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ABSTRACT Smart factory is an exemplification of the Industrial Internet of Things (IIoT), connecting
devices to expedite the production process and delivery of customized products. Today’s intelligent man-
ufacturing systems strive to develop low cost product with robust manufacturing process to compete the
global market challenges. Though the quest to provide robust, reliable, adaptive, proactive, and real-time
services to smart factory production processes has got little attention. To this aim, establishment of a robust
solution for efficient resource utilization, load balancing and task scheduling has become a de-facto necessity.
This paper presents an enhanced learning assisted task scheduling mechanism based on task Criticality and
Collapse Aware Scheduling (CCAS) algorithm. The proposed mechanism is developed using two modules;
namely task scheduling mechanism based on task criticality and collapse aware strategy, and an ensemble
predictionmodel i.e., Gradient BoostingDecision Tree (GBDT) to proactively predict themachine utilization
and task safe execution status. The proposed ensemble learning framework provides high level feature
abstraction by learning the task parameters to predict task status and machine utilization. Furthermore,
an intelligent schedulingmechanism is developed for optimal resource allocation tomaximize the production
in constrained smart manufacturingmachine’s network. Extensive experimentation and comparative analysis
with the conventional Rate Monotonic (RM) algorithm has been carried out to validate the performance
of the proposed approach. The results demonstrate that the proposed enhanced scheduling mechanism
yields superior performance in terms of response time, task dropout and starvation rates compared to the
conventional RM method. The developed predictive CCAS scheduling reduced response time, task dropout
and starvation rate by 13%, 15%, and 14% respectively, compared to the baseline RM scheduling approach.
The results shows that the CCAS shall enhance the resource utilization in smart factory yielding enhanced
productivity and reduced cost of production.

INDEX TERMS Industrial Internet of Things, smart manufacturing, embedded IoT, real-time task
scheduling.

I. INTRODUCTION
Industry 4.0 has emerged as a revolutionary paradigm
that focuses on intelligent factories and smart production
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processes involving the Internet of Things (IoT) and the
Cyber-Physical Systems (CPS). Manufacturing industries
are undergoing the fourth industrial revolution, also termed
Industry 4.0 or I4.0, involving integration of smart fac-
tory physical and digital systems [1]. Due to advancements
in technology and rapid growth of global economies in
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the recent past,industries globally experienced a remarkable
change due to international market intensified competition
level. Current situation require changes in the manufacturing
process with faster reconfiguration and higher agility [2].
The smart factory mainly encompasses the IoT that hold
smart machines, intelligent automation networked sensors,
and CPS enabled intelligent robots aspiring to achieve dig-
italization in the production process. A detailed analysis
and review of IoT sensor networks, big data analytics and
its role in sustainable manufacturing is presented by [3].
IoT and CPS facilitate communication between humans and
machines connected via a network [4]. Presently, smart fac-
tories are no longer confined to encapsulated hierarchy-based
physical and logical systems; they are transformed into
heterogeneous systems accompanied by loosely coupled
CPS communicating through a unified network. Today, IoT
devices generate massive amounts of data. Data availabil-
ity has created opportunities for researchers to find patterns
in data and discover knowledge that facilitates production
optimization. Existing solutions mainly devised for optimal
smart factory task scheduling issues are established upon two
approaches known as Precise and Exact. Precise methods
obtain optimal global solutions by searching the whole solu-
tion space. Despite that, such methods are not efficient at
solving large-scale scheduling problems. Although, approxi-
mate methods are computationally inexpensive, they still do
not guarantee optimal solutions [5]. An alternate solution
to smart factory scheduling is based on a dynamic schedul-
ing strategy that guarantees a reliable and flexible solution.
Dynamic scheduling solutions encompasses learning-based
approaches [6], agent-based approaches [7], heuristic meth-
ods [8], evolutionary computing based solutions [9] and vari-
able neighbourhood methods [10]. Machine learning (ML)
and Artificial Intelligence (AI) [11] techniques are widely
adopted in many new-generation manufacturing systems for
accurate decision-making. At the moment, ML and AI tech-
niques have attracted enormous attention from the research
community for provisioning solutions to optimize resources
usage, reduce maintenance cost, fault detection, predictive
maintenance, to name a few [12]. Machine learning ensem-
ble learning framework [13] are widely adapted to improve
the manufacturing process due to features such as flex-
ibility, improved performance and data insensitivity [14].
Ensemble learning frameworks are classified into two types,
homogeneous and heterogeneous ensemble modelling [15].
As the name suggests homogeneous ensembles consists of
single type of base models or learning algorithm that uti-
lizes same feature selection method build upon different
data subsets. For instance, popular homogeneous ensemble
methods include bagging and boosting approaches [16] that
are capable of generating diversity through random sam-
pling where all base learner possess equal weight. On the
other hand, heterogeneous modeling involves different learn-
ing algorithms such as stacking [17]. However, the present
work implements GBDT that involves fitting a decision
tree at each iteration in a direction of error minimization.

