
IEEE SYSTEMS, MAN AND CYBERNETICS SOCIETY SECTION

Received April 11, 2022, accepted May 2, 2022, date of publication May 11, 2022, date of current version May 16, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3174361

Enhancing Reinforcement Learning Performance
in Delayed Reward System Using
DQN and Heuristics
KEECHEON KIM
Department of Computer, Information, and Communications Engineering, Konkuk University, Seoul 05029, South Korea

e-mail: kckim@konkuk.ac.kr

This work was supported by Konkuk University, in 2020.

ABSTRACT This paper suggests and implements how to apply the reinforcement learning on delayed reward
system which is known to be complex to apply the machine learning technology such as Q-learning. Such
games as Tetris game is known to be a delayed reward system because of its characteristics of generating
sparse reward in learning process. Tetris game requires the actor’s quick judgment ability and speed of
response because the blocks must be stacked in an optimal location quickly, considering the random shape
and rotation of appearing blocks. Also, since the number of cases is very large due to the various block types
and order, if a human-being is playing the game, the performance is limited by simply relying on human
memorization capability. Therefore, we applied a reinforcement learning implemented in this study for this
delayed reward system.We find that the general legacy reinforcement learningmethod shows its limitation in
improving the performance. Hence, we apply the heuristic to increase the decision accuracy as the weighting
method of reward. As a result, we were able to obtain high scores in games. Although it is not yet possible
to say that this heuristic(rule-based) approach has completely conquered the game. In several experiments,
this hybrid reinforcement learning shows better playability than human in terms of learning speed, as well as
high scores. In this paper, it is shown that general Q-learning is not suitable for delayed reward system. And
a hybrid learning that adds prioritized experience replay tactics, and the related techniques and algorithms
are introduced to increase the reinforcement learning performance.

INDEX TERMS Machine learning, reinforcement learning, heuristics, Q-learning, delayed reward system,
Tetris.

I. INTRODUCTION
Recently, artificial intelligence has applied to many different
fields of applications and the various research have led to a
better learning performance. Therefore, it is a great challenge
for those who study those fields which have more irregular
and complex characteristics of the problems.

A various type of approaches and techniques are being
studied, and among them, the most notable one is reinforce-
ment learning, which recognizes the current state at every
moment and autonomously makes optimal decisions.

Reinforcement learning is an algorithm that defines the
environment of a problem to be solved as a state, an action,
and an expected reward so as to make autonomous decision

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiyan Zhang .

making in the direction to maximize the value expected in
the future [1]. This decision-making structure is expected to
solve the complicated problem of choosing the optimal policy
in a sudden change of situation because it recognizes the state
of data and makes the decision for each situation unlike the
other learning methods such as map learning [2].

However, the reinforcement learning when it is applied
to real environment shows many problems and limitations.
In certain industries or environments, unexpected situations
arise in many circumstances, or high-dimensional data that
are not able to be inferred or learned is often utilized for
better decisions. In these unexpected and irregular environ-
ments, reinforcement learning shows clear limitations and
various factors that negatively affect the learning perfor-
mance. Delayed reward system such as Tetris game is one
of the application that we can not use the conventional value

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 50641

https://orcid.org/0000-0003-3445-3334
https://orcid.org/0000-0003-3406-8954


K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

functions based on state-action pairs since the expected return
has to be predicted from every state-action pair [3]. A single
prediction error might hamper learning.

As an example, the most commonly used Q-Learning algo-
rithm in reinforcement learning has a decision-making struc-
ture that evaluates the Q-value of an action and selects the
action with the highest value when performing the learning
in the environment based on the Markov Decision Process
(MDP) theory [4]–[6]. It is a learning paradigm with learning
by rewards/penalties with some interesting applications, so as
to maximize numerical performance measures that express a
long-term objective. This decision-making structure is most
similar to the basic philosophy of reinforcement learning,
but when this structure is applied to an environment with
poor regularity, it has been found that the learning ability is
significantly deteriorated [2]. If the agent knows enough facts
about its environment, the corresponding logical approach
allows him to formulate plans that are guaranteed to work.
Such an organization of the functioning of the agent is very
convenient. Unfortunately, agents almost never have access
to all the necessary information about their environment.
Therefore, agents must act under conditions of uncertainty,
which makes applying the traditional Q learning algorithm
difficult to sparse reward environment [7], [8].

