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ABSTRACT Video-level sentiment analysis is a challenging task and requires systems to obtain discrim-
inative multimodal representations that can capture difference in sentiments across various modalities.
However, due to diverse distributions of various modalities and the unified multimodal labels are not always
adaptable to unimodal learning, the distance difference between unimodal representations increases, and
prevents systems from learning discriminative multimodal representations. In this paper, to obtain more
discriminative multimodal representations that can further improve systems’ performance, we propose a
VAE-based adversarial multimodal domain transfer (VAE-AMDT) and jointly train it with a multi-attention
module to reduce the distance difference between unimodal representations. We first perform variational
autoencoder (VAE) to make visual, linguistic and acoustic representations follow a common distribution,
and then introduce adversarial training to transfer all unimodal representations to a joint embedding space.
As a result, we fuse various modalities on this joint embedding space via the multi-attention module,
which consists of self-attention, cross-attention and triple-attention for highlighting important sentimental
representations over time and modality. Our method improves Fl-score of the state-of-the-art by 3.6%
on MOSI and 2.9% on MOSEI datasets, and prove its efficacy in obtaining discriminative multimodal
representations for video-level sentiment analysis.

INDEX TERMS Multimodal representation learning, domain adaptation, variational auto-encoder (VAE),

adversarial training.

I. INTRODUCTION

Video-level sentiment analysis is a task to predict people’s
sentiment intensity with a given video clip. It is an essential
task for achieving high-level artificial intelligence (Al), and
is expected to be applied to dialogue agents, virtual reality
and social robotics, and so on [1]. To let Al systems have a
better understanding of people’s sentiment, existing methods
fuse multimodal representations obtained from video frame
(image), text and audio, and predict sentiment intensity by
doing regression analysis [7], [9]. How to obtain discrim-
inative multimodal representations that can capture differ-
ence in sentiments across various modalities is a core issue
for video-level sentiment analysis [2], [10], [11]. However,
due to diverse distributions of various modalities (e.g., one
same sentiment intensity corresponds to different unimodal
representations.) and the unified multimodal labels are not
always adaptable to unimodal learning (e.g., an unified mul-
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timodal label is highly negative, but text represents neutral),
the distance difference between unimodal representations
increases, and prevents systems from learning discriminative
multimodal representations. Mai et al. [16] propose adversar-
ial encoder-decoder-classifier framework to reduce modality
gap by using adversarial training [3], [30], and Yu et al. [15]
design an unimodal label auto generation module to better
learn unimodal representations for multimodal fusion. These
two methods reduce the distance difference between uni-
modal representations via different approach, aim to map
various modalities in a joint embedding space so that the
model can easily learn a common classifier. However, from
the evaluation result, their efficacy is limited on the small and
imbalanced sentiment dataset.

In this paper, to obtain more discriminative multimodal
representations that can further improve the performance
of video-level sentiment analysis, as shown in Fig. 1, we
propose a VAE-based adversarial multimodal domain transfer
(VAE-AMDT) to better reduce the distance difference
between unimodal representations and transfer various
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FIGURE 1. A conceptual diagram illustrates distribution of various
modalities is diversity. VAE-AMDT is designed to transfer unimodal
representations to a joint sentiment embedding space. As a result,
we obtain discriminative sentiment multimodal representations and
make it easier to predict sentiment intensity. “A” and “Q"” indicate
“non-negative” and “negative” respectively.

modalities to a joint embedding space, so that the model can
easily learn discriminative multimodal representations and
find an effective classifier over various modalities. Varia-
tional auto-encoder (VAE) is an auto-encoder whose train-
ing is regularised so that the distributions returned by its
encoder are enforced to be close to a standard normal distribu-
tion [4], [5]. We perform it with visual, linguistic and acoustic
modality respectively to make encoded latent representations
follow a common distribution so that the modality gap can
be reduced. Furthermore, motivated by [16], we introduce
discriminator trained with adversarial loss to classify encoded
latent representation of target modality as true but others
as false. As a result, we can better transfer encoded latent
representations from various modalities to a joint embed-
ding space as shown in Fig. 1. And then, we jointly train
VAE-AMDT with a multi-attention module on this joint
embedding space to learn more discriminative multimodal
representations. The multi-attention module is consist of self-
attention, cross-attention and triple-attention components,
we employ it to highlight important sentimental represen-
tations over time and modality. Especially, we perform
the cross-attention component under a ‘‘non-alignment”
modality data setting to make our method can capture
sequence-level interactions between modalities and have
a much better multimodal fusion ability (e.g., text —
audio) [11]. We also perform self-attention to highlight
import elements in each modality, and triple-attention to high-
light important modality.