Today’s intelligent manufacturing systems strive to develop
innovation, low cost, and highly efficient products [18].
Correspondingly, smart factories need to meet the global
market challenges and suspire robust, and flexible produc-
tion processes. Short manufacturing cycles, lower operat-
ing costs, real-time exception handling, and optimal control
have become de-facto necessities for smart production and
innovative factory solutions. As the complex smart factory
systems involve multi-constraints and challenges to devise
solutions for optimizing intelligent factory resources [19].
Furthermore, smart production systems are subjected to
random critical event-driven and periodic tasks. Therefore,
a scheduling solution is substantial for efficiently allocat-
ing resources to machines to execute tasks optimally [20].
Previously a limited number of studies focused on devis-
ing task scheduling systems based on consideration of com-
plexity associated with practical scheduling systems [21].
However, such systems fail to deliver reliable performance;
for instance, short sensing intervals cause the scheduler to
be flooded with periodic sensing data added with massive
critical and non-critical event-driven tasks. Existing solution
devised for improving the productivity and efficiency of
smart production processes require efficient task scheduling.
Unfortunately, the developed solutions are unable to exploit
the heterogeneous nature of real-time tasks for maximiz-
ing the resource utilization in resource constrained envi-
ronments. Existing scheduling algorithms such as Shortest
Job First (SJF), First Come First Serve (FCFS), Sort and
Fit (SAF) and OctaSort (OS) often fail to meet the task
deadlines in-case of varying task types and resources [22].
Despite all developments,finding an optimal task schedul-
ing strategy for smart factory is a ever fallowed. To this
aim our proposed approach provides a learning-assisted task
scheduling solution for dynamic scheduling of production
tasks in constrained environments. The proposed scheduling
approach is adaptive to various types of tasks, jobs, processes,
machines, and network requirements. The proposed schedul-
ing algorithm encompasses task criticality and task collapse
aware strategy for fair allocation of resources. Furthermore,
an ensemble learning framework is developed to assist the
scheduling model in making informed task scheduling deci-
sions by providing task execution and machine utilization
status to improve production process in a smart factory. The
proposed system is compared with the classic RM scheduling
algorithm for performance evaluation based on response time,
machine utilization, task starvation, dropout rate, and latency.
The core contributions of the proposed learning to prediction
task scheduling mechanism are stated as follows.
• Development of an enhanced task scheduling mech-
anism based on task criticality and collapse aware
scheduling scheme for efficient resource load-balancing
and task management in smart factory.

• Consideration of task heterogeneity and priorities to
maximize resource utilization in constrained smart man-
ufacturing environment through introduction of Crtical-
ity First Measure (CFM) and Collapse Measure (CM).
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• Development of a learning assisted task scheduling
scheme using GBDT model to enhance the perfor-
mance of the scheduling mechanism through predictive
analytics.

• Generation and execution of control commands based on
inference rule engine for optimal actuator control.

The rest of the paper is organized as follows: Section II
presents the state of art in field of smart factory task
scheduling, resource utilization and load balancing solu-
tions, in addition some preliminaries to task scheduling in
smart factory and current challenges are also highlighted.
Section III presents the operational overview of predictive
task scheduling mechanism along with detailed description
of the proposed scheduling algorithm. Section IV presents a
detailed description of task modeling and simulation setup
for the developed system. presents experimental setup of
the proposed enhanced predictive scheduling mechanism.
Section V shows the experimental results analysis. Section VI
provides a conclusion of the proposed enhanced task schedul-
ing mechanism.

II. RELATED WORK
This section presents a review of existing techniques applied
to the domain of task scheduling moreover limitations of
developed systems are elaborated. Task scheduling involves
making decisions about jobs/ tasks ordering, resource alloca-
tion [23], and task execution based on the number of tasks
waiting in the machine queue to be executed [24]. Afterward,
the routing and execution of tasks are done [25]. Each task has
an associated task id, deadline, task type, and other parame-
ters. The employed scheduling algorithm (preemptive or non-
preemptive) provides a scheduling policy to schedule various
task types (periodic or event-driven). Event-driven tasks are
generally flexible, with varying arrival times than periodic
tasks with regular arrival times [26]. Smart production envi-
ronment can have various task types based on their nature and
characteristics. The tasks can be either periodic, non-periodic
or event-driven. Event-driven tasks are generally flexible,
having irregular arrival times comparative to periodic tasks
that posses regular arrival time [27].

The literature on scheduling comprises of four methods
for scheduling problems that are exact methods, heuris-
tic approaches, simulation based approaches and AI based
approaches [28]. Exact methods provide optimal solution
through methods like Dynamic Programming (DP), Integer
Programming (IP), Branch and Bound (BB) to name a few.
However this approach is limited because of its applica-
bility only to small size scheduling problems. Contrarily
for large size (NP complete) problem the time complex-
ity of solution approaches become manifolds [29]. Task
scheduling for the cloud-based system is emerging research
for effective resource utilization in the cloud environment.
Previously many researchers attempted to devise a solu-
tion based on scheduling algorithms [30], [31]. Recently
ML [32] and AI models [33] have been successfully applied