As various factors affecting performance are suggested,
research for improving them have been actively carried out
for various purposes. This paper is one of those research
effort, which identifies various factors that affect learning
performance by combining reinforcement learning with a
complex game environment (Tetris) [6]–[10]. We have set
up the Q-Network based on HDQN(Hierarchical Double
Q-Network) which use some heuristics (prioritized experi-
ence replay) to improve the performance of the learning pro-
cess [11], [12]. Episodes acquired by each actor performing
actions are stored and shared in the replay buffer, and in this
process, various reinforcement learning improvement factors
such as prioritized experience replay and segmentation of
reward acquisition sections are applied.

From the experience of the previous researches and this
work [4], [13], it is identified that heuristic and experi-
ence selection results in high performance, we intend to
implement a more sophisticated model that further improve
the selection and utilization of heuristics and the selection
of experience.

In section 2, we introduce the related work, and section 3
shows our hybrid reinforcement learning system. Perfor-
mance evaluation is in section 4, and the conclusion follows
in section 5.

II. RELATED WORK
A. TETRIS
Tetris game has been popular for a long time considering
its intuitive rules and simple manipulation. However, the
fact that good accessibility does not mean that ‘‘the level of
difficulty is low.’’ The actor who plays the gamemust quickly
build up the blocks considering the shape and rotation of

the block appearing randomly in a short time. This requires
the actor to have quick judgment and fast reaction speed.
If the actor makes a mistake in the process of filling the
block, the number of change cases that need to be computed
grows a lot more. This means that the cumulative error or
misjudgment makes the situation much more difficult.

The basic rule of the Tetris game is to perform the action
of filling the block with no empty space as shown in Figure 1.
If you move the block to the empty space correctly, the
block of that line disappears and gains a certain amount of
compensation. However, the most optimal space for placing
a block should consider the circumstances. And many places
can be an optimal place.

This feature means that the Tetris game is able to keep the
game indefinitely if the actor is skillful to remove blocks and
the blocks can be removed indefinitely. However, it is almost
impossible to play depending on simple memory, because it
depends heavily on reflexes and judgment. Therefore, it is
suggested that the difference between the performance of
skilled and non - skilled actors is obviously clear.

FIGURE 1. Visualization of basic rules of Tetris.

B. TETRIS THROUGH REINFORCEMENT LEARNING
In this section, direct factors and limitations of reinforcement
learning performance identified in various previous studies
and cases for such games as Tetris are presented.

This paper cites the core contents of two different previous
studies. Previous work [6] defines the content and results
of reinforcement learning through DQN algorithm for Tetris
game environment.

50642 VOLUME 10, 2022



K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

The structure of reinforcement learning through DQN is
to process the state of game environment as input values
in image format. Since this structure is processed through
virtually all pixel values, it exhibits limited performance in
many areas.

Previous work suggested a way to combine Feature
Columns with CNN structure as an approach to solve this
problem [14]–[16].

This result shows that by applying the column-based fetch
at the stage after the convolution layer and improved priori-
tized sweeping, it is possible to conduct efficient learning by
selecting the experiences with the largest errors. In addition,
the study shows that when the reward is given as a new
block fits the lowest space among the accumulated blocks,
the performance is significantly improved as compared with
the case of applying rewards randomly.

Previous research [7] presents a theoretical foundation for
learning strategy by analyzing and verifying the rules of
Tetris game through various formulas. The following three
learning strategies have the greatest impact on performance
improvement in the paper [17]–[19].

1) Maximize the number of 4-block size blocks that fill
the empty block and cause the rows to be erased.

2) Minimize the height of stacked blocks.
3) Maximize the number of blocks placed before the game

ends.
These hypotheses have proved to be the most influential

factors in performance improvement through various experi-
ments [20]. At the same time, it is known that the approach
to learn Tetris games is the most NP-complete directional
problem. Figure 2 shows a Tetris board used in the previous
research.

