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ABSTRACT It is critical to correctly identify DNA methylation because it has been linked to a variety of
human disorders, particularly cancer. DNA methylation is an epigenetic process that allows cells to alter
gene expression. This work deals with a type of DNA methylation called 5-methyl cytosine (m5c), in which
the methyl group (CH3) is attached to the 5th carbon of cytosine. The performances of different machine
learning algorithms used for methylation identification are greatly degraded due to poor representation of
input sequential data. In the current work, we have proposed a classification model that is based on the
extraction of high differentiating features from the sample sequences using gappy pair kernel. Increasing
the number of features to better represent a sequence leads to the curse of dimensionality, which is
handled by a dimensionality reduction technique called PLS (Partial Least Square). The obtained features
are then subjected to multiple classifiers to test the discriminating power of these features. Results are
computed for cross species i.e human and mouse, to check the robustness of our proposed model. Finally,
the obtained results are compared in terms of sensitivity, specificity, and accuracy with the state-of-the-
art approaches. Our proposed approach has outperformed state-of-the-art techniques in all three metrics
for both datasets. For research community to test our technique, we have uploaded our code on github
(https://github.com/sajidshahbs/gappypairKernel_Rcode).

INDEX TERMS Cross species, DNA methylation, epigenetic modification, feature reduction, gappy pair
kernel, linear discrimitive analaysis(LDA), m5c and m6A, partial least square (PLS), SVM.

I. INTRODUCTION
The field of of epigenetics has gained popularity among
researchers in the last decade. The term epigenetics is
used to study a variety of heritable and stable chromatin
modifications in the gene expression rather than the pri-
mary DNA sequence [2]–[4]. Various kinds of epigenetic
features are called marks. These marks include histone
proteins post-translational modification, DNA methylation,
chromatin organization, and non-coding regulatory RNA,
etc [5]. When methyl group (CH3) is attached to the 5th

carbon of cytosine, it forms 5-methyl cytosine (m5c) while
in case of m6A the methyl group is attached to the nitrogen
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6th position of adenosine, in DNA methylation [6]. Some
DNA regions, called CpG island, have a high percentage
of phosphate bonded Cytosine and Guanine. Twenty-eight
million CpG sites have been discovered in the human genome
in which 60% to 80% are methylated [7]. DNA methyla-
tion contributes to a diverse range of biological procedures,
e.g., stable transcriptional gene silencing, X inactivation [8]
and genomic imprinting [9]. It is witnessed that DNA methy-
lation also performs a vital role in sustaining cellular func-
tion, development of autoimmunity, keeping the genomic
stability, and ageing [10], [11]. Such chemical modifications
of the bases affect cell events responsible for gene silenc-
ing which take part in many diseases such as cancer [12].
Therefore, the prediction of DNA methylation has great
importance.
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Various experimental approaches have been adopted
to analyze DNA methylation. These methods include
LC-MS/MS (Liquid Chromatography coupled with tan-
dem mass spectrometry), RFLP (Restriction Fragment
Length Polymorphism), HPLC-UV (High-Performance Liq-
uid Chromatography-Ultraviolet), LUMA (LUminometric
Methylation Assay) and digestion based as says [13]. The
experimental methods are costly and tedious. Furthermore,
the advent of the next-generation sequencer has shifted the
bottleneck of genomic studies towards the computational
epigenetics paradigm. Thus, the production of a huge amount
of experimental data has allowed the biologist to design
computational methods for effective analysis.