We conduct detailed experiments on the video-level sen-
timent analysis dataset MOSI [8] and MOSEI [6]. Our
method improves Fl-score of the state-of-the-art method
Self-MM [15] by 3.6% on MOSI and 2.9% on MOSEI
datasets respectively. We also perform quantitative and
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qualitative analysis on the test set of both datasets, and the
results suggest that VAE-AMDT is capable of reducing dis-
tance difference among unimodal representations, and fused
multimodal representation is discriminative for improving the
performance of video-level sentiment analysis.

Il. RELATED WORK

A. UNIMODAL SENTIMENT ANALYSIS

Sentiment analysis from people’s facial expressions, voices
and speech texts have some impressive progress by
employing deep learning techniques [1]. Convolutional
neural networks (CNN) are employed to do facial expres-
sions recognition (FER) [19], [20]; Recurrent neural net-
works (RNN) are employed to do speech emotion recognition
(SER) [21]-[24]; Language models (e.g., BERT [13]) are
finetuned to do textual sentiment analysis [25]-[27]; All these
methods focus on learning effective latent representations
from single modality. However single modality is not enough
to provide comprehensive information to analyze people’s
complex sentiments. In contrast, our method focus on how to
fuse these unimodal latent representations to further improve
the performance of sentiment analysis.

B. MULTIMODAL FUSION

Recent works on video-level sentiment analysis are increas-
ing, and aim to gain more effective multimodal represen-
tations from various modalities. Several recent works [7],
[9]-[11] employ attention mechanism to fuse multimodal
representations through modeling interactions across various
modalities. Zadeh et al. [6] propose a dynamic fusion graph
to do inter-multimodal fusion and Wang et al. [10] dynam-
ically adjust word representations using its aligned facial
expressions and voice representations. However, these meth-
ods work with the forced alignment data setting, and are lim-
ited to build sequence-level interactions between modality.
Our method works with non-alignment data setting, so we
can use cross-attention to build sequence-level optimal inter-
actions cross modality.

To further improve the performance of multimodal fusion,
recent works [15], [16] focus on how to reduce distance
difference of unimodal representations since it is hard for
systems to learn a common classifier from various modal-
ity domains as shown in Fig. 1. Motivated by adversarial
training [29], [30], Mai et al. [16] introduce adversarial
encoder-decoder-classifier framework to transfer unimodal
representations to a joint embedding space, and Yu et al. [15]
designs an unimodal label auto generation module to better
learn unimodal representations so that the distance difference
between modality can be reduced. However, their efficacy
is limited on the small and imbalance sentiment dataset.
We perform adversarial training by using VAE-encoded uni-
modal representations to better reduce distance difference of
unimodal representations.

lll. PROBLEM STATEMENT
In this paper, we aim to predict people’s sentiment intensity
with a given video clip. The video clip includes multimodal
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FIGURE 2. Overview of our method: we first perform self-attention (§ V-A1) and cross-attention (§ V-A2) using preprocessed sequence features V, L
and A, and then we perform VAE-AMDT that consisting of three VAEs and two generators G and one discriminator D to reduce distance difference
between unimodal representations (§ V-B). Finally, we use the encoded unimodal representations as the input of triple-attention (§ V-A3) to output
one sentiment intensity result. Here, unimodal representations xy, x; and x4 indicate concatenations of the output of attention layers for each
modality. uv, #; and pq are encoded unimodal representations with VAE-AMDT.

signals: people’s face image frames (1), audio (/) and speech
text (I;). We regard this task as a regression task, and our
model takes /,, I, and I; as inputs and outputs one sentiment
intensity y € R. Here, R is in the range of [-3, 3].

