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ABSTRACT Highly immersive content in the form of extended reality (XR) is attracting attention as an
alternative to conventional video services such as YouTube and Facebook. Many galleries and museums
already offer online virtual reality (VR) tours where users are free to choose the spot they want to move
to, beyond merely looking around. Although the ease of implementation, this key-spot hopping is still
far from giving the real feeling of walking. Meanwhile, in recent volumetric or light-field-based studies,
view rendering that supports free and continuous viewpoint movements has been attempted. With online
services in mind, however, the high data volume and computational complexity are a big obstacle to practical
applications. Path-walking VR, the target system of this paper, can be a good compromise, where the viewer
can enjoy the virtual space while walking along the route. The interactive path-walking VR service is
entry-level immersive video, but streaming over the network is still challenging. One of the main problems to
be tackled is that the movement patterns of viewers need to be reflected in the streaming strategy to improve
the quality of experience. Unlike unidirectional video, the movement of the viewer determines which images
and how many images should be transmitted. This paper proposes schemes to reduce streaming delays by
reflecting the viewer’s movement characteristics. It is differentiated from existing studies for omnidirectional
video in that the proposed schemes control not only image quality but also view update rate. The first is a
caching strategy which takes advantage of the geometrical locality of the virtual space that the viewer will
soon reach a position close to the current position. This not only reduces the communication delay from the
server, but also decreases the burden of server-side request handling. The second scheme uses the relationship
between the viewer’s speed and the field of vision. The image quality is adjusted according to the viewer’s
speed and head direction. Experimental results show that the proposed schemes achieve stable viewer’s
experience by considering walking characteristics in virtual space. It is expected that the results of this paper
will provide insight to those who design interactive streaming systems for immersive media applications.

INDEX TERMS Immersive media, interactive virtual reality, video streaming, omni-directional video,
low-latency, caching.

I. INTRODUCTION
Over the past decade, platforms that provide video services
such as YouTube and Facebook have grown significantly.
Their main content involves the simple watching of videos
with little or no user interaction, such as live streaming
and video-on-demand (VOD) services. Recently, trends with
regard to the consumption of multimedia have become highly
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diversified. There is an increasing demand to create con-
tent and share experiences with others. To do this, user-
experience-centered virtual reality (VR), augmented real-
ity (AR), and mixed reality (MR) are positioned as new
alternatives.

Emerging captured-image-based VR services allow users
to walk inside virtual spaces, beyond merely looking around.
Virtual tour applications, such as Google Arts & Culture [1]
and the National Gallery [2], are prime examples. As shown
in Figure 1 (a), telepresence is provided to remote viewers,
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FIGURE 1. Comparison of (a) spot-based VR and (b) Path-walking VR.

allowing them to enjoy 360-degree views while moving to
various spots inside the virtual space. The advantage of such
a spot-based VR tour is the ease of implementation.With only
a few shooting images, general users can easily build a virtual
tour service using a commercial tool such as Google VR
tour creator [3]. However, key-spot hopping is insufficient
to provide the experience of walking. In recent volumetric
or light-field-based studies, view rendering that supports free
and continuous viewpoint movements has been attempted.
With online services in mind, the high data volume and com-
putational complexity are obstacles to commercialization.
Currently, 4G technology barely supports entry-level VR
applications. B5G/6G is known to support the specification
of ultra-low latency of 1ms or sub-ms. However, considering
available network performance, multi-user environment, and
the demand for high-quality video services, it is difficult to
realize a true free viewpoint streaming right away. The path-
walkingVR can be an intermediate step. Given a set of images
taken while moving a 360-degree camera, viewers can walk
freely on the camera path. This can be referred to as path-
walking VR, and an example is shown in Figure 1 (b). It is
the easiest and most practical approach to realize experience-
oriented virtual space based on existing video streaming
platforms.

In an interactive VR streaming service targeting multiple
users, the end-to-end (E2E) latency felt by the user must be
very short. Under this constraint, path-walking VR has the
following challenges. Unlike spot-hopping, path-walking is
continuous. Thus, view data must be streamed seamlessly
accordingly. Also, unlike passive video watching, the moving
pattern or speed of the viewer is dynamics and unpredictable.
To tackle these problems, this paper proposes two schemes.
The first is geometric distance-based caching (GDC). When
walking along a continuous path, view images of nearby
locations will be needed soon. Also, users can linger in a
neighborhood, revisiting the same places. Reflecting these
characteristics, a geometric locality-based cache is placed
on the client side. Cache hit reduces the request handling
burden on the server side and indirectly contributes to the
reduction of E2E latency. Second, the exploring speed aware
streaming (ESS) scheme uses the relationship between the
viewer’s speed and the field of vision [4]. When viewers run
quickly, they only look forward without looking around thor-
oughly. However, view updating must be done frequently in

proportion to the exploration speed. The ESS takes advantage
of the trade-off between update rate and the quality of area
outside of interest. It reduces latency by lowering the quality
of the out-of-interest area in the 360-degree image when the
user moves fast and enables high view update rate.

The remainder of this paper is organized as follows.
Section II reviews related research works. Section III briefly
introduces the overall proposed system. The proposed
schemes are described in detail in Section IV. The experimen-
tal results are presented in Section V. The paper is concluded
in Section VI.

II. RELATED WORK
There have been many studies for low-latency VR streaming.
Most techniques start from the transmission of omnidirec-
tional videos. It utilizes the fact that the field-of-view (FoV)
of device such as a head-mounted display (HMD) is limited
and only partial views are transmitted, not 360-degree full
views [5]–[9]. Tile-based viewport-dependent techniques are
most widely used. A full view is divided into multiple tiles.
The tile set belonging to the FoV is transmitted at a high-
quality level, whereas the rest of the set utilizes low quality
transmission, reducing the amount of data and maintaining
the quality of experience (QoE) of the user. Instead of chang-
ing the combination of high- and low-quality tile sets every
frame, a segment, which is a set of frames, can be used as a
transmission unit [10]–[16]. [17] considers the characteristics
of contents. They take advantage of the fact that it is difficult
for the viewer to clearly perceive a distant or fast-moving
scene. Based on the relative speed and depth of objects in
the scene, tiles are grouped and transmitted at high or low
bitrates.