FIGURE 2. Tetris board used in the research.

III. DOUBLE Q-NETWORK WITH HEURISTICS
REINFORCEMENT LEARNING SYSTEM
This chapter describes in detail the heuristics, architectures,
and technologies used to implement reinforcement learning
for the Tetris game environment.

The methodology and the factors of the performance
enhancement were verified in the simulator Tetris board that
is shown in Figure 2. However, in the actual game envi-
ronment, the speed of dropping block is faster than that of
the simulator in order to maximize the interest, and various
weights are given in calculating the score.

In this paper, we focus on the interpretation of how to
solve the relation of state due to block shape and rotation
by heuristic. In addition to previously proven performance
enhancement factors, we define more methods for possible
performance enhancement. We show our hybrid reinforced
learning and heuristic approach as algorithms described in
pseudo code.

A. TETRIS GAME ENVIRONMENT
The Tetris game environment is a typical sparse-reward
model and has a relatively low probability of acquiring
compensation for any untrained behavior. This probabilistic
case is caused by applying the reinforcement learning to
the Tetris game, because it has the same operation process
as Figure 3 in general. This means that it is necessary to
consider the number of randomly occurring block shapes and
rotation pattens to check the best expected compensation for
each action in each state. Therefore, in order to solve such
many cases through reinforcement learning, it is necessary
to rely on ‘‘intuition’’ and ‘‘experience’’ of a person or to
optimize decision making by combining heuristics. In this
study, we define Table 1. below by reinforcing the heuristics
presented in the previous study.

FIGURE 3. Visualization of reinforcement learning in Tetris.

TABLE 1. Basic heuristics of Tetris.

To obtain intuitive experimental results, the environment
of the Tetris game used in the research was implemented in
Python. Blocks are randomly generated through a random
algorithm and have five shapes as shown in Figure 4. A block
can be rotated through the control keys and defined to rotate

VOLUME 10, 2022 50643



K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

only in one direction (right). The size of the game screen is
10× 15 (horizontal/vertical), and all the rules of the game are
the same as those of general Tetris games.

FIGURE 4. Types and shapes of block in Tetris.

In the case of the scoring in the game, it is implemented
to obtain differentially based on the height of the entire
game screen size (10 × 15). In a block matching game,
basically 10 points of compensation can be obtained as a
score, but as in other games, compensation points are varied
depending on the state and height of the block significantly
from 5 to 20 points.

B. PROPOSED ARCHITECTURE
We have implemented a structure that uses multiple actors
in parallel to perform faster learning in the complex cases.
Looking at the architecture of Figure 5, we can see that we
use four Sub Actors and one Main Actor. Each Sub Actor
is actually the subject of a Tetris game and shares its result
(behavior, state, compensation, etc.) with one replay mem-
ory as in Algorithm 1 [17], [21]. The shared results have a
structure in which the main actor learns the neural network by
selecting the higher value experience through the preferential
experience reproduction in the replay memory [22].

Algorithm 1 Replay Memory Sharing
1 Procedure: Training
2 Initialize: Shared replay memory D to size N ∗ n
3 Initialize: N action-value function Q with random weights

Loop:
Episode = 1, M do
Initialize state s1
For t = 1, T do
For each Qn do
With probability ε select random action at
Otherwise select at = argmaxaQn(st , a; θi)
Execute action at in emulator and observe rt and st+1
Store transition (st , at , rt , St+1) in D
Sample a minibatch of transitions (st , at , rt , St+1) from D
Set yj :=
rj for terminal sj+1
rj + γmax_(a^′) Qn(sj+1, a′; θi) for non-terminal sj+1
Perform a gradient step on (yj –Qn(st , a; θi))^2 with respect
to θ

C. TRAINING FEATURE
1) STATE
State is defined as the real-time status information of
the board in a Tetris game environment having a size of
10 × 15 (width/height). The game of Tetris game can be

changed in real time as the blocks accumulate and disappear
as shown in Figure 6. In this study, since it is possible
to directly access Tetris game environment implemented in
Python, it receives the information of the board in real time
and processes the information as an array without unneces-
sary image processing.