IV. MODALITY DATA PREPROCESSING

Given a video clip, we first drop out data that does not
contain all of 1, I, and I; to ensure our model works properly,
and then we process each unimodal signal following below
techniques to obtain their sequence features:

1) For the visual modality, we first use OpenFace [31] to
extract /,, and then we initialize visual sequence fea-
tures V e RTv*P» by encoding facial expression repre-
sentations from /, using a pretrained FER model [33].
Here, the FER model is pretrained on the VGG-Face
dataset [34]. Given an extracted face image, we perform
that pretrained FER model and use its prediction result
as facial expression representations. The facial expres-
sion result is represented with a 8-dimensional vector.
The More details in Albanie’s website!.

2) For the linguistic modality, we initialize language
sequence features L € R7/*P! by extracting sentence
embeddings of /; using a pretraining language model
RoBERTa [28].

3) For the acoustic modality, we initialize audio sequence
features A € R7«*Pa by extracting log-mel filter banks
from 1, [22].

1https://Www.robots.ox.ac.uk/ albanie/mcn-models.html
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In this paper, to solve one problem of different video clip
lengths, we do padding and truncation to adjust the length
of V, L and A respectively. We set T, T; and T, to 64, 100
and 128, and D,,, D; and D, to 8, 1024 and 128.

V. METHODOLOGY

In this section, we explain our method in detail. As shown in
Fig. 2, our method includes VAE-AMDT and a multi-attention
module that consists of self-attention, cross-attention and
triple-attention components. We jointly train VAE-AMDT and
the multi-attention module to reduce the distance difference
between unimodal representations and fuse multimodal rep-
resentations to do sentiment intensity prediction.

A. MULTI-ATTENTION MODULE

1) SELF-ATTENTION

The self-attention is designed to highlight key sequence ele-
ments [12], [13], and performed by taking V, A and L as
inputs and output self-attention vector x(,—), X(/—;) and
X(a—a), as follows:

X(m) = fm(X) (1)
Um—smy = softmax(Xm) - X[y )
I o X
mﬁm=ﬁ< S e 3
Timy

where f,, : RTn*Pn . RInxD jq 3 linear transformation.
We perform f,, with X € {V,L,A} to output X, m €
{v, a, I} and they have a same dimension D. We then calculate
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attention weight o, ) and get self-attention vector X(,— m)
via a 2-layer MLP f; : RP — RP.

2) CROSS-ATTENTION

We perform cross-attention between any two modalities
to highlight correlated sequence elements over modality.
For example, corresponding to one speech text “I enjoyed
the party today”., the word “enjoy” should attend to the
enjoyable facial expressions, and its cross-attention weight
o(m1—m2) should be learned with a high score. We use m1 and
m?2 to indicate different modality. We perform cross-attention
in two attentional directions to get cross-attention vector
X(ml—m2) and Xgn2—m1), as follows:

A(ml—m2) = softmax(X(n1) 'X(fnZ)) “4)
Tm2
221 i —m2) - Xom2)
Xml—m2) = fs < =1 “ (5)
Tm2)

As shown in Fig. 2, we concatenate self-attention and
cross-attention vectors for each modality to get unimodal
representations x;,, as follows:

Xy = x(v—)v)Hx(l—)v)“x(a—w) (6)
X1 = X1 IXe—n1X@a—1) @)
Xa = Xa—a)lX(—>a)|X@p—a) (8)

“””

where is the concatenation operation. We take x,, x; and
X, as inputs of VAE-AMDT (§ V-B).

3) TRIPLE-ATTENTION

We fuse VAE-AMDT encoded unimodal representaions i,
u; and p, by using triple-attention so that the important
unimodal representaions can be highlighted. We stack ., u;
and p, in a list and then perform Egs. (2) and (3) to get a mul-
timodal representation vector x. Finally, we perform linear
regression for sentiment intensity prediction by employing
mean squared error (MSE) loss function £,,, as follows:

1 « _
Loy, T) = = Y1) = Fil? ©)
i=1

where f;- : RP — R!isalinear transformation, used to output
one sentiment intensity result. n represents the size of data
batch and y is ground truth label.