to task scheduling through real-time intelligent decision mak-
ing [27]. ML approaches have also outperformed conven-
tional methods in complex areas such as the cloud. Search
Space Exploration, Mixed Integer Programming (MIP), and
Reinforcement Learning (RL) provided convincing results
to deal with a complex cloud environment. [31] proposed
a task scheduling for cloud applications by minimizing the
computational cost through efficient resource utilization.
An adaptive task scheduling mechanism based on Netflow
prediction and clustering is proposed in [33] to overcome
the stability and load balancing in cloud environments.
A Q-learning-based task scheduling solution for optimal
resource utilization and scheduling in cloud environment is
presented in [34]. Similar works has been proposed by [35]
to provide machine learning based solutions for sustain-
able smart spaces. Deep Learning (DL) frameworks are
also valuable for providing predictive analytics for optimal
task placement. However making accurate forecast about
various aspects of the production process is a challenging
task due to dynamism and heterogeneity of real-time tasks.
Time-series prediction based on Deep Convolution Neural
Networks (Deep-CNN) has been proposed by [36]. Another
DL solution has been developed by [37] to improve the
process performance in smart production systems. A DL
based prediction model is developed by [38] for machine
speed prediction to optimize the production process. A task
scheduling algorithm based on deep Q-nets (DQN) has been
proposed by [39] to determine the scheduling order of the
tasks. A novel energy-efficient task scheduling mechanism
is developed for real-time scheduling tasks. The consid-
ered scheduling architecture can deal with various task
types [40]. An uncertainty-aware scheduling algorithm is
presented in [41] for dynamically scheduling workflows
in the cloud environment. The result of the experiments
shows an improved task starvation rate.ML-based scheduling
solutions support adaptive scheduling through learning by
running simulations and building a knowledge base. In [42]
authors provided a detailed review of ML applications in task
scheduling. In [43] authors presented a dynamic schedul-
ing strategy for smart factory production management. [44]
Proposed a learning-aided dynamic scheduling framework
that involves a knowledge base for selecting rules. The
authors proposed an efficient and energy-aware scheduling
mechanism for load balancing [45]. In article [30] proposed
a reinforcement learning-based solution for a manufacturing
system. In [46], the authors proposed a dynamic feature
selection method for semi-conductor manufacturing based on
Genetic Algorithm (GA) and NN. A notable work proposed
an AI based data driven solution for smart manufacturing of
semi-conductor material [47]. Prediction of manufacturing
outcomes is an essential aspect of task scheduling because of
the high production cost. Resource wastage can be effectively
mitigated through accurate and timely smart factory produc-
tion parameters predictions. Learning from historical data in
real-time enables smart factory scheduling to bemore respon-
sive, predictive, and proactive. Predictive analytics has been
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part of smart factory optimization process for a long. In [48],
the authors claimed that ensemble learning approaches could
efficiently resolve the complexities of smart factories by pre-
dicting parameters that prevent failures beforehand. In [49],
the authors employed a prediction mechanism to predict the
health of smart factory tools. ANN, Support Vector Machines
(SVM), and Random Forest (RF) are widely used to pre-
dict tool wear in smart factories. Many researchers devel-
oped innovative manufacturing scheduling solutions based
on centralized and hierarchical systems for providing global
schedules for manufacturing systems; however, they are not
efficient at handling disturbances. Therefore developing an
integrated, flexible, and robust scheduling mechanism is the
need of hour [50]. Task scheduling is challenging for various
manufacturing industries due to resource constraints and
conflicting objectives [51]. Efficient task scheduling plays
a central role in enhancing the productivity and efficiency
of smart manufacturing systems. Tasks scheduling involves
allocating resources (limited or shared) to various tasks,
mainly sensing and actuating tasks, production jobs, and
processes to be executed within specified time constraints for
achieving maximum efficiency and the minimum cost of pro-
duction [52]. In case of exception, manufacturing processes
require feedback from control modules for actuation accord-
ingly [53]. As constrained manufacturing systems have lim-
ited resources therefore, an optimal task scheduling must is
highly substantial [54]. Despite of advancement in research
and technology the existing solutions does not guarantee opti-
mal solutions and their performance is highly influenced by
the criteria for optimization, task load, and configuration of
system [55]. A system that can optimally allocate resources,
with efficient resources load balance through self-learning
and prediction, minimize task starvation and sprucely deal
with unexpected scenarios.

III. PROPOSED TASK SCHEDULING MECHANISM BASED
ON TASK CRITICALITY AND COLLAPSE AWARE
SCHEDULING STRATEGY
This section presents the proposed methodology for real
time task scheduling mechanism. The propose scheduling
algorithm is named as CCAS algorithm. The proposed work
aims to schedule tasks with varying task natures, priorities,
deadline and constraints in overloaded system scenarios.
Smart production IoT systems encompasses periodic and
event driven tasks. Periodic tasks involve collecting environ-
ment sensing data after every few seconds through installed
sensors in the smart spaces. Event driven tasks occurs in
response to an abnormal event and possess high priority. The
task parameters and their detailed description is described
in Table 1. The tasks are categorized into four types for
understanding the task nature and context for awareness of
associated dependencies so that tasks must be scheduled
correspondingly. The proposed system prevents missed dead-
lines and task starvation when the scheduler gets flooded
with periodic sensing data added with massive critical and
non-critical event-driven tasks. The scheduling mechanism