2) ACTION
Action is defined as a direct motion of a block in a Tetris
environment. Blocks can change shape through rotation and
require precise movements to the desired location. Actor
performs Action by selecting one of 5 behaviors defined in
Table 2.

TABLE 2. List of actions actor can perform.

3) REWARD
Reward defines the state information as a comparison with
the previous state and how the current state changes through
various factors. The reward computation is performed by
assigning a basic initial value according to the Equation (1)
and assigning weights by polices varying with heuristic
techniques. The initial reward value and the weight value
described in the formula are used for better understand-
ing, and the exact numerical value differs depending on the
environment.

Reward = init (1000) (1)

The weighting of compensation is largely performed in three
situations. The first occurs in ‘‘the action of matching a block
to an empty space’’ which has the greatest objectivity of the
reinforcement learning. If the actor achieves the goal of filling
all one line as shown in Figure 7, we assign a large value as
a weight to the compensation as shown in Equation (2). This
leads the actor to perform the act of matching the block which
is the basic rule of the game.

Reward+ = goal (10000) (2)

Since the probability of losing the game increases as the block
height increases, the second weight is subtracted to obtain
less compensation based on the height of the block, con-
sidering the characteristics of the Tetris game. Equation (3)
below defines this compensation structure. In this way,
the actor is prevented from accumulating the block height,
which is reinforced by some of the methodologies proven

50644 VOLUME 10, 2022



K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

FIGURE 5. Proposed architecture in Tetris learning.

FIGURE 6. State feature as defined in this research.

FIGURE 7. Situation in which a line is completed through blocks.

in the previous researches.

Reward− = round((1/Height) ∗ 1000) (3)

The height-based compensation computation structure
defined by Equation (3) can be implemented in the same
manner as in Algorithm 2 below. The desired weight can
be set based on the height (h) and width (w) information
of the game environment of the state, and subtraction can
be performed on the compensation. Weights are important to
find the optimal value through several experiments, and it is
better to implement so that it is not too large in comparison

with the compensation value. Too much too large a weight
can cause additional problems.

Algorithm 2 Height-Based Reward Calculation
1 Input: Board_height h, Board_width w, Array arr

for i in range(h):
2 For j in range(w):

if I != 0:
arr[i][j] = (1/i) ∗ 100

3 Output: Reward − = round((numpy.sum(arr))

The final weight is generated by various factors such as
the calculation of the size of the empty space, the calculation
of whether or not the block blocks the empty space, and the
weight thus obtained is directly applied to the compensation.

FIGURE 8. Situation in which empty space appears between blocks.

FIGURE 9. Removing blocks blocking an empty space.

VOLUME 10, 2022 50645



K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

First, the size of the empty space between the block and
the block is calculated as shown in Figure 8, and additional
subtraction is performed on the compensation. Equation (4)
defines this compensation structure. This leads the actor not
to create as much free space as possible

Reward− = round((1/space) ∗ 15) (4)

As shown in Figure 9, heuristic selection is performed to
remove blocks blocking an empty space. Equation (5) defines
a block that blocks this empty space and further subtracts
from the compensation. This leads the actor not to block the
empty space.

Reward− = round((1/blocked) ∗ 5) (5)

In addition, various weighting algorithms are implemented.
The blocks stuck on the left/right wall and the weighting
of the vacant space priorities result in adding weight. The
sum of the reward till the game is ended is obtained as
in Equation (6). In addition, we implement a structure that
weights are discounted each of the steps with the argument
of y. In addition to this, we implemented the system to obtain
the weight on compensation from information other than state
such as the number of times the game was played, and the
time spent.

Rt =
∑T

t ′=1
Y t
′
−trt (6)

D. REINFORCEMENT LEARNING
1) Q-LEARNING
Learning algorithms are based on Q-Learning, which is most
commonly used in reinforcement learning. Equation (7) finds
the predicted value of the action in a given state through
Q-Learning.