Several studies suggest prefetching methods through FoV
prediction, where a FoV prediction model is based on the
user’s head trace record. In addition, various prediction meth-
ods such as linear regression [11], [18], long short-term
memory (LSTM) model [14], [19], and a Gaussian proba-
bilistic model [20], have been attempted. Other experimental
results [21] show that if a separate prediction model is used
for each user, higher prediction accuracy can be achieved
compared to the one-size-fits-all method. In many cases, the
user’s FoV shows a similar pattern. Accordingly, researchers
have attempted to reduce server requests by introducing a
cache. The work in [22] reduces duplicate requests by group-
ing users so that they do not become competitors when users
in close physical proximity request the same data. In [23], a
FoV-aware caching policy is proposed, where the relationship
between tile requests and the corresponding quality levels are
learned through maximum likelihood estimation, after which
the tile with the lowest probability is removed from the cache.
Various other research works focusing on placing the cache
on an edge server are also in progress [24]–[26].

Recent studies deal with immersive video streaming,
which supports a high level of degree-of-freedom (DoF) by
which users can feel motion parallax according to changes
in the head position as well as the head rotation. Most
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FIGURE 2. Overview of the path-walking VR streaming environment.

of these volumetric videos are based on point cloud and
light field technologies. A FoV-based tiling technique, often
used in omnidirectional video, is typically applied. How-
ever, as high DoF requires a significantly large increase in
data, various new methods have been proposed. One line
of research [27]–[30], [32] proposes a method to transmit
the point cloud robustly and reliably according to the net-
work conditions. Two other studies [28], [33] use progressive
compression, where a low-quality point cloud is basically
transmitted, with additional data transmitted when the net-
work conditions are fine, enabling a high-quality point cloud.
The multi-view system of [31] down-samples the surround-
ing views of the reference view to reduce the bitrate. Tile-
based transmission has also been attempted by dividing the
point cloud into spatial and temporal three-dimensional (3D)
tiles [34], whereas the point cloud has also been divided into a
3Dmesh for transmission [35]. Other work [29] enables adap-
tive streaming by proposing DASH-PC, which fits DASH
to a point cloud. To reduce the transmission latency fur-
ther, many studies have attempted to increase the predic-
tion accuracy, such as by FoV predictions [37], viewport
predictions [28], [38] and latency compensation [35]. [36]
adjusts the bitrate by estimating the network condition with
an improved bitrate estimator called EVeREst. However, the
high DoF makes accurate prediction more difficult than in
the low-DoF case, such as omnidirectional videos. Another
option is to interpolate the position and rotation informa-
tion acquired from Microsoft HoloLens by means of the
spherical linear interpolation of rotations (SLERP) and to
apply it to the AutoReg prediction model [39]. A protocol
for applying the conventional dynamic adaptive streaming
of two-dimensional (2D) video to a light-field-based system
has also been devised, showing good subjective results [40].
Other studies [41], [42] reduce the E2E latency by putting
the light-field data necessary for rendering in the cache on
the GPU on the client side.

Thus far, existing research on high-DoF video streaming
is at the level of extending omnidirectional video streaming
techniques. The point here is to control the image qual-
ity by distinguishing viewport and non-viewport areas. In

3-DoF+ streaming applications, viewpoint change should be
additionally supported. However, there were few studies to
dynamically control the view update rate in consideration
of the video scene or user movement characteristics. The
schemes proposed in this paper are the first attempts to con-
trol both image quality and update rate by actively reflecting
user movement and attention in a 3-DoF+ environment.

III. SYSTEM OVERVIEW
The virtual space assumed in this paper is constructed in the
following way. For scalability and processing convenience,
the 360-degree camera shoots densely moving along the grid
on the floor. One side of the unit square forming the grid is
0.6m and it consists of 120 images. The location of a camera
and the corresponding view are saved on the server. In order
to satisfy smooth communication in an interactive streaming
scenario, not only the short transmission time due to the low
bitrate but also the encoding/decoding time are important.
In general, video coding has better compression efficiency
than image coding and a hardware-accelerated codec using
GPUs effectively accelerates complex video coding process.
However, it is observed that the advantage of this GPU-based
video codec is valid for single and long video services. Note
that, the transfer time between the host and device memory
and the time for memory allocation/deallocation process are
included in the decoding time. The proposed system handles
multiple and short pseudo-sequences. In this case, an addi-
tional time overhead due to the movement to the GPU or
memory allocation is added for every pseudo-sequence, and
thus, the decoding time increases rapidly. This consideration
leads to the decision to use the image codec on the CPU rather
than the video codec on the GPU. The proposed system uses
JPEG.

Figure 2 shows the path-walking VR streaming environ-
ment assumed in this paper. A full-view, 4K (4096 × 2048,
24bit) 360-degree image photographed along the grid path
is vertically divided into four sections to create a sub-view.
Each sub-view is stored in the server’s storage along with the
location information on the x-y plane of the virtual space.
The sub-view-ds, down-sampled from each sub-view, is also
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saved. The black arrow represents the basic data path. The
client transmits the Pos to the server. The Pos, which is
obtained from a joystick, HMD or a controller, contains the
position of the x-y plane and the head direction of the viewer.
The server calculates the virtual 3D world coordinate Loc
from the real-world coordinate Pos and streams the corre-
sponding 360-degree image Vjpeg to the client in an on-the-
fly manner through the network. The client decodes Vjpeg into
Vimg. This is displayed to a 360-degree sphere.
In an interactive streaming system, it is known that the E2E

latency has a budget of approximately 16 to 20ms [43]. This
latency, Te2e, can be broken down as follows.