Algorithm 1 An Enhanced CCAS Algorithm for Con-
strained Smart Manufacturing Systems
Data: Tasks in queue task_queue = T1,T2, . . . ,Tn
Result: Optimal tasks execution
initialization;
Tu = ET

TP
// Compute Task Utilization
Ubound = tn × (21/tn − 1)
// Compute upper bound
if TU ≤ tn × (21/tn − 1) then

// Selection of best machine as per
task type

Task← get_optimal_task(task_queue)
Execute_Task(Task)

Function get_optimal_task(queue):
for task in queue do

if task.type == CED then
Task ← CED(closest − deadline)

else if task.type == NCED AND PPT not in
queue then

Task ← NCED(closest − deadline)
if task.type == NCED AND PPT in queue
then

if task.type==PPT then
Task ← PPT (closest − deadline)

Calculate CFM ←
Criticality First Measure
CFM (t)← Slack

if CFM == 0 then
Task ← PPT (closest − deadline)
else

Task ← ED(closest − deadline)
else if task.type == PPT AND NPPT then

Calculate CM ← Collapse Measure

if CM == 0 then
Task ← NPP(starving− task)

else
Task ← PPT

return Task

considers two basic tasks types and two sub task types. Basic
task types cover Event Driven (ED) tasks and Periodic tasks
(PT). The ED task types are further categorized as critical
Event Driven (CED) and Non-Critical Event Driven (NCED)
while periodic tasks are sub divided into two types Priority
Periodic (PP) and Non-Priority Periodic (NPP). The detailed
description of each task type is as follows, in case of non-
critical event driven task type the tasks must be executed
any time before deadline. Algorithm 1 presents the detailed
working of CCAS mechanism.

The ED tasks occur due to reaction to an event or because
of unusual system behavior and are assigned the highest prior-
ity since they need to be executed right away. The division of
task types into sub types help system achieve more flexibility.
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TABLE 1. Task features and description.

CED tasks cannot afford to wait for execution in the queue as
compared to NCED tasks. NCED tasks must also be executed
before deadline. The ED tasks are recognized by the system
using Criticality Bit (CB), If CB=0 then the task is NCED
else it is a CED task. In contrast PT arrive regularly and
periodically at the system. PP tasks possess a priority with
respect to their task period and must be executed before their
deadlines. Priority periodic tasks are prioritized over non
priority periodic tasks. The periodic tasks are identified using
Priority Bit (PB). PB=1 make the system aware that the task
is a PP task and is able to preempt the higher priority task if
being starved. PB=0 is an indicator of NPP tasks that must
not preempt any high priority tasks. If a task possesses high
urgency or priority then it must be timely executed. A task
model can be explained by the Equation 1. The task model
involves task ID, machine ID, arrival time, priority, execution
time, finish time, start time, job id, number of jobs, Priority
bit for periodic tasks and criticality bit for event driven tasks.

Task profile = {Tid ,Mid ,Tpr ,Tat ,Tet ,Tft ,Tst ,

Jid , Jn,Von,Pbit ,Cbit } (1)

CCAS follows a customized scheduling policy for smart
factory task scheduling and loads balancing. Fig. 1 presents
a detailed flowchart of the proposed CCAS scheduling
approach. The proposed efficient resource load balance RM
scheduling maintains a task queue for all incoming tasks. The
scheduling policy introduces a global scheduler whose job
is to manage the load with efficient load balancing strate-
gies by assigning tasks to the processing machines such that
resources are handled efficiently. After task arrival the global
scheduler manages the task queue and calculate the task
utilization (Tu) based on the execution time and task period.
Equation 2 presents the formula of computing task utilization.

Tu = ET/TP (2)

Afterwards, the upper bound is calculated as per RM
scheduling. Upper bound represent the schedulability anal-
ysis. For all task in a task queue the least upper bound is
represented by the following Equation 3.

Ubound = tn ×
(
21/tn − 1

)
(3)

For any task it is necessary to undergo feasibility check first,
if task utilization is less than the least upper bound only then
a processor is selected and task is assigned to that processor.
The priority of a task is inversely proportional to task period
and the assignment of priorities to tasks decides how and
in what manner the tasks will be allocated to the machines.
Along this strategy an efficient and enhanced rate- monotonic
resource allocation scheduling policy is implemented such
that task are assigned priorities based on the deadline of the
task. Tasks having closer deadlines are given priority for
execution on selected machines. Moreover, we introduced
two learning factors namely CFM and CM that signifies
the execution of emergency and critical tasks and CM that
provides the feasibility of executing high priority tasks taking
account of starved tasks if any.

A. CRITICALITY FIRST MEASURE
The aforementioned learning components are computed dur-
ing real-time scheduling using prediction model to help
scheduler efficiently allocate tasks to machines and avoid
load unbalancing. CFM ascertains whether the system should
execute a NCED task or a PP task. CFM is computed between
NCED and PP task. By criticality the urgency of the task is
quantified so that the task must be executed right away. For
that firstly the scheduler checks the criticality tag provided
by the CB. If the task is a CED it is executed right away.
While if no CED arrived at system, the proposed scheduling
mechanism computes Slack for the available tasks is com-
puted for NPPT and NCED tasks. Provided any task, slack
indicates the difference between execution time required by
a task and deadline of the task. Equation 4 describes the slack
calculation to check either NCED task should be executed
first or the starving NPP task.