For DNA methylation identification, the computational
methods are considered an alternative to lab experimental
procedures. Generally, machine learning approaches con-
sist of three basic steps: data collection, features extraction
and applying classification model to address any machine
learning problem [14]. Experimentally obtained data such
as microarrays impose restrictions, due to which researchers
initially focused on specific regions (e.g. CGIs) to get sat-
isfactory results [15]–[19]. The analysis of the common
regions such as RRBS (Reduced Representation Bisulfite
Sequencing) and WGBS (Whole Genome Bisulfite Sequenc-
ing), reduces the model performance [20]. The reason is
obvious because GC content in positive samples is high while
lower in negative samples. Therefore, it is not difficult to
distinguish methylated and unmethylated CpGs by utilizing
only GC content as a feature. The role and significance of
GC content reduces in common regions. To cope with this
issue, more complex and discriminative features are required
to improve the goodness of the predictions. Feature extraction
is considered one of the most important and basic steps
for accurate class prediction in machine learning. In other
words, high-quality features are key to improve the accu-
racy of machine learning models. Therefore, the extracted
features should be distinct, descriptive and discriminative to
help the model to generalize the learning process. Normally,
DNA sequences are encoded as numerical values. The feature
extraction models are either completely or partially ignore
the sequence order information [21]–[24] which leads to low
accuracy. Different approaches have been used for feature
extraction to study methylation. For example, DNA compo-
sition [15], [17], [25], [26], pseudo trinucleotide composition
(PseTNC) [21], [27]–[30], predicted DNA structure [15],
[31], single nucleotide polymorphisms (SNPs) [15], TFBSs
(Transcription Factor Binding Site) [15], [31], histone modi-
fications [15], [31], neighboring CpG site methylation status
and distance [31], are some of them.

It is also worth mentioning here that ‘‘Pse-in-One’’ is a
web-server, which has been used to extract different kinds of
features from protein or DNA sequences [32].

Expressing a biological sequence with a vector or discrete
model while preserving key pattern characteristic or sequence
order information, is the most difficult yet important prob-
lems in the field of computational biology. All available

machine-learning algorithms such as SVM [33], [34], Nearest
Neighbor (NN) [33], Covariance Discriminant (CD) algo-
rithm [35], [36], and Optimization algorithm [37] are capable
to work with vectors as discussed in a survey [38]. The prob-
lem in defining vector as a discrete model is that sequence-
pattern information may lose completely. To overcome this
problem of losing sequence-pattern information completely
for proteins PseAAC [39] or the pseudo amino acid compo-
sition [40] was proposed. Almost all areas of computational
proteomics (see, e.g., [41], [42] as well as a number of other
papers cited in [43], [44] have made use of the proposed
Chou’s PseAAC. Due to its wide usage, some popular freely
available soft-wares, named as ‘PseAAC’ [45], ‘‘PseAAC-
Builder’’ [46], ‘‘propy’’ [47], and ‘‘PseAAC-General’’ [48]
have been developed. The first one is for Chou’s general
PseAAC [14] which not only includes higher level fea-
ture vectors such as ‘‘Sequential Evolution’’ or ‘‘PSSM’’
mode (see Eqs.13-14 of [14]), ‘‘Functional Domain’’ mode
(see Eqs.9-10 of [14]), and ‘‘Gene Ontology’’ mode (see
Eqs.11-12 of [14]) but also all the special modes of feature
vectors for proteins while the later three generate differ-
ent modes of Chou’s special PseAAC [49]. The effective-
ness of PseAAC for peptide/protein sequences prompted the
concept of PseKNC (Pseudo K-tuple Nucleotide Composi-
tion) [27] to generate different feature vectors for RNA/DNA
sequences [30], [50], [51]. It is worth mentioning that a
powerful web-server ‘‘Pse-in-One’’ [32] and its next ver-
sion ‘Pse-in-One2.0’ were developed for research community
to generate their required feature matrices of RNA/DNA
sequences [52].

The final major step of a machine learning prediction
system is the selection of a classification model. The com-
monly chosen classification models are: support vector
machine (SVM) [7], [15]–[17], [20], [26], [53], random forest
(RF) [18], [31], stacked denoising autoencoders (SDA) and
naive Bayes (NB) [54]. The majority of the researchers have
used the SVM classifier due to its strength in classification
and ability to deal with different data types. Some researchers
have shown the superiority of the SDA method from deep
learning and RF over SVM for predicting DNA methyla-
tion [31]. Similar work is carried out using the Deep CpG
approach, based on neural networks for predicting methyla-
tion states in a single cell [55]. A systematic review in [56]
discusses in detail DNA methylation databases, its relation-
ship with different diseases and the machine learning algo-
rithms used for its identification. Some researchers use DNA
methylation and machine learning learning to predict human
age [57], Parkinsonś Disease [58].