Te2e = Tcomm + Trender + Tmisc (1)

Tcomm is the communication time and Trender is the time
required to decode the sub-view and display it on the sphere.
When receiving sub-view-ds, an up-sampling operation is
also required. The other miscellaneous processing time is
called Tmisc. Trender and Tcomm, which account for a large
proportion of Te2e, should be reduced for real-time streaming.
IEEE 802.11n networks have an average bandwidth of about
30 Mbps. Assuming that the 4K JPEG image size is 0.45MB,
the time budget for Te2e is consumed only by Tcomm. Even
if the bandwidth or latency is greatly improved in a B5G/6G
environment, Tcomm can be still long due to fluctuations of
the effective bandwidth or the request handling burden of the
server in a multi-user environment. Therefore, it is necessary
to reduce both the request frequency and the amount of
data transmission. The decoding time of 4K JPEG images in
Trender is also difficult to ignore and largely depends on the
computing capacity.

In Figure 2, the proposed schemes are shown in blue and
orange. The caching scheme marked in blue takes advan-
tage of the fact that the probability of view reuse is closely
related to the viewer’s current position. This contributes to
a decrease in the request frequency and will be explained
in detail in Section IV.A. The scheme marked in orange
uses a history table containing the viewer’s recent movement
records. Through this, the exploring speed (ES) is estimated to
reduce the amount of data and, consequently, to shorten Te2e
without deteriorating the quality of the viewer experience.
This will be explained in detail in Section IV.B. The dotted
line in Figure 2 shows the information sharing between two
schemes, with the corresponding integration presented in
Section IV.C.

The user’s QoE can be monitored by adding a QoE eval-
uation module to the client side. In many video streaming
systems, visual quality and latency are the primary metrics
of QoE. Inspired by previous studies, the proposed system
defines the immersive score to reflect the two factors of qual-
ity and latency. Immersive score is calculated as the product
of quality rate and latency rate, and each has a value in the
range of 0 to 1. Unlike one-way streaming, in interactive
streaming like the proposed system, it is the user who decides
which view to display. The viewport of the 360-degree image
is determined according to the user’s head direction. The

expected quality of experience is set to 1 according to the
user’s movement state, and differences between expectations
and actuals are scored. When a user sees a view with the
expected quality, the quality rate = 1. Also, the degree of
attention or view update rate for the views changes according
to the user’s moving speed. If the view is updated in time
according to the user’s movement speed, the latency rate= 1.
To sum up, if the client receives the image with the expected
quality within the maximum allowable delay time, it can be
said that the QoE is not degraded. In Section V.C, the result of
measuring the immersive score is presented through a simple
simulation assuming a multi-user environment.

IV. PROPOSED SCHEMES
A. GEOMETRIC DISTANCE BASED CACHING
In cache designs for path-walking VR systems, the order of
image access is closely related to the acquisition location of
the image. The closer the geometric distance to the current
viewpoint is, the higher the probability of visiting becomes.
Conversely, the chances of visiting a distant location sooner
or later are low. In addition, there is ultimately a limit on the
geometric distance that can be accessed.

In Figure 3, the viewer’s moving route is displayed on
the x-y plane. The circle represents a walking step and the
view is updated in each circle. The view image at the dotted
circle position does not exist in the client’s cache as of now.
Given that all circles through which the arrow passes in
Figure 3 (a) are visited initially, cold start misses occur in
the cache. The missing view is requested to the server. The
view sent from the server is stored in the cache. Assuming
that the cache size is 15, the cache becomes full in (1, 3).
From (0, 3) in Figure 3 (b), cache replacement occurs. When
a commonly used cache replacement policy such as the first-
in-first-out (FIFO), least recently used (LRU), and least fre-
quently used (LFU) type is adopted, views of (0, 0), (1, 0)
and (2, 0) are evicted in that order. In Figure 3 (c), when a
cache miss occurs at a revisited location such as (0, 0), it is
expressed as a circle with an X. As shown in Figure 3 (c),
cache misses will occur from (0, 0) to (5, 0), visited previ-
ously but subsequently evicted.

FIGURE 3. Snapshots of cache replacement according to viewer’s moving
route (a) first 6 views (b) second 6 views (c) third 6 views and (d) fourth
6 views with FIFO, LRU and LFU policy.

In Figure 4, the cache replacement policy considering
geometric locality is applied. Figure 4 (a) shows the same
moving route presented in Figure 3. When visiting (0, 3),
(0, 2) and (0, 1) in sequence, the view of the farthest location
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FIGURE 4. Snapshots of cache replacement according to viewer’s moving
route (a) third 6 views and (b) fourth 6 views with the proposed GDC
policy.

FIGURE 5. The process of the selection a victim of replacement with GDC
policy.

is replaced. Here, the geometric distance is calculated using
the Euclidean distance. When there are multiple locations
with an identical geometric distance, LRU is applied. As a
result, views of (6, 0), (6, 1) and (6, 3) are evicted in that
order. In Figure 4 (b), cache hits are observed for a while
due to revisiting. Those are represented by circles with an
O. Specifically, this type of cache hit is valuable in a virtual
tour system as viewers often hover looking around the virtual
space. The proposed GDC replacement policy is shown as
a pseudo code in Figure 5. V denotes all viewpoint sets in
the cache, whereas c is the current viewpoint input. N is the
number of victim candidates and is a user-defined variable.
The Euclidean distance between c and all elements of V is cal-
culated. Among them, N candidates having a large distance
value are selected. The distance of the shortest path between
N candidates and the current viewpoint c is calculated. This
is done because even if the Euclidean distance is small, the
moving distance, which is the distance the viewer actually
moves, can be large. Among the N candidates, the location
with the largest shortest path is selected as a victim to be
evicted.

B. EXPLORING SPEED AWARE STREAMING
The proposed ESS utilizes the relationship between the
viewer’s exploring speed and the view area on which viewer
can concentrate, i.e., the field of vision. When the viewer
moves slowly, there will be time to walk and look around.