B. VAE-AMDT

VAE-AMDT is composed of three VAEs and two generators
G and one discriminator D (Fig. 2). We jointly train it with
the multi-attention module to transfer x,, x; and x, to a joint
embedding space and use its output w,, (; and pu, to predict
sentiment intensity (§ V-A3). We show how to learn VAEs
and how G and D worked in the adversarial training process
as follows:

1) VARIATIONAL AUTO-ENCODER (VAE)
The Kullback-Leibler Divergence (KLD) term of VEA allows
us to regularize the encoder to produce a latent vector z that
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follows a standard normal distribution [4], [5]. As a result,
we have each mean layer () that follows a similar distri-
bution [5]. To further include modality type information in
the encoder, we define a one-hot vector to represent modality
types and concatenate it with the decoder vector m for each
modality. Following a MLP layer /, we maximize the loss
function L, to learn VAEs together as follows [4]:

R N
Loae(®,9) =Y Y {=BKL(Qy(zIx))||Ps(2)

r=1n=1

+Eg,(aix;) [10g Po(x),|z, )|} (10)

where ¢ and 6 denote encoder and decoder parame-
ters respectively. R denotes the number of modalities and
N denotes the data size. We set 8 to 0.5. This is a trade-off
coefficient that allows the model prioritize one term over the
other. KL represents KLD term, used to constrain the varia-
tional posterior Qy(z|x) close to the prior Pg(z). The second
term on the right-hand side of Eq.10 indicates the values
of the expected log-likelihood generated by the decoder Py.
To maximize it to enforce z return to the original data space
with the constraint m. Here, m is the modality type vector.
When KL is minimized, the encoder Qy is also constrained
by m. As a result, the modality type information can affect
the encoder optimization and to make the encoder represent
modality type information as well.

2) ADVERSARIAL TRAINING

We take VAE encoded unimodal representations u,, (; and
g as the input. To further reduce the distance between any
two unimodal representations, we introduce two G to gen-
erate fake linguistic modal representations from visual and
acoustic modality and then design a D to discriminate the real
linguistic modal representation from generated fake repre-
sentations by employing an adversarial loss £, . In addition,
we perform binary classification for the generator by using
binary cross entropy loss (BCELoss). We jointly train two G
and one D to as follows:

L’,C,i = argmin V(E,,),

m

V(Em) = Eum~0y,,(um) [108 E(m)]
+ Byt~ () [108 (1 = En(um)))] (1)

where E,, indicates generator of modality m € {v, a}.
£P = arg min max V(E,, E,, D),
EyE, D

V(Ey, Ea, D) = Epy~0y, ) [lOg D(Ml)]
+ Ep)~04 (1) [10g (1 -D (Ev(M(v))))]

+ EM(a)"’an () [10g (1 -D (Ea(ru“(a))))]
(12)

Consequently, we have L, for adversarial training.

Lo = LG+ L8+ LP (13)
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TABLE 1. The size of dataset.

Dataset H Train ‘ Validation ‘ Test ‘ Total

MOSI 1257 229 686 2172
MOSEI 9473 1206 2710 | 13389
C. LEARNING

We finally have a joint loss £ for training the multi-attention
module and VAE-AMDT, as follows:

L=aly+ ,B»Cave + V»Cat (14)

where «, 8, y are hyperparameters, which are used to indicate
the importance of each loss value. We empirically set them
as 1.

VI. EXPERIMENT

A. DATASET

We evaluate our method on using video-level sentiment anal-
ysis dataset MOSI [8] and MOSEI [6]. Both datasets are
collected from online video: MOSI contains 2,199 opinion
video clips and MOSEI contains more than 65 hours video
from more than 1000 speakers and 250 topics. To ensure our
method behaves correctly, we drop out data that does not
contain all of modalities. Tab. 1 shows the number of data
in both datasets in detail. MOSEI dataset is over 6x larger
than MOSI dataset. Both datasets are annotated in the range
of the [—3,3] Likert scale, i.e., [-3: highly negative, —2: neg-
ative, —1: weakly negative, 0: neutral, 4+1: weakly positive,
+2: positive, +3: highly positive]. From the data distribution
over annotations in Fig. 3, we have very imbalanced data
annotations for both datasets. Especially, there is over 65%
of MOSEI dataset are annotated in the range of [—1, 1].

B. METRIC

We use the mean absolute error (MAE), accuracy (A?) and
weight F1 score as evaluation metric. A2 is a binary accu-
racy metric, the prediction result y < 0 are belonged to
“Negative” class and y > 0 are belonged to ‘“Non-negative’
class (Fig. 3). Furthermore, due to the small and imbal-
anced dataset, we also use precision-recall curve to show the
model’s performance at various threshold settings.