Q (St ,At) ← Q (St ,At)+ α

×

(
Rt+1 + γmax

a
′Q
(
St+1, a′

)
− Q (St ,At)

)
(7)

However, in an environment where the regularity is low,
such as a Tetris game, the application of one-dimensional
Q-Learning is inefficient. This is because the Q-Learning
uses the same value when evaluating and selecting each
behavior, and thus poses a positive-bias problem in which
the future value of the behavior evaluated at the highest
level is overestimated. Therefore, in this study, we use the
double-DQN learning method to solve these problems.

y = R (s, a)+ γ (Q̂(∅
(
s′
)
, a′ : θ−) (8)

a′ = argmaxaQ̂(θ
(
s′
)
, a : θ ) (9)

In equations (8) and (9), θ− and θ represent parameters.
One is a slowly updating neural network, and the other
is a fast-updating neural network. θ− performs the update
every predetermined number of repetitions and selects the
best Q-value among the estimated Q-values so far. When the
target-value for the behavior is obtained, the existing updated

parameter is used for the estimated Q-value. In this way,
parameters are slowly updated to perform stable learning.

We did not perform any experiment to compare before and
after applying the learning structure of double-DQN [4]. This
does not address the exact performance improvement factors
and effects. However, many studies have failed to reinforce
learning of Tetris games through Q-Learning [3], [6], [7].

2) PRIORITIZED EXPERIENCE REPLAY
The implemented reinforcement learning architecture uses
many actors to accumulate experience quickly, so the value of
stored experience and determining the best experience have
the greatest influence on learning speed [21].

The importance of experience is proportional to the amount
of learning available in the present state through the experi-
ence. Quantitative values for this can be obtained by the dif-
ference between the TD target and the actual V(S) expressed
as TD-Error. The implementation that calculates the cor-
responding TD-Error actually uses the function defined in
Tensorflow provided by Google.

δj = Rj + γjQtarget
(
Sj,maxaQ

(
Sj, a

))
− Q(Sj−1,Aj−1)

(10)

The value obtained through Equation (10) is applied by the
same method as Algorithm 3. Bidirectional Deque is struc-
tured in order of state, action, reward, td-error, and sorted by
td-error. This can be expected to increase the efficiency of
learning.

Algorithm 3 Prioritized Experience Replay
1 Input: State s, Action a, Reward r, TD-Error e,

ReplayBuffer.append(s, a, r, e)
2 ReplayBuffer = Deque(sorted(ReplayBuffer,
key = lambda x:

x[−1], reverse = true))
3 Output: ReplayBuffer.pop()

IV. SIMULATION RESULTS
A. EVALUATION RESULT AND COMPARISON
Table 3 show the evaluation result of the learning network
compared with human actor. We use the learning network
of 4 actors as in Figure 5. The network spent 1 hour of
leaning time for a brand-new customized Tetris game, which
is surprisingly fast at learning. It only took 20 outer loops
of Algorithm 1 to reach this level of play. During the rein-
forcement learning period of 1-hour, human actor can play the
game 5 times, which implies that human actor has achieved
some kind of experience that can be used next time. After
the reinforcement learning period, the machine scores a lot
higher, mostly more than 15 times higher than human actors.
The scores vary every time, because of the playing time of
the machine. As you can see from the table 3, it is verified
again that the benefit of the reinforcement learning is the
speed of the play. Machine actors can achieve very high
score in a very short playing time. Playing time and the score

50646 VOLUME 10, 2022



K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

TABLE 3. Results of Tetris of human and R/L.

are not necessarily proportional to each other because of the
heuristics and the randomness of the reward.

B. DISCUSSION
1) DISCUSSION OF PERFORMANCE
Figure 10 shows that the architecture implemented through
reinforcement learning, which shows the results of the human
and machine actors. This is due to the speed difference in
behavior decision and repetition. When you reach the goal
of completing a block in the game, you will get 5-20 points
by yourself.

Therefore, to get 3,606 points in Figure 10, you must com-
plete at least 180 lines. This depends on the understanding
and proficiency of the game, but it takes about 10 minutes on
average. However, reinforcement learning plays a game at a
very high speed because it performs the game through graphic
operation. It takes about 30 seconds to acquire 51,120 points
of figure 10.

FIGURE 10. Game results of human and R/L.