Naturally, the field of vision increases. On the other hand,
the purpose of a fast-moving viewer is not to look, but to
move, and it is difficult to care about surroundings other than
the heading direction. Meanwhile, if the viewer moves fast,
the view-update rate should be high as well. In the proposed
ESS, every time the view image is updated, the corresponding
viewer’s motion acceleration is recorded in the history table.
The current ES is estimated based on the acceleration his-
tory. In (2), tupleacc (t) is the acceleration value captured by
the motion sensor during the tth view update. Window size
(WS) refers to the number of reference views used for the
acceleration calculation. WS is determined by the sampling
rate of the motion sensor. For example, if the sampling rate is
60Hz, WS is set to 60. ES is the average value of tupleacc
(t) recorded during the past WS. If the history size (HS),
which is the number of views recorded in the history table,
is smaller than WS, then WS is set to HS. The ES calculation
is very simple. Thus, it has little effect on Te2e. In this paper,
the ES level (ESL) is divided into three, as in (3). When the
viewer’s moving speed ranges from 0 to 1, thES1 and thES2
are set to 1/3 and 2/3 of the maximum speed, respectively.
The maximum speed of the viewer can be preset according to
the theme of the virtual space. For example, the system may
set the maximum speed to be low in an art gallery and high
in the theme park.

ES (t) =

∑WS
i=t−WS tupleacc (i)

WS
(ifHS < WS,WS = HS)

(2)

ESlevel =


0 : Slow (0 ≤ ES < thES1)
1 : Fast (thES1 ≤ ES < thES2)
2 : SuperFast (thES2 ≤ ES)

(3)

When receiving a view request from a client, the server
adjusts the quality of the sub-view according to the ESL.
In Figure 6 (a), the full view consists of four sub-views, and
the center is assumed to be front. When the head direction of
the viewer equals front, the view quality that varies according
to the ESL is shown in Figures 6 (b), (c) and (d). When

FIGURE 6. Change of viewer’s field of vision on a view image (a) four
sub-views (b) When ESL= slow (c) When ESL= fast (d) When ESL=

super-fast.
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ESL=slow in Figure 6 (b), sub-views in the left and right
directions are sent together with the front. On the other hand,
when ESL=fast or super-fast, viewers will not have time
to look around. Therefore, sub-view-ds is used. When the
network bandwidth is insufficient, this reduces Tcomm, and
the JPEG decoding time in Trender also decreases. The area
that has not been transmitted is filled with black on the client
side. Because it covers 270 degrees, which is sufficiently
larger than the 135-degree human FoV, the probability that
the viewer accidentally sees the area filled with black is low.
Hereafter, the partial views of Figures. 6 (b), (c) and (d) are
denoted by 3sv, 1sv-2dsv and 3dsv, respectively. The full view
of Figure 6 (a) is can also be expressed as 4sv.

C. MODIFIED GEOMETRIC DISTANCE CACHING
CONSIDERING THE EXPLORING SPEED
If GDC and ESS are simply combined, a cache hit is deter-
mined only when the viewpoint, head direction and ESL all
match. Thus, the miss rate significantly increases compared
to the GDC-only case. To avoid this, the criterion for a cache
hit is modified in the GDC-ESS integrated system. This is
shown as a pseudo code in Figure 7. VPreq, HD and VQreq(H)
refer to the viewpoint of the requested view, the head direc-
tion, and the quality (down-sampled or not) of the sub-view
in HD, respectively, whereas VP$ and VQ$(HD) represent
the cached view information. For HD, four directions are
presented with from 0 to 3. Here,−1 represents counterclock-
wise rotation such as front to left, whereas +1 represents
clockwise rotation such as right to back. For VQ, sub-view-
ds and sub-view are indicated as 1 and 2, respectively, and
if not in the cache, it is set as 0. First, the views that match
the viewpoint of the requested view are searched. If there
is no matching viewpoint, it is a miss. When a view with
the same viewpoint is found, the case where the difference
between VQ$ and VQreq is greater than 0 is counted for three
sub-views centered on HD. When count=3, it is a full hit,
whereas it is a miss when count=0. Otherwise, it is defined

FIGURE 7. The process of the decision of modified cache hit condition.

as a partial hit. With a partial hit, decoding and rendering start
anyway with the view stored in the cache. At the same time,
a client requests the necessary sub-view from the server and
supplements it later. By introducing partial hit, cached view
images are flexibly used.

Figure 8 shows the reduced Te2e due to the partial hits.
It is assumed that the view with ESL=slow && HD=front is
required at the current viewpoint. The cache in any case has a
viewwith the same viewpoint, but the condition of this view is
ESL=slow &&HD=right. On the client side, the cache table
search time and the ESL calculating, decoding, and rendering
times are shown in blue, yellow, purple, and gray, respec-
tively. Orange denotes the network communication time in
the B5G/6G environment. The time required to prepare the
requested view on the server side is denoted in green. The
cache miss situation is shown in Figure 8 (a). The client
requests 3svwith ESL=slow to the server. In the experimental
environment of this paper as described in Section V, Te2e at
this time is 32ms. In the case of the partial hit in Figure 8 (b),
the sub-views in the front and right directions are decoded
first, whereas the sub-view in the left direction not in the
cache is requested to the server. The number of requests
in a partial hit is reduced to one-third compared to a miss.
Also, the communication time is hidden by the decoding time.
Therefore, Te2e decreases from 32ms to 21ms.

FIGURE 8. Comparison of view update timeline (a) before applying
partial hit condition and (b) after applying partial hit condition.

In the GDC-ESS integrated system, the replacement policy
also must be modified. In the GDC-only system discussed in
Section IV.A, the view that is geometrically distant is evicted
through the Euclidean distance and the shortest path search is
performed locally. When ESS is applied together, the number
of sub-views and their VQs of the victim candidates are also
considered. For example, it is assumed that two victim candi-
dates v1 and v2 are determined according to the conditions of
the GDC-only system. v1 and v2 were previously visited and
cached with ESL=slow&&HD=front. Subsequently, v1 was
revisited with ESL =slow && HD=back, and at this point
all sub-views in four directions were stored in the cache. v1
with sub-views in four directions will be more likely to be a
cache hit in the future compared to v2 where the sub-views in
three directions are stored. In addition, the view quality VQ is
considered. The cache hit probability is higher when the VQs
of the sub-views in three directions are all full samples than
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when the Qs of the sub-views in four directions are down-
sampled. In practical interactive streaming systems, server
and client latency may be greater than expected for various
reasons. In this case, the increase in Te2e can be prevented by
applying frame skipping.