St (NCED) ≥ y× (St (NPP)) (4)

The equation is used for slack computation for NCED and
NPP task and the distance between both slacks should be
y times; while y is initialized with the value 3 and learned
gradually using prediction model as more tasks arrives at the
system and with the passage of time history is created. The
prediction model predicts the value of y; that gives a safe dis-
tance between NCED tasks and non-priority periodic tasks.
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FIGURE 1. Flow model of task CCAS scheme for constrained manufacturing environment.

The process begins when a scheduler based on task parame-
ters, schedule and execute tasks, concurrently a history is also
being maintained with the following information, including
time-stamp, number of tasks at current time-stamp, task type,
priority, preemption threshold, Slack and task drop-out rate
Fig. 2.

The log maintained by the system helps scheduler intelli-
gently take decisions by learning from past decisions. This
facilitates intelligent decision making as the system grows
it learns from historical logs based upon the value of y in
Equation 4. If above equation is true CFM is set to 0, task
is categorized as not critical and non-urgent thus making a
room for starving task having low priority to be executed, else
it is set as CFM=1 suggesting that the task type is NCED task
and should be executed first. In this way fair allocation of
resources is ensured. If NCED and NPPT are simultaneously
present, Criticality FirstMeasure (CFM) is computed tomake
sure the starving task must execute first. CFM quantifies the
criticality level of tasks that distinguishes it from other tasks.
CFM is a tag for scheduler to identify the task to be exe-
cuted right away. Correspondingly the scheduler schedules
the tasks based on preset priorities with in specified deadlines
and try to minimize task starvation for tasks having lower
priorities. The proposed scheduling framework aids faster
execution of ED tasks by prioritizing them over periodic task
while CED tasks are preferred over NCED. In the similar
manner priority periodic tasks are preferred over non-priority
periodic tasks in case of Periodic tasks.

FIGURE 2. Task criticality computation mechanism.

B. COLLAPSE MEASURE
In case of available periodic task, CM is calculated to decide
whether starving NPP task can be safely executed or to
execute PP tasks. The collapse measure is responsible to
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Algorithm 2An Ensemble (GBDT) PredictionModel for
Learning-Assisted Scheduling
Data: Task Data-set:

Taskparameters [(a1, b1), (a2, b2) . . . (an, bn)]
Resampling ratio (θ);
No. of training rounds (R);
Result: Predict Task Execution Status and Machine

Processing Capacity Utilization
foreach time-stamp do

Apply bootstrap to acquire training data-set having
size M= θ
M= (a1, b1), (a2, b2) . . . (an, bn)
Initialize← f t0 (a) = argmin

γ

∑M
i=1 L (bi, γ ) ;

for p = 1,2,3. . .P; do
for i = 1,2,3. . .M compute do

rmi = −
[
∂L(bi,f (ai))
∂f (ai)

]
f=f tp−1

fit a CART to target rmi, j = 1, 2, . . . .J
for q = 1, 2, 3 . . . qp do

γmj =

argmin
γ

∑
xi∈RPq L (yi, fP−1 (ai)+ γ ) , fP−1 =

f tP−1
updatefp(a) =
fp−1(a)+

∑qp
q=1 γpqI

(
x ∈ Rpq

)
, fp = f tp

output : f t (a) = fp(a)

updateht (a) = ht−1(a)+ f t (a)

output: H(a) =
∑T

t=1 ht (a)

check whether to run the periodic tasks first or to run some
unnecessarily starving tasks with closer deadline hence any
other non-priority periodic task does not miss its deadline.
Starving tasks are such tasks that are waiting for their exe-
cution, and are not assigned resources due to exception or
system priorities. CM is calculated using task data arriving
at the system in addition to historical log data. The GB-DT
ensemble prediction model predicts the task execution status
(Fig.3) andmachine utilization. To predict high priority task’s
safe execution, slack of each task is calculated afterwards the
execution time status is analyzed (complete time vs left time)
while any overlaps are removed to predict the safe execution
of tasks. To check the feasibility of running a low priority task
under given constraints the model learns from the history data
that whether executing it might make another high priory task
prone to be collapse/fail or not. If the model prediction yields
the output 1 that means safe execution is possible else 0 is
returned. If the prediction outcome returns 1 the value of CM
is set to be 0 indicates that CPU has enough resources to be
allocated to the starving, tasks else CM = 1 means priority
periodic task is executed.

C. PREEMPTION THRESHOLD (PT)
To tackle with the overloaded scenarios where only high
priority tasks arrive at the processor the proposed schedul-
ing policy does not allow a low-priority task to preempt a

CED task through the use of preemption bit and preemption
threshold. In case of overloaded situation if the periodic
task comes up with a preemption bit it can interrupt the
CED tasks. The preemption threshold is set to confine the
maximum starvation-time of NPP tasks. PB = 1 means that
in overloaded scenarios the periodic tasks can preempt the
running task and can be executed right away.