C. FULL MODEL HYPERPARAMETERS

We show full hyperparameters of our model on MOSI and
MOSEI dataset in Tab. 2. We use AdamW [35] as our opti-
mizer, with € = le-8. We use cosine annealing schedular [36]
to adjust the learning rate (le-8). We also show the feature
size of each attention component in our multi-attention mod-
ule (Fig. 2) in details. Our hidden layer size (f;,) is different
from datasets, so that we have different hyperparameters for
training their best performance (Tab. 2: “Training”).

D. PERFORMANCE

As shown in Tab. 3, under the same modality alignment
setting (non-alignment), our method achieves much lower
MAE result than Self-MM(+) by over 0.16 (MOSI) and
0.05 (MOSEI). Especially, a low MAE indicates that our
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FIGURE 3. Annotation distributions on MOSI (a) and MOSEI (b). We show
“negative” classes in red color and “non-negative” classes in blue color.

method is superior on the sentiment regression problem.
Compared to Self-MM(+), we also note that our method
improves MAE results better with MOSI than with MOSEIL
This suggests that VAE-AMDT is much effective for rela-
tively small datasets (Tab. 1). Here, Self-MM(+) is trained
by using the same preprocessed data in our method (§ IV).
Especially, we use a same pretrained RoOBERTa model to
encode speech text for a fair comparison between Self-
MM(+) and our approach. We take out the data that lacks
some modalities so that we can fairly compare their per-
formance in terms of the modal fusion capability. To fairly
confirm the binary classification ability of models trained
with imbalanced annotations (Fig. 3), in addition to the accu-
racy (A%) comparisons, we also show precision-recall curve
for both MOSI and MOSEI in Fig. 4. The results suggest
that our method is superior to Self-MM(+). Even though
Self-MM(+)’s AZ result (84.6%) is higher than our method
(82.8%), when both precision and recall scores are over 80%
as shown in the precision-recall curve graph (Fig. 4b), our
method is still better than Self-MM(+). We also show the
result of our method trained in a 10-fold cross-validation
strategy (CV), which is a bit worse due to the small and
imbalanced dataset, but it is still better than Self-MM(+)
except A> for MOSEI This result also suggests that our
method is not overfitting to the training set.

We additionally compare the number of parameters of
Self-MM and our method. Self-MM finetunes the pretrained
BERT model [13], so it needs to reuse and update BERT’s

51319



IEEE Access

Y. Wang et al.: VAE-Based Adversarial Multimodal Domain Transfer for Video-Level Sentiment Analysis

TABLE 2. Full hyperparameters for our model. “dim” indicates the number of dimensions. “Self”, “Cross” and “Triple” indicate self-attention,

cross-attention and triple-attention components respectively.

MOSI MOSEI
Sample rate 44.1KHz
c FFT hop length 0.02s
= FFT window size 0.01s
< Mel bins 128
Sequence length 128
Frame rate 8fps
° Face detection OpenFace 2
éﬂ Face frame size 128%128
- Facial expressions feature (dim) 8
Sequence length 64
Tokenization Roberta Tokenization 3
§ Embeddings(dim) 1024
Sequence length 100
. Feature size (input) V:(B, 64, 8); L:(B, 100, 1024); A:(B, 128, 128) | V:(B, 64, 8); L:(B, 100, 1024); A:(B, 128, 128)
= Feature size (output) V:(B, 64, 128); L:(B, 100, 128); A:(B, 128, 128) V:(B, 64, 64); L:(B, 100, 64); A:(B, 128, 64)
4y Feature size (input) V:(B, 64, 128); L:(B, 100, 128); A:(B, 128, 128) V:(B, 64, 64); L:(B, 100, 64); A:(B, 128, 64)
A Feature size (output) V:(B,128); L:(B, 128); A:(B, 128) V:(B,64); L:(B, 64); A:(B, 64)
[v = ] Feature size (input) V:(B, 64, 128); L:(B, 100, 128) V:(B, 64, 64); L:(B, 100, 64)
[v = 1] Feature size (output) [v— ] and [l — v]:(B, 128) [v— ] and [l — v]:(B, 64)
§ [v = a] Feature size (input) V:(B, 64, 128); A:(B, 128, 128) V:(B, 64, 64); A:(B, 128, 64)
) [v = a] Feature size (output) [v — a] and [a — v]:(B, 128) [v — a] and [a — v]:(B, 64)
[a = 1] Feature size (input) A:(B, 128, 128); L:(B, 100, 128) A:(B, 128, 64); L:(B, 100, 64)
[a = ] Feature size (ouput) [a — 1] and [l — a]:(B, 128) [a — 1] and [l — al]:(B, 64)
'E Feature size (input) Ty, x; and x4:(B, 384) Ty, x; and z4:(B, 192)
% Feature size (input) (B,3,32) [pw, i, fa)
&= Feature size (output) (B,32) [z]
Peak learning rate le-4
8 Weight decay 0
g AdamW 3 0.9
) AdamW ¢ le-8
Schedular CosineAnnealingLR
Loss function Mean Squared Error (MSE)
GPU GTX 1080 Ti
&0 Batch size 4 20
£ Training epochs 200 80
= Parameters 3.3M 1.7M
Training time 1h13m 46m
Inference time 0.000738 0.000125
Training time (Self-MM) 3h29m -
Inference time (Self-MM) 0.001131 -