V. EXPERIMENTAL RESULTS
A. EXPERIMENT ENVIRONMENT
For the experiments, four walking paths are assumed to
consider the various exploration scenarios of the viewer.
Figure 9 show the top view of a virtual space. The line repre-
sents the path. The length of path corresponds to the number
of images and it is proportional to the moving distance.
Specifically, the solid line illustrates the user’s walking trace
which is denoted by s→ t hereafter. s and t are starting and
ending points, respectively. The head direction is identical
to the viewer’s movement direction. Green, orange and red
colors denote the ESL=slow, fast and super-fast, respec-
tively. The path denoted as simple_cycle and worst_cycle
in Figure 9 (a) and (b) are such that (s→t) x 2, where the
path from s to t is visited twice. Among the four walking
scenarios, worst_cycle has the longest path. Thus, it takes a
long time to go back to the viewpoint already visited before,
which is an example of the worst case in terms of caching.
maze_trace and museum_trace of Figures 9 (c) and (d) are
created based on the actual movement of the user in the virtual
space. maze_trace of Figure 9 (c) hasmany direction changes.
Also, if users encounter a dead end (i3 → u3), they must
return in the opposite direction(u3 → i3 → i4). There are
three exhibition rooms in museum_trace of Figure 9 (d). It is
assumed that the user takes a tour twice counterclockwise
along the walls of each room.

FIGURE 9. Walking scenarios in virtual space (a) simple_cycle
(b) worst_cycle (c) maze_trace (d) museum_trace.

FIGURE 10. Estimated Te2e comparison based on required network
bandwidth.

FIGURE 11. Measured Te2e comparison.

In the experiments shown in Figures 10 and 11, the server
and the client run on a single computer to minimize var-
ious variables that may occur in the real network deliv-
ery process and to see the maximum possibility of each
approach in an ideal network environment. Figures 12 and 13
show the cache hit rate of the client and the number of
requests to the server. It is a value determined by the walking
scenario and request policy, not by the network situation.
Thus, the server and client are run on a single computer
as well. In Figures 14 and 16, each server and client com-
municate through the network. The specifications of com-
puting platform used in the experiment are as follows: an
Intel Core i7-7700K, 48GB of RAM, a Crucial MX300
CT525MX300SSD1 525GB solid-state drive (SSD), and a
NVIDIA GTX 1060 card with 3GB of memory. In Figure 14,
the server and client run on independent laptops and commu-
nicate through a wired network assuming an ideal wireless
network environment. Its bandwidth is controlled using a
traffic control application [44]. In the experiment shown in
Figure 16, the performance is measured on an actual 5G
network. The specifications of the server are as follows: an
Intel Core i5-8300H, 32GB of RAM and a NVIDIA GTX
1050 graphics card, whereas the specifications of the client
are as follows: of Intel Core i7-9750H, 16GB of RAM,
a NVIDIA GTX 1660Ti graphics card. For JPEG decoding,
the libjpeg-turbo library [45] is used. Up-sampling is imple-
mented with a simple nearest-neighbor interpolation algo-
rithm. In the system implementation that utilizes the schemes
proposed in Section IV, the chunk of views, not a single view,
is used as a processing unit in consideration of the spatial
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FIGURE 12. Comparing the reduction of cache penalty for client as the cache hit rate for four walking scenarios (a) simple_cycle (b) worst_cycle
(c) maze_trace (d) museum_trace.

FIGURE 13. Comparing the reduction of cache penalty for server as the number of server requests for four walking scenarios (a) simple_cycle
(b) worst_cycle (c) maze_trace (d) museum_trace.

FIGURE 14. Immersive rate depending on four schemes, which are ESS+LRU, ESS+ARMA, Mahzari’s and ESS+GDC, for four walking scenarios
(a) simple_cycle (b) worst_cycle (c) maze_trace (d) museum_trace.

locality of the viewer’s movement. In the experiment, one
side of each square that forms a grid-shaped path consists of
120 images in 4K resolution and this is divided into multiple
segments. Hereinafter, the segment is the unit of transmission
and caching. It is assumed that there are no changes in the
walking direction or speed within the segment unit. For GDC,
the view prefetch technique is not used. The thresholds of
‘‘slow’’, ‘‘fast’’ and ‘‘very fast’’ movements are determined
as follows. A device such as a treadmill that can receive a
walking or running motion as an input is rare. Therefore, the
maximum speed that can be reached by a general controller
such as a joystick is set to ‘‘very fast’’, and 1/3 and 2/3 of the
‘‘very fast’’ are set to ‘‘slow’’ and ‘‘fast’’, respectively.

B. PERFORMANCE EVALUATION OF ESS
In Figure 10, Omni_view transmits and renders the full-view
covering 360 degrees. This is a simple and basic scheme, but

the data transmission amounts are large. In Tiled_view, the
amount of transmitted data is reduced by considering the head
direction [5]–[11]. However, the viewer’s speed is not taken
into account. The proposed ESS considers both viewer’s
speed and field of vision. Tiled_view in this experiment is
set identically to 1sv-2dsv of ESS, where full-view is divided
into four tiles (=sub-views) and one sub-view and two sub-
view-ds are transmitted. The proposed ESS flexibly adjusts
the amount of data transmitted in three types: 3sv, 1sv-2dsv,
and 3dsv, reflecting both head direction and speed. For the
viewer’s QoE, it is assumed that the target T ∗e2e should not
exceed 33, 22 and 15mswhen ESL=slow, fast and super-fast,
respectively. In ESL=slow, a typical update rate of 30 frames-
per-second (=33 ms) was set as the baseline. When the user
is in ESL=fast or super-fast, it is set to be 1.5 and 2 times the
update rate of ESL=slow. This is based on the information
that the averagewalking speed of a person is 3 to 4.5 km/h and

VOLUME 10, 2022 50709



W.-K. Seo, C. E. Rhee: Low Latency Streaming for Path-Walking VR Systems

the running speed is about 8 to 12 km/h. Focusing on com-
munication, each ESL has the target communication delay
T ∗comm, which is determined by subtracting Trender and Tmisc,
from the target T ∗e2e of each ESL. Compared to T ∗comm, Tmisc
and Trender are relatively constant. Based on empirical data,
Tmisc is set to 1ms, whereas Trender is set to 20ms, 11.5ms,
10ms and 8.4ms on average when full-view (=4sv), 3sv,
1sv-2dsv and 3dsv, respectively. When considering image
transmission in JPEG format, the size of full-view (=4sv),
3sv, 1sv-2dsv and 3dsv are approximately set to be 480KB,
360KB, 200KB and 120KB, respectively. Given the viewer’s
ESL, the required network bandwidths of three schemes can
be calculated as follows.