Implemented reinforcement learning shows good results
not only in terms of speed but also in accuracy of decision
making. Through our reinforcement learning with prioritized
experience replay tactics, we achieved over 200,000 points
during the 5th game and over 40,000 points in the worst case.
In order to achieve these scores, it takes at least a few tens of
minutes arithmetically, and a lot of concentration is required
because mistakes must be minimized.

But these results can never be assured that reinforcement
learning has conquered the field. This is based on the fact that
there are some skilled game users who actually acquire more
than 3,000,000 points, and that performance does not increase
dramatically even after additional learning.

The limited cause of this performance improvement comes
from the randomization-nature of the Tetris game. The block
of Tetris implemented in this game has 5 types as shown in
Figure 4. If the rotation is performed considering the square
and the stick shape, there are 15 cases. This can be defined as
Figure. 11 below.

FIGURE 11. Features of Tetris environment.

In this environment, the number of locations where blocks
can enter is assumed to be the size of the block (n ∗ w) in the
size of the game environment (i ∗ j).
As a result, we can conclude that the number of locations

for the blocks as follows.

(i− n) ∗ (j− m) if n = m

(i− n) ∗ (j− m) and (i− m) ∗ (j− n) if n 6= m

However, since the type of block is randomly generated
among the rotate shape in Figure. 11, the number of cases for
completing one episode becomes very large by calculating the
number of such a series of cases. Therefore, it is practically
impossible to receive a reward by learning the number of all
these cases and removing one line at a time.
In addition, DQN and Q-Learning are not perfect learning

when one episode is performed, and it is necessary to perform
several episodes because it gradually increases expectation
compensation. It can be inferred that the present performance
is achieved by compensatingmore performance improvement
factors in heuristics than learning. That is, reinforcement
learning is good at speeding up the learning, but we can’t say
that it is suitable for achieving high scores.
This presumption is also presented in the previous study,

which is the reason why heuristic is mainly focused on games
such as Tetris. Therefore, if the performance is to be further
improved, it is better to focus on heavily algorithmizing the
heuristic weighting algorithm to the decision-making area.

2) DISCUSSION OF PARALLEL PROCESSING
In this study, to confirm the relation between parallel process-
ing and learning performance, additional experiments were
performed to expand the number of actors to 8 as shown
in Figure 12. As the number of Actors increases, the share
of various resources increases. However, it is confirmed that

VOLUME 10, 2022 50647



K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

the share of the resources is decreased greatly by rendering
for the visualization of the game screen. This is because
the resources consumed in the visualization rendering of the
game screen are larger than those used in the reinforcement
learning. If you use a large number of actors without turning
off rendering, a significant load on graphics and memory is
expected.

FIGURE 12. Screen implementing parallel processing.

After returning to the main text, learning was performed
for 10 minutes from 1 to 10 actors in the environment where
all learning data was initialized. The amount of experience
data accumulated in the replay buffer was, of course, much
higher than the Actor can use in the environment. However,
in order to learn two neural networks, there is a problem that
the main actor can not accept all of information because the
speed is almost fixed in the process of selecting and learning
experiences in the replay buffer. This problem depends on the
performance of the device and the efficiency of the learning
mechanism. However, in this research environment, where
learning through three or five actors was the most ideal, it was
no longer meaningful. This problem presents a need to further
refine the learning process of the algorithm.

3) COMPARISON WITH GENERAL Q-NETWORK
We evaluated the performance of our algorithms using two
metrics: game length and game score. Game length is
the number of moves the player makes before they reach the
end of the game, and game score is the score based on the
number of lines they clear. While the game score is ultimately
more important, it can only be used to judge the performance
of sufficiently advanced networks because there is a large
initial barrier to overcome before the algorithm can score
with any degree of consistency. Thus, game length, which
was typically correlated with game score, is a good metric
for showing intermediate performance since an algorithm can
incrementally learn to survive longer.

In order to make our results more interpretable, we com-
pare game performance to general Q-Learning. Both net-
works were given 1 hour of learning period.

TABLE 4. Comparison of Tetris between Q-Network and DQN with
heuristics.

