the floor, and the result of the estimated heat source
is shown in Figure 12. Finally, four thermocouples
(TC 12∼15) are used to prove that the estimated temperature
distribution by the VTS is reliable. Three thermocouples
(TC 13∼15) are attached to the housing, one to the heat
sink (TC 12), and the locations of attachment are illustrated
in the Figures 6 and 10. The results measured by thermo-
couple (TC 12) and virtual sensor (TC 12 and MOSFET)
are shown in Figure 13a, and Figure 13b shows the MSE
results evaluated by the four thermocouples (TC 12∼15).
The temperature distribution of the unmeasured position
are shown in Figure 15. Finally, Figure 14 describes the

FIGURE 15. Internal temperature distribution images obtained with the
virtual thermal sensor.

computational cost of implementing the virtual sensor. The
processing time per step is the time required form to increase
by one. The Krylov basis used in the reduced-order modeling
is three, and the processing time per step is about 270 times
faster than the Full model.

VI. CONCLUSION
This study developed a virtual thermal sensor for the real-time
monitoring of electronic packages with sensor attachment
limitations. Minimizing modeling errors and measurement
errors were the most important in developing reliable VTS,
and real-time virtual sensing requires programming algo-
rithms that can be implemented using affordable processors.
A finite element model and its updating technique were used
to minimize the uncertainties of the thermal parameters that
arise during the manufacturing process. The computational
burden of the finite element model was reduced using the
Krylov model reduction method. This implementation saved
the processing time per time steps about 270 times rather than
the full model used. In addition, the Tikhonov regularization
method was utilized to reduce the sensitivity to measurement
errors, and we proposed an estimator for efficiently selecting
the regularization parameter. The proposed estimator was ver-
ified by comparing it with the widely used Morozov discrep-
ancy principle. The time required for each method to estimate
the optimal α was 16.13 hours and 4.85 min, respectively,
demonstrating efficiency.

Finally, the proposed VTS was implemented and experi-
mentally evaluated with an enclosed structure in which the
commercial servo drive, Gold Solo Twitter, operates. The
VTSmonitored that MOSFETs, the main heat source of Gold
Solo Twitter, operates near 85◦C , generating about 2.5 W
of heat. The advantage of the VTS is that it can estimate
the amount of heat generated without electrical knowledge.
In addition, taking advantage of the finite element method,
the proposed VTS can also be installed in systems with more
complicated heat flows. Therefore, the proposed VTS can be
sufficiently applied to other applications, such as robot actua-
tors, electric vehicle batteries, electric motors, semiconductor
manufacturing thermal processors, and transformers.
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