Required bandwidth = data size (Mbit)×
1000

T ∗comm(ms)
(4)

If the network environment is sufficient enough to meet
the required network bandwidth and the transmission delay
does not exceed T ∗comm, images can be streamed without
QoE degradation. In Figure 10, the horizontal axis represents
ESL, whereas the left vertical axis represents the required
network bandwidth to meet the target T ∗comm. For reference,
the minimum (100 Mbps), average (250 Mbps) and maxi-
mum (400Mbps) network bandwidth supported in the actual
environment of the 5G sub6 band [46] are indicated by the
three dotted lines in the figure. The performance of the three
schemes is analyzed based on the viewer’s movement and
the required network environment. When the ESL is fast, the
view update rate should be high. At this time, the required
network bandwidth will increase accordingly. Omni_view,
indicated by the black bars, is able to satisfy the target
T ∗comm only when ESL=slow under the avg-or-above net-
work environment. In Tiled_view, indicated by blue bars,
images are smoothly streamed when ESL=slow or when
ESL=fast under the avg-or-above network environment.
However, when ESL=super-fast, the required network band-
width inevitably increases as the viewer moves faster. It is
because that Omni_view and Tiled_view do not have a
solution capable of achieving the target T ∗comm that fits the
viewer’s motion characteristics. On the other hand, ESS,
indicated by the orange bars, responds flexibly to the viewer’s
various speeds given the avg-or-above network environment.
From this result, it is expected that the proposed ESS will
be able to meet the target T ∗comm for all ESL conditions in
a 5G sub6 bands bandwidth environment with an average or
higher. Although not presented in the experiment, the ESS can
also adaptively handle the min network environment through
additional down-sampling.

In Figure 11, Te2e taken for streaming in a directly wired
network environment is measured and compared with the
estimated performance in Figure 10. The horizontal axis
represents the given network bandwidth. As in Figure 10,
min, avg and max denote the representative network band-
width supported in the actual environment of the 5G sub6
band [46]. For the experiment, the bandwidth is controlled by
the aforementioned traffic control application. The vertical

axis represents the measured Te2e. For reference, the target
T ∗e2e of each ESL is indicated by the three dotted lines in
the figure. Omni_view, Tiled_view and the proposed ESS are
illustrated in black, blue and orange, respectively. For each
bar, the dark color denotes Tcomm, whereas the light color
denotes the sum of Trender and Tmisc. In the min bandwidth,
as expected in Figure 10, only Tiled_view barely satisfies the
target T ∗e2e(slow). When the network bandwidth is increased
to the avg level, the measured Te2e values of Omni_view
and ESSSuperFast slightly exceed the estimation in Figure 10.
At the max bandwidth, the measured Te2e is nearly identical
to the estimated performance in Figure 10. This experiment
shows that the proposed ESS adapts more flexibly to various
network environments while also satisfying the target Te2e
compared to Omni_view and Tiled_view.

C. PERFORMANCE EVALUATION OF GDC
In this subsection, the cache performance is analyzed when
the proposed GDC is applied in addition to ESS. In a cache
based interactive streaming system, there are two types of
miss penalties: the view update delay on the client side and
the request handling burden on the server side. On the client
side, the cache hit rate contributes to the short response
time. A prefetching request with a high cache hit rate will
be preferred over an on-demand request in terms of latency.
However, from the server’s point of view, the client’s cache hit
rate has nothing to do with the server’s request handling load.
Whatmatters is the number of requests. If the prediction accu-
racy is 100%, only the necessary data will be requested to the
server in prefetching exactly like on-demand. However, if the
prediction fails, an additional request is made for the data
needed immediately, which increases the redundant request
overhead for the server. Therefore, despite the high cache
hit rate which is good for quick response time for clients,
the server’s workload can be high due to prediction failure.
If the path is complicated and difficult to predict, the request
overhead that the server has to deal with increases further.
To reduce this, data reuse on the client side plays an important
role, mostly depending on the cache replacement policy.

To show that the proposed GDC is suitable for stream-
ing systems for multiple users, it is compared with dead
reckoning with an autoregressive moving average (ARMA)
filter replacement strategy [47], least-recently-used (LRU)
policies and Mahzari’s approach [23]. LRU evicts the oldest
viewpoint based on the viewer’s visit time. ARMA predicts
the view position based on history, with unlikely viewpoints
replaced according to the LRU policy. ARMA predicts the
future viewpoint based on the past 10 viewpoints. In the study
by Mahzari, FoV-aware edge caching is applied to adaptive
360-degree video streaming. This approach shows very high
FoV prediction accuracy rates with the view quality adjusted
according to the network bandwidth. In the experiment in this
study, Mahzari’s prediction accuracy is set to 100% assuming
the best situation. However, due to its adaptiveness to the net-
work bandwidth, a down-sampled low-quality view must be
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transmitted under a 100Mbps condition. Mahzari’s approach
also uses the LRU caching policy, similar to ARMA.