According to Table 4, our DQN with modified heuristics
performs faster and score more. The difference is due to
the fact that randomness of Q-learning tends to concentrate
pieces in the middle of the game board, whereas our model
sample across all positions on the game board, which avoids
building tall layers of blocks too soon.

If we compare the how those algorithms react to new
episode, learning results are compared through training steps.
As we can see from the figure 13 and figure 14, both
the algorithms successfully perform the learning through
many training steps, there are often interval in which the
performance deteriorates. Especially, general Q-Network in
figure 13 shows inefficient performance because it relies on
more randomness in the process of exploring and creating
new episode.

FIGURE 13. Performance of Q-Learning.

FIGURE 14. Performance of DQN with heuristics.

50648 VOLUME 10, 2022



K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

However, Figure 14 shows our DQN with heuristics suc-
cessfully performs learning and it guarantees a certain level
of flexibility to the new episode patterns. This also, however,
does not significantly reduce the number of steps required for
learning than expected and it shows performance deteriora-
tion in some sections due to the randomness of the episode.
We need to further investigate this issue by improving the
learning network itself to be more suitable for the delayed
reward system.

V. CONCLUSION
In this paper, we show our reinforcement learning imple-
mentation on delayed reward system such as Tetris. game to
verify that we can’t use conventional Q-learning technique
for sparse reward environment.

Our results show that the key factor in the difficulty of
a reinforcement learning problem is the time lag between
the action and the reward. When training with grouped
actions off of the heuristic reward function, the reward for
a given action was immediate, and this network showed
the best performance. Intuitively speaking, a longer gap
between action and reward means that a game involves
a lot of strategy, and a shorter gap between action and
reward means that a game is more reflex-based. We found
that learning converges much more quickly for reflex-based
games than for games that involve a large amount of strat-
egy, where the DQN network with some level of heuristics
performed much better on games like Tetris. Our results
show that using an explicit AI and heuristics to bridge the
gap between strategy and reflex is a useful approach for
improving gameplay performance. In order to get better
learning result, the learning architecture need to be changed
to accept some heuristics in learning process. The imple-
mented reinforcement learning architecture uses many actors
to accumulate experience quickly, so the value of stored
experience to determine the best experience are prioritized
for the replay. In addition, our algorithm used for learn-
ing also has a better expectation of using the advanced
Actor-Critic algorithm [23] than the general algorithm like
Q-Learning.

The performance of reinforcement learning in Tetris game
environment is shown in this paper as well as the descrip-
tion of various changes used to implement our reinforce-
ment learning. Even though reinforcement learning has
achieved universally surpass the people in terms of play
result and speed, it has been identified that the perfor-
mance improvement is limited from above a certain level.
This is because of the delayed reward environment of
Tetris game, which is more affected more by the heuris-
tic nature of the learning model than the learning network
itself.

However, we also identified the disadvantage of this
approach because we can’t prove how heuristics have influ-
enced performance in our learning model, which will be
solved by considering improving a learning network itself to
get rid of the randomness.

VI. FUTURE WORK
Because of the sparseness of rewards, and especially the
difficulty of getting any rewards since random action is highly
unlikely to lead to cleared rows, the actual game perfor-
mance of the network trained with the proposed heuristics
remained further research, as it failed to clear lines and was
well within a standard deviation of the game length (time) to
be expected from playing randomly. With further modifica-
tions, we could achieve convergence on a heuristic reward
function for actions [24]. Modifications to the prioritized
experience replay algorithm could potentially reduce training
time and thus allow more improved performance. Therefore,
in order to further improve the learning performance on the
delayed reward system, it is necessary to further refine the
algorithm for weight calculation used in the heuristic, or to
further refine the decision-making process by utilizing the
MCTS algorithm or the like. This research may lead us to
XAI(Explainable AI) problem since it may be necessary to
identify how these heuristics rule-based approach influence
the total performance of the reinforced learning process.

REFERENCES
[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement learn-

ing: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285, Jan. 1996.
[2] J. A. Boyan and A. W. Moore, ‘‘Generalization in reinforcement learning:

Safely approximating the value function,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 1995, pp. 369–376.