IV. TASK MODELING AND SIMULATION SETUP (Case
SCENARIO; CANDY-BOX FACTORY)
This section presents a detailed description of task model-
ing and simulation setup for the developed system. A smart
factory comprises heterogeneous smart machine networks
owning unique functionalities and working. The machines
work together to manufacture various product. Each machine
is given a task to complete to achieve the end goal. The man-
ufacturing tasks are assigned to each machine for execution
using the scheduling module. The actuators in smart factory
are categorized as manufacturing machines and the envi-
ronment control actuators. Environment control is achieved
by turning on/off and minimizing/maximizing the desired
environmental control actuators that include heater, chiller,
humidifier and dehumidifier. In Table 2 the details of trig-
gered control task as a result of environment sensing data for
candy-box factory are presented. The ambient environmental
factors affect the machine performance thus the production
process become prone to performance degradation, therefore,
the execution of control tasks at respective machine alongside
controlling the ambient environment is necessary for the
smooth production process.

A. TASKS DATASET
This subsection provides the details of the task generation
and input task parameters. Every task comprises of several
processes for execution on a device. The data acquired from
sensors at preset intervals (10 seconds) to conduct series of
experiments. The prediction results are fed as an input to the
scheduling model along with system tasks and constraints,
sensing tasks, system exceptions and user requirements. The
process begins with data collection and dataset generation
through simulation iterations to generate tasks and schedule
them. The data is simulated based on inputs provided by the
user and system threshold. The dataset provides historical
task data for training the machine learning model for learning
assisted scheduling. The initial task parameters task id, exe-
cution and deadline time. Based on the initial parameters the
system computes the rest of task parameters. Thus, historical
task data include information related to arrival time, deadline
time, execution time, finish time and time-budget allocated to
that task. The machine attributes involve allocated machine,
load at the machine and machine capacity.

Furthermore, simulated tasks data is presented in Fig.4.
Firstly, the system takes the number of tasks to be generated
as input from the user. In the next step user enters task sensing
interval with a range of 5 to 60 seconds. The generated tasks
interval is set according to user choice. Each task holds some
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FIGURE 3. Modeling scenario and operational overview for candy-box manufacturing.

TABLE 2. Control task generation for ambient environment control of candy-box factory through actuator control commands.

FIGURE 4. Simulated task data for candy-box manufacturing case
scenario.

initial parameters used by the system for computing task
parameters. A unique task id is assigned to each task with
an arrival time and deadline time information associated. The
task deadline time is set to be greater than execution time of
that task. Machine ID is initialized from zero then later set
according to the ID of scheduled machine. Start and finish
time corresponds to the scheduled task start and finish time
at a particular machine. The process begins with task set
generation using the initial parameters afterwards the systems
call the task attribute generation function for assigning start
time, finish time and time-budget to generated task set. Based

on the task parameters the tasks become ready to be schedule
and executed according to the proposed scheduling policy.
Alongside the scheduling of task, the scheduler maintains a
history-log containing derived parameters such as completion
status of the task, load at each machine in terms of task
processing capacity according to current load.

The simulated data for temperature and humidity for train-
ing is presented in Fig. 5. The values of temperature and
humidity showed a varied distribution with few exceptions.
Several random fluctuations are knowingly inserted to enable
the rule engine detect and control outlier samples.

The detailed implementation of the developed system is
presented in subsections. The scheduling framework through
real time control scheme achieves independent machine
and environment control. The predictive analytic assist the
scheduling model in triggering flexible responses to periodic
and non-periodic happening of smart manufacturing system.
Tasks/jobs reach scheduling module along with resource
requirements for orderly task allocation to machines by the
Scheduler. To evaluate the proposed approach, we devised
a use-case scenario of a smart factory involving candy-box
packaging and assembling. The motivation behind the con-
sideration of the present study has been taken from a case
study [56]. It is assumed that N types of candies are being
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TABLE 3. List of task processing time and task type.

FIGURE 5. Simulated environment sensing data for candy-box
manufacturing case scenario.

manufactured in smart candy manufacturing factory to make
customized orders as per user orders. Yet the devised task
scheduling mechanism does not take account of the manu-
facturing process of candies for the use-case scenarios. The
scenario considers a case where there are N types of candies,
and the task is to get customized user orders to assemble and
pack the boxes accordingly for delivery.

Furthermore, our proposed case study encompasses two
types of sensors (ambient and on-machine): four actuators
and eight machines. The details of sensors and actuators
are presented in Table 3. The ambient sensors are used to
sense the environment parameters every 10ms, specifically
humidity, temperature, and occupancy (through on-machine
sensors) having task type normal priority periodic task. The
actuators control task is sent to the heater, chiller, humidifier,
dehumidifier, and manufacturing machines for execution.
The processing time requirement of a system task is set as
300 ms with task type categorized as critical event-driven
for order placement task. On the other hand, rule execution
task priority is set as periodic-priority. All control tasks are
given 520 ms to complete their execution. The control task’s
priorities to be executed at manufacturing machines (AM,
PM) are assigned based on user order time and respective
deadline. The priority can either be non-critical event-driven
or critical event driven.