In our proposed technique, we have accommodated
sequence order information very effectively, with the help
of gappy pair kernel [59], [60]. In other words, our goal is
to increase the accuracy of our predicting model with the
effective use of sequence order information. The proposed
technique takes into account the features count as well as
spatial configuration information, like features position in the
sequence. Gappy pair kernel is used for the first time, up to
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the best of our knowledge, to identify methylation. As men-
tioned in [59], position information has great importance
in finding the similarity of sequences when the underlying
transformations are complex. When the number of represen-
tations (features) is increased, the issue of high dimension-
ality arises, which has been tackled by using PLS (Partial
Least Square). Finally, the reduced features are passed to
multiple classifiers to investigate the discriminative power
of these features. We have computed the results for cross-
species to test the stability and robustness of the extracted
features. The results show that our proposed method has
outperformed state-of-the-art techniques for both datasets,
i.e. human and mouse, in terms of accuracy, sensitivity and
specificity.

The rest of this paper is organized in light of Chou’s five-
steps rule. The papers to develop a new sequence analyzing
method or statistical predictor based on Chou’s five-steps rule
are expected to have clear logic, transparency in operation(s),
ease to regenerate the reported results, availability of high
potential guidelines to stimulate other sequence-analyzing
methods, and user-friendly interface. The significance of
Chou’s five-steps rule is discussed in a series of latest publi-
cation [61]–[66] and comprehensively summarized by review
articles [14], [67], [68]. To develop an effective predictor for
a biological system, Chou’s five-steps rule is useful to be
followed. These steps include: (1) To construct a valid bench-
mark dataset for training and testing the model. Section 2 dis-
cusses the construction of benchmark dataset used in the
proposed work. (2) sample sequence representation with a
clear mathematical formulation capable to demonstrate the
inherent features of the sample sequences. The extracted
features are desired to have high correlation between samples
and target variable. Feature formulation and extraction is
discussed in section II. (3) Employing a powerful machine
learning algorithm with high discriminating (classification)
power. Classifiers are discussed in section II. (4) Effectively
design crossvalidation tests to objectively asses the goodness
of the underlying model. Section III discusses evaluation of
the model and obtained results. (5) providing a web-server
that is easily accessible to the research community. The need
of a web-server is mentioned in a series of recent publica-
tions [69], [70]), can significantly enhance their impact [38],
[67], and driving medicinal chemistry into an unprecedented
revolution [43]. We shall put efforts in our future work to
provide a web-server for displaying the findings that can
be manipulated by users according to their need. For the
moment, we have provided our code in github for the ease of
research community to regenerate the results. The Github link
is: (https://github.com/sajidshahbs/gappypairKernel Rcode).
Section IV concludes the proposed work.

II. MATERIAL AND METHODS
A. BENCHMARK DATASET
The main focus of the current work is Human DNA methyla-
tion. The DNA of mouse is also used to check the robustness
of the proposed work.