Figure 12 shows the cache hit rate depending on the cache
size on the client side. Cache updating is conducted in seg-
ment units to utilize the concept of spatial locality. Four walk-
ing scenarios are tested. Bars in black, red, purple and blue
represent the LRU, ARMA, Mahzari’s and GDC schemes,
respectively. In each bar, the light color denotes the ratio of
hits by data reuse out of all cache hits. The basic LRU has
a low hit rate, and there is no data reuse at all or little data
reuse, as shown in Figures 12 (a), (b) and (d). The data reuse
in Figure 12 (c) is due to the partial hit when returning from
uk to ik. ARMA shown in red, has a high hit rate regardless
of the cache size. In ARMA which utilizes the history-based
prediction, a cachemiss occurs only when the viewer changes
direction, i.e., turns a corner in the four walking scenarios.
However, like LRU, there may be no or little data reuse
except Figure 12 (c). Mahzari’s method with 100% prediction
accuracy always shows a cache hit rate of 1. However, due to
the LRU-based cache replacement policy, it has a weakness
in terms of data reuse rate, like LRU and ARMA. On the
other hand, the proposedGDC schemes reflects the geometric
characteristics of path walking with cycles, thereby increas-
ing the data reuse rate with the cache size in all walking
scenarios. In particular, in Figures 12 (c) and (d) created from
the user’s actual movement record, GDC shows a similar or
higher data reuse rate compared to that of the other three
schemes even with a small cache size. The analysis of the
results in Figure 12 is as follows. When the cache size is not
large enough and the user only goes forward without looking
back along the cycle path, conventional cache replacement
techniques that do not consider geometry characteristics will
acts as FIFOs. All viewpoints that are visited before one-
cycle are replaced and data cannot be reused in a new cycle.
In the case of returning in the opposite direction on the same
path, transmission data is reduced by requesting only a part
of the sub-view to the server. In terms of the overall cache
hit rate, ARMA and Mahzari’s approaches are superior to
the proposed GDC. However, as shown in Figure 11, the
proposed system sufficiently satisfies the target T ∗e2e at the
average network bandwidth due to ESS, reducing the cache
miss penalty on the client side and thereby lowering the
impact of the cache hit rate on the streaming performance.

The real strength of GDC lies in how it reduces the
server burden by reducing the number of requests through a
high data reuse rate. In particular, in a multi-user environ-
ment, the frequent view update requests affect the response
time of the server, consequently lowering the viewer’s QoE.
Figure 13 shows the number of server requests in the
environment identical to that in Figure 12. In contrast to the
high hit rate in Figure 12, the LRU, Mahzari’s and ARMA
schemes show far more requests than GDC, especially in the
walking paths in Figures 13(a), (b) and (c), which have cycles.
These schemes disregard the geometry-based data reuse and
mainly depend on spatial locality via prefetching. In blue
GDC, the number of requests decreases as the cache hit rate

of Figure 12 increases. In addition, in walking scenarios with
cycles, the number of requests can be drastically reduced
as the cache size increases. For a clearer evaluation of the
performance of the cache replacement policy and how it
affects theQoE, an immersive rate is defined considering both
the view quality and Te2e. The immersive rate, ranging from
0 to 1, is calculated by multiplying the latency rate and the
quality rate, as shown in (5).

Immersive rate = quality rate× latency rate (5)

Here, the latency rate is the normalized difference between
the target T ∗e2e and actual Te2e under the given ESL. The target
T ∗e2e is the latency to be satisfied for each ESL, illustrated by
the three dotted lines shown in Figure 11. In the real envi-
ronment, the change in response time of the server may vary
depending on various factors. There was a difficulty in setting
up an experimental environment that accurately reflects the
effect of response time. To model the change in response time
according to the number of requests, the following conditions
are used in the experiment. In the server side, a multi-user
server environment is assumed. If the request throughput
exceeds a certain level, the response time may increase
rapidly. This server has a normal response time of 2-4ms, but
the peak response time can be increased by about 10 times,
up to 29-31ms. A client experiences peak delay every N
request due to the occasional increase in request throughput
in a multi-user server environment. In other words, N denotes
the period of occurrence of peak delay. When data is reused
in the client, the load on the server is reduced, increasing to
N = N + a, and the client will experience the peak delay
less frequently. On the other side, prediction failure from the
client increases the amount of data requested to the server,
reducing to N=N - b, and the client will experience the peak
delaymore often. For the experiment, the initial N is about 10,
whereas a and b are set to 5.

The quality rate represents the ratio of the actual sub-
view quality to the expected sub-view quality for the four
directions under the given ESL. The quality rate calculation
follows the rules below. The quality of sub-view and sub-
view-ds is represented by 2 and 1, respectively, and differ-
ent weights are given to four sub-views according to the
viewer’s head direction. The viewer’s head direction and
the two adjacent directions have weights of 0.5 and 0.25,
respectively, whereas the back direction has a weight of 0.
For example, in the current scheme, head direction=front
and ESL=fast, whereas the cached view of the same view-
point has head direction=right and ESL=fast. The quality
rates of the left, front, and right directions are 0/1, 1/2,
and 2/1, respectively. Because the back direction is not
visible, it is not considered. The quality rate of each sub-
view has a maximum value of 1. Therefore, the sum of the
weighted quality rates in the left, front and right directions is
0.25× 0+ 0.5× 0.25+ 0.25× 1 = 0.5.
In Figure 14, the network bandwidth is set to 100Mbps

using a traffic control application [44]. The green, orange, and
red areas in the graph correspondingly represent ESL=slow,
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fast and super-fast, which follows the walking scenarios in
Figure 9. The horizontal axis represents the segment num-
ber, whereas the vertical axis represents the immersive rate
of each segment. The immersive rate is averaged using
a sliding window algorithm with a window size of 4. In
Figures 14 (a) to (d), four walking scenarios are tested. The
cache size was set to 384 in simple_cycle and 4416 in
worst_cycle, whereas it was 1440 in other two scenarios. The
segment size is set to 12. Four schemes are compared. LRU,
GDC, ARMA combined with ESS and Mahzari’s approach
are denoted by black, blue, red and purple, respectively.
As already confirmed in Figure 11, the proposed ESS greatly
reduces the effect of a cache miss penalty on the network
bandwidth above the average level. Moreover, as shown in
Figure 13 and Figures 14, the proposed GDC can more effec-
tively reduce the server request burden compared to other
replacement policies, in this case LRU,ARMAandMahzari’s
method. The experimental results show that ESS+GDC
achieves a stable immersive rate in four different walking
scenarios.