parameters, and the training parameters exceed 100M. This
is 33X larger than our method (3.3M). Since we utilize
the pretrained RoBERTa [28] to embed speech text during
preprocessing (§ IV), it is not essential to update massive
pretrained parameters. As a result, we can not only train our
method in a short time (%th of Self-MM) as shown in Tab. 2,
but also achieves a model that is 1.5X faster than Self-MM
for inference.

E. EFFECT OF VAE-AMDT
We first show the comparison results of our method built
(w/o and w/) VAE-AMDT in Tab 4. The results suggest
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that our proposed VAE-AMDT is effective for improv-
ing the performance of model only built by employing
the multi-attention module (§ V-A). We further study the
effect of VAE-AMDT through quantitative and qualitative
analysis.

1) MAXIMUM MEAN DISCREPANCY SCORE(MMD)

We do quantitative analysis by analyzing maximum mean
discrepancy (MMD) on both MOSI and MOSEI test sets.
The MMD is a kernel-based approach that is used to mea-
sure the distance between two probability distributions [32].
We use encoded unimodal representations u,, (; and @, to

VOLUME 10, 2022
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TABLE 3. Comparison of VAE-AMDT and state-of-the-art results in both MOSI and MOSEI. VAE-AMDT outperforms state-of-the-art Self-MM (MAE/F1) by
over 0.16/3.6 point (MOSI) and 0.05/2.9 point (MOSEI). Here, the lower the MAE, the better the performance. (*) indicates that the results are referenced
from the Self-MM paper. (+) indicates that Self-MM is trained by using the same preprocessed data in our method; (CV) indicates the result of the 10-fold

cross validation.

MOSI MOSEI Modality
Model
MAE | A2 | F1 || MAE | A% | FI alignment
Graph-MFN [7] 0.965 | 774 | 773 - 76.0 | 76.0 Yes
RAVEN [10] 0915 | 780 | 76.6 || 0.614 | 79.1 | 79.5 Yes
ARGF [16] - 813 | 815 - - - Yes
MulT [17] 0.861 | 81.5 | 80.6 || 0.580 | - - Yes
MISA (*) [18] 0.804 | 80.8 | 80.8 || 0.568 | 82.6 | 82.7 Yes
MAG-BERT () [14] | 0.731 | 82.5 | 82.6 || 0.539 | 83.8 | 83.7 Yes
Selft-MM (*) [15] | 0.713 | 84.0 | 844 || 0.530 | 82.8 | 825 No
Selft-MM (+)[15] | 0.885 | 80.6 | 80.6 || 0.579 | 84.6 | 846 No
VAE-AMDT 0716 | 84.3 | 842 || 0.526 | 828 | 87.5 No
VAE-AMDT (CV) | 0.745 | 822 | 822 || 0529 | 81.6 | 86.2 No
Human [7] 0.710 | 85.7 | 875 - - - No
09 0.95 M\\\,v\
N
Y
0.8 0.90 \\\
0 o Recall o e " o o Recall o e
(a) MOSI (b) MOSEI

FIGURE 4. The precision-recall curve is created by using VAE-AMDT's test prediction results on both datasets. The curve indicates that
VAE-AMDT outperforms Self-MM when both precision and recall scores exceed 0.8. Here, a better model should perform better for both

metrics.