A valid benchmark dataset is important to learn a statistical
predictor for DNA methylation site prediction. The human
DNA dataset [21] along with mouse DNA dataset are used.
The CD−HIT tool is used to remove the redundant samples
having 70% or above similarity [54]. The human dataset
consists of 2426 samples out of which 787 are methylated
and 1639 are non-methylated while the mouse dataset con-
sists of 3864 examples out of which 1934 are methylated
and 1934 are non-methylated. We have adopted the same
procedure as followed by [71] for mouse dataset preparation.
For the dataset construction, 41nt is used as a sequence
length centered at Cytosine. Let S+ and S− are the sets of
positively and negatively methylated samples respectively,
which collectively form the whole dataset S as:

S = S+ ∪ S− (1)

B. FEATURE EXTRACTION
Let (X ,Y ) represents a dataset, where X = [x1, x2, · · · , xn]
contains n number of DNA sequences while Y =

[y1, y2, · · · yn] contains their corresponding labels such that
yi ∈ {0, 1}. Thus, a particular DNA sequence xi containing l
nucleotides is given by:

xi = [x i1x
i
2x

i
3 . . . x

i
l ] (2)

where x ij represents the jth nucleotide such that x ij ∈
{A,C,G,T }. For 100 nucleotides of DNA sequence, the
total possible combinations are 4100 = 1.6065 × 1060 [27].
In reality, DNA sequence contains more than 100 nucleotides.
Thus, different combinations become enormously large.

In DNA sequence classification, the order of different
nucleotides plays an important role. To effectively encode
the sequence order information, we have used the gappy pair
kernels.

Let φk (x) be a feature vector which encodes the frequen-
cies of different sub-strings (k-mers) that are separated by at
least m irrelevant positions (m nucleotides). Let u and v be
the two k-mers of length k having up tom irrelevant positions
between them:

φk (x) =
∑

∀u,v∈{A,C,G,T }∗
I (1)[u . . . . . . ..︸ ︷︷ ︸

0 ≤ i ≤ m

v] (3)

where I (1) is the indicator function and {A,C,G,T }∗ rep-
resents a set which contains all possible strings of the given
nucleotides. The size of the feature vector φk (·) can be calcu-
lated as [72]:

|φk (x)| = (m+ 1)|A|2k (4)

where |A| is the length of the alphabets set (4 for DNA and
RNA while 21 for Protein). For example, if k = 1 and m =
21 then, the length of the resulting feature vector will be 352.
Increasing the values of either k orm or both will increase the
dimensionality.

The word k-mer or motif is very popular term in computa-
tional genomics or sequence analysis. To encode a biological
sequence into numerical form, k-mer composition is a very
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famous encoding technique. The major issue with k-mer
composition is that the order information is completely or
partially lost. Order information is very important from the
biological aspect. Even if we change the order of only two
nucleotides in a sequence, its biological meaning may change
completely. By increasing the length of the k-merwe getmore
order information but with the cost of high dimensionality and
vice versa.

Gappy pair kernel basically incorporate more order infor-
mation while encoding the sequences into numerical form.
The parameter k maintain the order with in the motif (k-mer)
while m maintain the order between the motifs (k-mers).
In other words, k is responsible for maintaining local order
(order with in motif) while m is responsible for maintaining
global order (order between motifs). Therefore, the values of
both k and m have biological significance as well.

C. DIMENSIONALITY REDUCTION
The curse of dimensionality is a well-known phenomenon
in machine learning. The high dimensionality of the input
dataset often reduces the performance of the underlying clas-
sification model due to multiple reasons such as correlated
features, inclusion of noise, etc. To cope with this issue,
two categories of dimensionality reduction techniques can be
used such as supervised (e.g. PLS: Partial Least Squares) and
unsupervised techniques (e.g., PCA: Principal Component
Analysis). PLS has edge over PCA in terms of the generated
results [73]–[75]. A concise discussion about dimensionality
reduction is presented in [76].

To reduce the dimensionality, a normalized similarity
matrix 8 ∈ <n×n is constructed:

8 =

[
φk (xi)φk (xj)T

||φk (xi)|| · ||φk (xj)||

]
, 1 ≤ i, j ≤ n (5)

where n shows the number of sample sequences. For fur-
ther reducing the dimensionality, the PLS algorithm [77] is
employed. The generated matrix8 is still memory intensive.
Its space complexity is O(n2).
Being a supervisedmethod, PLS uses the input features and

independent variables to construct latent predictors. It per-
forms better compared to other reduction techniques when
the number of predictors (input features) is very large than
the number of observations.