B. EVENT DRIVEN TASK SIMULATION FLOW
This subsection presents the event-driven task simulation
flow and task generation for the candy box factory case
scenario. The process is initiated by the user-customized
candy box order placement hence the task flow begins with
an event-driven task as shown in event driven task simu-
lation flow Fig. 6. The system has now an order place-
ment task after the user places an order for a candy box.
Once the system task gets into the pipeline, a corresponding

FIGURE 6. CED task simulation flow for candy-box manufacturing case
scenario.

response task is generated by the system, and the generated
response is also a system task having two jobs assembling
and packing represented by (J1 and J2) in Fig. 6. J1 can be
executed on one of the four assembling machines while all
four packing machines are available for J2 execution. The
selection of machines for the execution of J1(assembling) and
J2(Packaging) is made based on the machine’s current status
in terms of load.

C. PERIODIC TASK SIMULATION FLOW
In this subsection the periodic task simulation is described for
generation of periodic tasks for candy box factory. Periodic
tasks trigger the sensing tasks. Temperature, humidity and
occupancy is sensed every 10ms; the sensors are deployed
in candy-box factory for sensing environmental parameters.

The periodic tasks initiate a corresponding inference rule
execution task in response to sensing tasks. Inference engine
maps the values to a given threshold and generates control
commands. For instance in response to occupancy sensing
observations the next task might be generation of machine
idle alert. The aforementioned phenomena is illustrated in
Fig. 7. Likewise the temperature and humidity sensing values
might trigger the desired environmental control task in form
of inference rule execution of heating, chilling, humidifi-
cation and de-humidification control. Initially, the sensing
tasks are generated using initial parameters afterwards the
task generation function is called to create task parameters.
Finally, based on the task parameters, the tasks are ready to
be executed at the scheduler according to the CCAS policy.
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FIGURE 7. PP task simulation flow for candy-box manufacturing case
scenario.

TABLE 4. Implementation environment.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents the experimental results and perfor-
mance analysis of the developed predictive task schedul-
ing mechanism based on proposed CCAS scheme for
ultra-efficient resource load balance in smart factory. The
proposed scheduling framework has been developed using
python as it is widely employed for implementation of various
applications specifically web and desktop. Further details of
the development environment are described in the Table 4.

Fig. 8 presents the prediction results of the ensemble pre-
diction model for task status prediction on train and test
data. The ensemble prediction model is developed based
on Gradient boosting decision tree algorithm. The ensemble
model harness the generalization abilities of GBDT; built
sequentially for reducing the biases of combined estimator.

FIGURE 8. Task execution status prediction using GBDT.

FIGURE 9. Machine utilization prediction using GBDT and baseline model.

The base learners are trained sequentially lastly the final
model provides prediction outcomes by aggregating results of
the each-step. The key parameters for ensemble GBDTmodel
corresponds to learning rate and number of estimators. The
optimal number of trees per round is 50, while the optimal
max-tree depth is found at 6. Model hyper-parameters are
tuned using Bayesian Optimization Hyper-band (BOHB) to
achieve accurate prediction results.

The ensemble model predicts task status and machine uti-
lization based on learning task parameters as discussed earlier
in. Algorithm 2. To evaluate the effectiveness of proposed
ensemble model in terms of performance; a comparative
analysis has been performed with the baseline Decision Tree
algorithm. Fig. 9 shows the actual and predicted machine uti-
lization by proposed ensemble model as well as stand-alone
Decision Tree model. The prediction results of the proposed
ensemble model show significant improvements in terms of
accuracy compared to the standalone model. The accuracy
achieved by the proposed ensemble model is 98.37% in
700 iterations for task status prediction. While the maximum
accuracy achieved by the ensemble model in case of machine
utilization is 97.91% in 500 iterations. In contrast the stand
alone decision tree model attained a prediction accuracy of
96.48% and 94.45% for task status and machine utiliza-
tion respectively. The performance achieved by the proposed
ensemble model is attributed to strategy adopted for optimal
hyper-parameter optimization, faster convergence and higher
efficiency of GB-DT model. The results demonstrate that the
ensemble model performed well on average.
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FIGURE 10. Tasks response time analysis and comparison.

FIGURE 11. Tasks latency analysis and comparison.

In Fig. 10 a comparative analysis has been performed
with baseline RM-scheduling approach to demonstrate the
effectiveness of learning-assisted scheduling algorithm.

The performance is analyzed based on response time,
latency, and machine utilization in accordance to the goal
of the system that is maximizing machine utilization and
optimal resource utilization. The response time comparison
in Fig. 10, between classic RM scheduling and proposed
predictive scheduling is presented. The plot shows execution
time on the y-axis while task instances are plotted on the
x-axis. It is evident from the comparative analysis that the
proposed CCAS mechanism improved the allocation of task
to machines which resulted into enhanced machine utiliza-
tion and improved response time. The proposed scheduling
scheme achieved superior performance in terms of average
response time in contrast to the baseline scheduling algorithm
due to intelligent decision-making capabilities. The average
response time analysis of the classic RM algorithm is 720 ms
and the average response time analysis for proposed predic-
tive scheduling is 609 ms. Hence, our proposed enhanced
scheduling mechanism improved machine utilization by effi-
ciently allocating tasks to machines compared to the classic
RM scheduling algorithm.