[3] H. Lu, X.Wei, N. Lin, G. Yan, and X. Li, ‘‘Tetris: Re-architecting convolu-
tional neural network computation for machine learning accelerators,’’ in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2018,
pp. 1–8.

[4] H. V. Hasselt, ‘‘Double Q-learning,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2010, pp. 2613–2621.

[5] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, ‘‘Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3675–3683.

[6] M. Stevens and S. Pradhyan, ‘‘Playing tetris with deep reinforcement
learning,’’ Convolutional Neural Networks for Visual Recognition CS23,
Stanford Univ., Stanford, CA, USA, Tech. Rep., 2016.

[7] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell, ‘‘Tetris is hard,
even to approximate,’’ in Proc. Int. Comput. Combinatorics Conf. Berlin,
Germany: Springer, 2003, pp. 351–363.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, ‘‘Playing atari with deep reinforcement learning,’’
2013, arXiv:1312.5602.

[9] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, ‘‘Dueling network architectures for deep reinforcement
learning,’’ 2015, arXiv:1511.06581.

[10] J. Oh, X. Guo, H. Lee, R. Lewis, and L. S. Singh, ‘‘Action-conditional
video prediction using deep networks in atari games,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 2863–2871.

[11] V. Mnih, A. Badia, P. M. Mirza, A. Graves, T. Lillicrap, T. Harley, and
K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement learn-
ing,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[12] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, ‘‘Comparing exploration
strategies for Q-learning in random stochastic Mazes,’’ in Proc. IEEE
Symp. Ser. Comput. Intell. (SSCI), Dec. 2016, pp. 1–8.

[13] I. C. Osband Blundell, A. Pritzel, and B. Van Roy, ‘‘Deep exploration
via bootstrapped DQN,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 4026–4034.

[14] M. A.Wiering and H. van Hasselt, ‘‘Ensemble algorithms in reinforcement
learning,’’ IEEE Trans. Syst., Man, Cybern., B (Cybern.), vol. 38, no. 4,
pp. 930–936, Aug. 2008.

[15] P. Dayan and G. E. Hinton, ‘‘Feudal reinforcement learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., 1993, pp. 271–278.

VOLUME 10, 2022 50649



K. Kim: Enhancing Reinforcement Learning Performance in Delayed Reward System

[16] G. Tesauro, ‘‘Temporal difference learning and TD-Gammon,’’ Commun.
ACM, vol. 38, no. 3, pp. 58–68, Mar. 1995.

[17] A. Geron, Hands-on Machine Learning With Scikit-Learn & Tensorflow.
Sebastopol, CA, USA: O’Reilly Media, 2017.

[18] S. Masashi, Statistical Reinforcement Learning. Boca Raton, FL, USA:
CRC Press, 2015.

[19] M. Lapan, Deep Reinforcement Learning Hands-On. Birmingham, U.K.:
Packt, 2018.

[20] R. S. Sutton, ‘‘Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding,’’ in Proc. Adv. Neural Inf. Process. Syst.,
1996, pp. 1038–1044.

[21] S. Lyu. Prioritized Experience Replay. Accessed: Jan. 11, 2018.
[Online]. Available: https://lyusungwon.github.io/reinforcement-
learning/2018/03/20/preplay.html

[22] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379–6390.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and
G. Ostrovski, ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[24] G. Beruvides, C. Juanes, F. Castano, and R. E. Haber, ‘‘A self-
learning strategy for artificial cognitive control systems,’’ in Proc. IEEE
13th Int. Conf. Ind. Informat. (INDIN), Jul. 2015, pp. 1180–1185, doi:
10.1109/INDIN.2015.7281903.

KEECHEON KIM received the Ph.D. degree in
computer science from Northwestern University,
Evanston, IL, USA, in 1992. He is currently a
Professor with Konkuk University. He is also
the Dean of the Graduate School of Information
and Telecommunications and the Director of the
Konkuk Software and Security Research Center
and the Intelligent Network and Security Lab-
oratory, Konkuk University. His research inter-
ests include AI convergence networking, network

security, the IoT, SDN, AI cryptography, and C-ITS.

50650 VOLUME 10, 2022

http://dx.doi.org/10.1109/INDIN.2015.7281903