By considering the cosine similarity matrix8 ∈ <n×n and
the corresponding class labels Y , a factor score matrix T ∈
<
n×r , such that n > r , is constructed as:

T = 8W (6)

where W ∈ <
n×r is a weight matrix which reflects the

covariance structure between the input features8 and output
variables Y . For the estimation of weight matrix W , the
SIMPLS algorithm [77] is used.

D. CLASSIFIERS
We have selected five most popular classification models i.e.
LDA (Linear Discriminative Analysis), RF (Random Forest),

Algorithm 1 SIMPLS Algorithm [77]
Require: Mean centered 8 and Y
1: Initialize: A0 = 8TY ,M0 = 8

T8,C0 = I
2: for h=0 to r do
3: compute qh, the dominant eigenvector of ATh Ah
4: wh = Ahqh, ch = wThMhwh,wh =

wh√
ch

and store wh
into W as a column

5: qh = AThwh, and store qh into Q as a column
6: vh = Chph, vh =

vh
||vh||

7: Ch+1 = Ch − vhvTh , Mh+1 = Mh − phpTh
8: Ah+1 = ChAh
9: end for

FIGURE 1. Proposed model.

NNET (Neural Network), KNN (K-Nearest Neighbors) and
SVM (Support Vector Machine) in our work. The strengths
and weaknesses of these classifiers are well explained in
the literature, that is why we are not going to explain them
here. Analyzing complex relations therein becomes far more
easy if they are represented graphically to study medical and
biological systems as described in eight foundational papers
from the then Chairperson of Nobel Prize Committee Sture
Forsen (see, e.g., [78], [79]), and a number of papers cited in
a comprehensive review [80], as well as various other papers
(see, e.g., [81]. Figure 1 is shown to describe the proposed
methodology.

III. RESULTS AND DISCUSSION
Our current work deals with the binary classification where
a sequence is either methylated (positive class) or un-
methylated (negative class). The performance of our pro-
posed predictor is evaluated using sensitivity (Sn), specificity
(Sp) and accuracy (Acc) metrics. Sensitivity or recall (true
positive rate) is the ratio of actual positive examples that are
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correctly identified while specificity (true negative rate) is the
ratio of actual negative examples that are correctly identified.
Accuracy is the overall accurate prediction of the samples
(both positive and negative) in a dataset. Using these three
metrics, the obtained results are compared with the state-of-
the-art predictors. Our main goal is to achieve the highest
accuracy, with stable values of sensitivity and specificity. The
experiments were carried out for both datasets i.e. human
and mouse DNA. Accuracy, sensitivity and specificity are
formulated as:

Acc =
TP+ TN

TP+ TN + FP+ FN
(7)

Sn =
TP

TP+ FN
(8)

Sp =
TN

TN + FP
(9)

where TP represents true positive, TN is for true negative,
FP is for false positive (non-methylated sample predicted as
methylated sample) and FN is for false negative (methylated
sample predicted as non-methylated sample). The ranges of
the above formulas are between 0 and 1.

In literature, three popular techniques are used to objec-
tively evaluate the goodness of a predictor: (1) The inde-
pendent dataset test, (2) The k-fold cross validation (3) The
jackknife test.

As mentioned in [14], the independent dataset technique
faces the issue of ‘‘memory effect’’ or bias in test set selec-
tion, therefore, we have avoided to use it.