For comparative analysis Fig. 11 presents the scheduling
comparison between classic RM scheduling and the enhanced
predictive scheduling. The graph shows the latency on the
y-axis and test instances on the x-axis. The latency anal-
ysis graph shows that the proposed predictive scheduling
has lower latency than the classic RM scheduling algorithm.

FIGURE 12. Response time comparison of the predictive scheduling and
RM scheduling.

FIGURE 13. Average machine utilization comparison of predictive
scheduling and RM scheduling.

FIGURE 14. Tasks dropout and starvation analysis.

Hence our proposed predictive scheduling reduced the wait-
ing time of tasks in the execution queue, which is only possi-
ble due to the criticality and collapse task-aware scheduling
strategy of the proposed predictive scheduling mechanism. In
Fig. 12, we presented a response time comparison between
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FIGURE 15. Tasks simulation sequence while executing at machines for candy-box factory.

classic RM scheduling and proposed predictive scheduling
based on enhanced predictive RM scheduling with criticality
and collapse aware based priority assignment to tasks. The
graph shows the response time in milliseconds on the y-axis
and the minimum, maximum, and average response time
values. The comparative analysis of the response time shows
that the enhanced predictive scheduling has improved results
than the classic RM algorithm due to its ability to maxi-
mizemachine utilization. The proposed predictive scheduling
scheme’s minimum, maximum and average response time is
588 ms, 640 ms, and 609 ms, respectively. The maximum
response time of classic RM scheduling is 740 ms because
it does not guarantee the optimal solution in different task
periods and deadlines. The statistical analysis demonstrates
that our proposed scheduling mechanism improved the over-
all task execution process in a smart factory.

Furthermore, Fig. 13 shows the average machine
utilization-based comparative analysis between classic RM
scheduling and enhanced predictive scheduling. Average
machine utilization is plotted on the y-axis, while the x-axis
depicts the four assembly machines. It is evident from the
graphical representation values that the average machine
utilization output by proposed predictive scheduling is higher
than the classic method due to the integration of a learning
module that aids the smart factory task scheduling through
accurate predictions of task status and machine utilization.

The predictions facilitate the scheduler in intelligent
decision-making and thus improves the load balance and
overall performance of the smart factory.

In addition, Fig. 14 shows task starvation analysis and
dropout rate analysis. The graph shows the average task
starvation and dropout rate percentage on the x-axis. A com-
parative study between the classic RM algorithm and pro-
posed predictive scheduling shows that the number of tasks
starvation rate and missed task rate is lower in the case of
enhanced predictive CCAS.

For scheduling simulation, analysis and visualization we
developed a web powered visualization tool kit as front end
interface. Fig. 15 shows the output of the developed schedul-
ing scheme depicting the execution of tasks at machines.

VI. CONCLUSION
The average task dropout or failure rate achieved by improved
predictive scheduling is 19%, while the average task star-
vation is 12%. In contrast, the average task drop out of the
conventional RM scheduling algorithm is 34%, and the task

starvation rate is 26%. The comparative analysis demon-
strates that the proposed scheduling mechanism improved
the overall performance of the smart machines compared to
the conventional RM scheduling algorithm. The reason for
high task starvation and failure is because, in classic RM
scheduling, the machine utilization is lower than expected.
In contrast, the proposed enhanced predictive scheduling due
to its improved scheduling policy, integration of learning and
control module leads to utilization of machines to its fullest.

In this study we proposed a learning-assisted scheduling
scheme for scheduling task in constrained smart candy-box
manufacturing environment. The proposed work presents an
enhanced task criticality-aware scheduling algorithm capable
of handling various combinations of task types and priorities
task in constrained manufacturing environment. The system
is developed using three modules; namely task scheduling
mechanism based on task criticality and collapse aware strat-
egy, An ensemble GBDT prediction model for providing pre-
dictive analytics and an optimal environmental control based
on inference rule engine. Furthermore a webpower visual-
ization toolkit is also developed for visualizing the output of
the task while executing at machines. The developed system
makes the best effort in minimizing the task starvation rate in
overloaded scenarios by fair allocation ofmachine resource to
taskwith the help of two intelligentmeasure namelyCFMand
CM. Moreover the proposed system involve elements such
as reserve, preemption bit and preemption threshold for task
scheduling under constraints. The main objective of the pro-
posed mechanism is to maximize the dynamism, efficiency
of resources utilization, flexibility and re-configurability of a
constrained production processes in real time. The ensemble
learning framework assists the task scheduling mechanism in
achieving efficient resource load balance in a smart factory by
predicting task scheduler’s next move. An enhanced CCAS
method is employed that focus productivity maximization.
The developed framework is evaluated on task modeling and
simulation scenario for candy-box factory. For comparative
analysis the performance of the proposed system is compared
with baseline models. From the experimental results it is con-
cluded that the proposed CCAS scheme achieved improved
task dropout and starvation rate by 15% and 14% respectively
leading to improved resource utilization of resources. Future
work involves integration of optimization module to further
enhance the performance of the proposed system to ensure
error-free tasks execution. Furthermore in future work we
aim to establish a comparative analysis with several more
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competitive scheduling schemes to verify the applicability
of the future proposed scheduling mechanism in presence of
other schedulers.
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