The moving pattern in Figure 14 (a) is simple and ESL
is always slow. In terms of the quality rate, three schemes
combined with ESS have a value of 1 because the expected
and the actual view quality levels are identical. However,
Mahzari’s approach, which adjusts the quality level via the
network bandwidth rather than the viewer’s speed, has a
quality rate of 0.5 due to the narrow bandwidth of 100Mbps.
Meanwhile, in terms of the latency rate, during the first one-
cycle, Te2e of Mahzari’s method is smallest compared to
the other schemes because it transmits a low-quality view.
Therefore, with a high probability, its latency rate is 1. How-
ever, after the first one-cycle which brings about a cold start
miss, the proposed ESS+GDC method has a high data reuse
rate, as shown in Figures 12 and 13. When the segment
is reused, Tcomm of Te2e disappears and the appearance of
the peak response time is consequently reduced. This makes
the latency rate high. On the other hand, in ESS+LRU and
ESS+ARMA, there is no increase in the latency rate even
after the first one-cycle because they have no data reuse.
From this analysis, the advantage of the proposed scheme
can be explained as follows. Under a situation in which the
viewer slowly looks around the space, in the first one-cycle,
all schemes have a similar immersive rate. However, past that
point, the proposed ESS+GDC is able to provide a high level
of QoE while showing a higher immersive rate compared to
the other schemes.

Figure 14 (b) shows the immersive rate in the worst case,
in which the moving pattern is complex and the revisit period,
one-cycle, is very long. After the first one-cycle, the proposed
ESS+GDC has a high reuse rate of segments. Accordingly,
it achieves a higher immersive rate than the other schemes.
Figures 14 (c) and (d) have small cache size and complicated
moving pattern. Figure 14 (c) shows a variety of ESLs, with
data reuse observed in all schemes unlike simple_cycle in
Figure 14 (a). In terms of the quality rate, all three schemes
combinedwith ESS have a value of 1.Mahzari’s approach has

FIGURE 15. Commercial 5G Network experiment setup.

values of 0.5, 0.66 and 1 respectively when ESL=slow, fast
and super-fast. When comparing the latency rate, all schemes
show a similar Te2e when ESL=super-fast. In the other ESL
cases, Mahzari’s approach has the smallest Te2e. Therefore,
this method achieves better immersive rate than the others
when in the absence data reuse and when ESL=super-fast.
Meanwhile, in ESS+ARMA, the server request burden is
greatly increased when the prediction fails at the corner of the
walking path; thus, the immersive rate in this case fluctuates
somewhat. ESS+LRU shows an immersive rate similar to
that of ESS+GDC in Figure 14 (c), where partial hit occurs.
On the contrary, ESS+GDC shows stable and high immersive
rates in Figure 14 (a), (b) and (d). Therefore, ESS+GDC
achieves a similar or high immersive rate to the existing
caching policy in the real-trace-based scenarios.

D. SYSTEM DEMONSTRATION ON THE 5G NETWORK
Figure 15 illustrates our experimental setup for evaluating the
proposed system in a commercial 5G network, which uses a
5G new radio (NR) with a 3.5 GHz carrier frequency (FR1).
A Samsung Galaxy S21 Ultra smartphone is used to connect
to the 5G network. The server and client are devised using
two laptops. The server is connected to an external network
with an Ethernet cable, and the downlink throughputs are
300Mbps, 450Mbps and 600Mbps in the minimum, average
and maximum cases, respectively. The client is connected
to the 5G smartphone with a USB cable and communicates
with the server through USB tethering. The Client’s downlink
throughput is 130Mbps, 200Mbps, and 400Mbps in the mini-
mum, average, and maximum cases, respectively. The round-
trip-time (RTT) between the client and server was measured
by ping and it was approximately 46ms. Te2e of the following
experimental results includes this RTT.

The measured Te2e in the environment of Figure 15 is
presented in Figure 16. The horizontal axis represents the
transmitted segment, whereas the vertical axis represents the
average Te2e of each segment measured through three exper-
imental trials. The four walking scenarios in Figure 9 are
used. Unlike Figure 14, in Figure 16, sudden high latency is
observed. This occurs because the 5G network changes to a
4G network when the connection is unstable. Although it was
difficult to obtain an error-free result in the real environment,
it was confirmed that the trend and patten of the measured
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FIGURE 16. E2E latency per segment for four walking scenarios (a) simple_cycle (b) worst_cycle (c) maze_trace (d) museum_trace in real 5G network.

results were generally consistent with the expected results.
In Figures 16 (a) and (b), there is no view to reuse before
first one-cycle of walking is completed. Given that there is
no cached view, all necessary views must be requested from
the server. Frequent requests increase the probability of a stall
due to the RTT. For the slow, fast and super-fast schemes, Te2e
is approximately 100ms, 90ms and 80ms, respectively. From
the second cycle, cached views are not requested from the
server. In Figure 16 (b), most required views are partial hits.
Here, only one or two sub-views are requested from the server,
with less than three sub-views requested when a cache miss.
This leads to latency close to the target T ∗comm required by
ESL, even under the non-ideal environment of a commercial
5G network. In Figure 16 (c), data reuse occurs because there
are three exhibition rooms with two cycles. The path-walking
VR tour system here guarantees low latency streaming to pro-
vide a highly immersive experience to viewers in a network
environment with a bandwidth of 250Mbps or more as shown
in Figure 16. Therefore, this experiment confirms that the
proposed technology can be smoothly applied to commercial
products if the VR service becomes a full-fledged service in
the 5G NR FR2 network environment.

VI. CONCLUSION
This paper proposes the low latency view streaming for a
path-walking VR system. The main contributions are as fol-
lows: i) the amount of transmitted data is adjusted according
to the user’s moving speed and ii) geometry-based caching is
adopted to reduce the view-retransmitting overhead and the
server’s request burden. iii) Two schemes are harmoniously
integrated by modifying the cache hit condition. The pro-
posed schemes show stable viewer immersive score relative
to other schemes that do not consider the concept of geomet-
rical locality. Path-walking VR systems with the proposed
schemes are practical and have high potential for commercial-
ization. In addition, the approach here can easily be combined
with previously published latency techniques [22], [24]–[26]
for mobile networks. It is expected that the results of this
paper will provide insight to those who design a B5G/6G
systems for immersive media applications.
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