K-Fold cross-validation splits the dataset into k partitions
of nearly equal samples in each partition. One partition
referred to a fold, is used for testing and the rest of (k-1)
folds are considered for training. This procedure is repeated
k times. When all the iterations of the k-fold cross-validation
are performed, then the averaged performance measure is cal-
culated to get a generalized performance estimation. In k-fold
cross validation, we have two extremes and a middle path.
On one extreme, we have Leave One Out Cross Validation
(LOOCV), in which one example is used for testing per itera-
tion. This procedure is repeated n times where n is the number
of examples. We can call it n-fold cross validation as well.
In this case, we have high variance, and the system (model)
is normally over fitted. On the other extreme, we have a two
fold cross validation in which 50% of the data is used in
training while the other 50% is used as testing data. In this
case, we have high bias, and the model is normally under
fitted. To mitigate the issue of underfitting and overfitting,
we have adopted the middle way. In literature, it is a famous
topic called the bias-variance trade off. A substantial amount
of literature is dedicated to discuss bias-variance trade off.
Interested readers can study [82]–[85] etc.

Cross-validation is an effective technique, especially in
cases where we need to overcome the problem of overfit-
ting [86]. The most popular k-fold cross-validation is 5-fold
so we have adopted it in our work. We can represent 5-fold
in terms of ratio as: 80%: 20%, where 80% of the data is

dedicated to training and 20% to testing. Another reason for
selecting 5-fold cross validation is to make our results com-
patible with the state of the art. Although, we have created a
trade off between bias and variance yet we do not reject the
possibility of over fitting because in ideal cases, the testing
dataset should not be used in training [87]. Also, we have
performed Leave One Out Cross Validation (LOOCV). The
jackknife method is similar to LOOCV that is why we have
not used it.

A. EXPERIMENTAL DESIGN
After feature extraction and dimensionality reduction,
we have used five classifiers as mentioned in section II-D.
It should be noted that the tuning of parameters made for
participating classification models is not presented here.

As discussed earlier, we have used a gappy pair kernel for
feature extraction. First, we have evaluated the significance
of feature extraction with gappy kernel using different com-
binations of its two parameters; i.e., m and k . Increasing the
values of either m or k increases the dimensionality of the
input data. On the other hand, increasing the values of m
and k preserve sequence order information. In other words,
bigger the values of either m, k or both, the sequence order
information is preserved. As it is stated earlier that the fea-
ture extraction methods either completely or partially ignore
this sequence order information. We expect that by pre-
serving order information the performance of the classifiers
will enhance. To find suitable values for both m and k and
to establish the importance of sequence order information,
we performed multiple experiments. First we set m = 23 and
the latent components for PLS (Partial Least Square) were set
to 110 while the value of k was ranging from 1 to 8 for the
human dataset while it was from 1 to 6 for mouse dataset.
The obtained results are shown in figure 2 where we can
see that increasing the value of k improve accuracy of all
classifiers. We have stopped increasing the value of k when
the accuracies of LDA and NNET reached to maximum i.e.,
98%. The accuracies of LDA and NNET reaches to 98%
when k was 8 for the human dataset while k was 3 for mouse
dataset. Surprisingly the accuracy of SVM decreases when
k was beyond 3 for mouse dataset. From these results we
decided to set the values of k to 8 and 4 for the human
dataset andmouse dataset correspondingly to generate further
results.

Gappy pair kernel has another parameter m which
is responsible for preserving sequence order information
because it deals with irrelevant positions (which creates the
gape or tells how many terms will be skipped). We have
generated results by setting k to and 4 and the number of
latent components to 110 while the value of m was ranging
from 10 to 27. The obtained results are shown in figure 3.
Now, it is cleared from both figures 2 and 3 that increasing

the values of m and k we are getting better results which
means that the order information is playing its role in accor-
dance with our expectation.
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FIGURE 2. The impact of K over performances.

FIGURE 3. The impact of M over performances.

To tune the number of latent components of PLS to get
the optimal dimensionality without compromising the perfor-
mance, we have performed a set of experiments by setting
m = 23 for both datasets while keeping k = 8 for human and
k = 4 for mouse dataset. The obtained results are shown in
figure 5. The performance of LDA, NNET, and SVM increase
while increasing the number of latent components for the
human dataset. LDA and NNET reach to 98% for latent
components 101 and above. In the case of the mouse dataset,
the increase in performance reaches to maximum very early.
The best results of all five classifiers with different values of
parameters are shown in table 1 and 2 for both datasets. The
ROC of both dataset for LDA classifier is given in figure 4.

We performed experiments using 5-fold cross-validation
as well as LOOCV (Leave One Out Cross Validation) to
investigate the biasness in the results. We achieved almost
the same results for both types of cross-validations.

B. COMPARISON WITH EXISTING PREDICTOR(S)
The obtained results are compared with the state-of-the-
art techniques. For unbiased and compatible comparison,
we selected the techniques from the literature which are using
the same datasets that we have used. Furthermore, the same
cross-validation technique is adopted for fair comparative

analysis. Note that, the results of competitors are directly
taken from the corresponding articles. We compared our
results in terms of accuracy, sensitivity, and specificity.

First we discuss the results for the human dataset. The LDA
and NNET achieve the 98% accuracies and become the best
predictors in our case while the KNN achieves the lowest
accuracy of 89.63% and becomes the weakest predictor. Our
weakest predictor (KNN) has outperformed both state-of-
the-art techniques in terms of accuracy and sensitivity. Our
competitors have used SVM as a classification model. Our
proposed technique with SVM as a classifier has outper-
formed both competitors with a big margin in terms of all the
three performance metrics. It means when we are using SVM
as a classifier then our proposed technique becomes different
from the competitors in terms of feature extraction only. This
big boost in the performance shows the effectiveness and
discriminative power of our feature extraction. In machine
learning literature, KNN is a weaker classifier than SVM
in complex situations. Here, even KNN outperformed the
competitor predictors which shows the strength of gappy pair
kernel followed by PLS for feature extraction.

It is worth mentioning that both of our competitors are
using 72 features while we have used 109 features for
both KNN and SVM. The time used by PLS is additional
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TABLE 1. Best results of all classifiers for human dataset.

FIGURE 4. ROC of only LDA classifier for both datasets.

FIGURE 5. The impact of Latent Components over performances.

overhead. Therefore, we have generated results for SVM
using 50 and 72 features. Even, our technique outper-
formed the competitor predictors using 50 features. The
obtained results can be seen in the last two rows of
table 1.

To test the stability of the proposed technique we have
also used the mouse DNA methylation dataset. The obtained
results are shown in table 2. In the case of mouse dataset,

again LDA and NNET are the strongest predictors with 98%,
accuracy, sensitivity, and specificity while RF (Random For-
est) is the weakest with 97.58% accuracy. Since the state-of-
the-art has used the Random Forest (RF) and SVM along
with other classification models. Thus, we have compared
the results of both RF and SVM. Our technique with RF and
SVM has outperformed the competing techniques, using RF
and SVM.
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TABLE 2. Best results of all classifiers for mouse dataset.

It is worth discussing that the state-of-the-art methods are
using 164 features but we have used merely 4 and 7 features
for SVM and RF respectively. Thus, we achieve 41 times
lower dimensionality for SVM and 23 times lower for RF.

In a nutshell, the performance of LDA and NNET is
remained stable in reduced space for both datasets (cross-
species) and achieves remarkable results with 98% accuracy,
sensitivity, and specificity.

IV. CONCLUSION
A DNA methylation identification system based on gappy
pair kernel and PLS is proposed. Gappy pair kernel and
PLS are used for feature extraction and dimension reduc-
tion respectively. In this work, we have investigated the
significance of maintaining sequence order information in
feature extraction and also the importance of dimensionality
reduction. Our proposed predictor has outperformed the state-
of-the-art techniques in terms of sensitivity, specificity, and
accuracy in case of human and mouse DNA methylation.
Obtaining 98% performance metrics introduces the possibil-
ity of model over fitting. In future, we aim to find whether
our model is over fitted or not by rigorous testing using
independent dataset test and jackknife testing methods along
with cross validation. Furthermore, we aim to test out model
on cross species (both animals and plants) to explore the
robustness of our model.
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