TABLE 4. Comparison results of the model trained w/o and w/ VAE-AMDT. The model trained with VAE-AMDT further improves F1 score of (w/o

VAE-AMDT) by 3.6% (MOSI) and 1.7% (MOSEI).

MOSI MOSEI Modality
Model
MAE | A2 | FI || MAE | A% | FI alignment
wlo VAE-AMDT | 0.808 | 80.3 | 80.6 || 0.603 | 81.8 | 858 No
w/ VAE-AMDT | 0.716 | 84.3 | 84.2 || 0.526 | 82.8 | 87.5 No

calculate MMD score between any two modality (§ V-B), and
show their results in Tab. 5. Our proposed VAE-AMDT not
only can balance the distance difference between any modal-
ity pairs (e.g., v—1, a—1 and v—a), but also reduce their
average distance difference in total and prove the efficacy
of VAE-AMDT.

2) VISUALIZATION

To further explain the efficacy of VAE-AMDT, we perform
qualitative analysis by visualizing the encoded unimodal
representations using t-SNE, and show the result on MOSEI
test set in Fig. 5. We concatenate encoded unimodal represen-
tations Wy, i and i, and use t-SNE to map them into a joint
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TABLE 5. MMD results show that not only can the model (w/ VAE-AMDT) balance the distance between any two modality, but the average result is lower
than the model (w/o VAE-AMDT).

MOSI MOSEI
Method
v—)l‘a—)l‘v—)a Average v—)l‘a—)l‘v—)a Average
w/o VAE-AMDT 0.51 0.17 1.44 0.71 0.98 0.92 0.45 0.79
w/ VAE-AMDT 0.68 0.53 0.33 0.51 0.28 0.30 0.25 0.28
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FIGURE 5. Visualization result on MOSEL. The green color indicates “negative” class and the red color indicates “positive” (include
“neutral”) class. The model (w/ VAE-AMDT) classifies both classes by discriminative representations.

TABLE 6. Case study on MOSEI test set. The predicted sentiment intensity by our method is close to ground truth.

D Speech text Face image Groi:ll(;t’il‘l?:tllllt intl:::::tion
| This movie (umm) if you saw previews for it it looks kind of funny, but this 133 169
movie actually wasn’t very funny
) On the other hand he’s battling against his fellow atheists who deny that there 0.00 013
are any objective moral values and duties
3 Millions of women, men, and children have better lives today thanks to the 2.00 146
work that many of you have done for decades.
4 We will accomplish these goals by reviewing the law that pertains to mandatory 1.00 0.82
child abuse reporting.
5 Get ready for this to be bad."” That’s not good, that’s not what you want to do. 1.00 0.52
6 What I cared about was my finances and I felt like I was a pretty smart person 167 127
and yet you know my financial life was not going where I wanted it to go.
7 I’'m pleased that the United States is represented in Doha by Attorney General- L67 0.84
Eric Holder and one of my key White House advisors, Mike Froman.

embedding space. By applying VAE-AMDT (Fig. 5b), the dots split into two clusters and prove that VAE-AMDT is capable
indicating “negative” and ‘“non-negative” classes tend to of obtaining discriminative multimodal representations.
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TABLE 7. Ablation study of the multi-attention module on MOSEI dataset.
All models are trained w/o VAE-ADMT, (self, cross, triple)-attention shows
the lowest MAE score compared to others.

. Sentiment intensity

Attention type
MAE | A2 | F1
self-attention 0.688 80.2 | 855
(self, cross)-attention 0.683 81.2 | 86.3
(self, cross, triple)-attention 0.603 81.8 85.8

TABLE 8. Effect of modality. The test results show that adding modality
improves performance.

. MOSI MOSEI
Modality
MAE [ A2 [ F1L | MAE] A2 [ F1
Image 1.467 434 | 573 0.854 70.0 | 82.4
Audio 1.498 46.9 | 54.7 0.867 70.0 | 83.4
Text 0.990 83.8 | 75.7 0.698 789 | 84.3
Image, Audio 1.473 52.0 | 56.2 0.837 679 | 78.6
Audio, Text 0.875 80.0 | 69.0 0.646 82.8 | 87.9
Image, Text 1.140 749 | 68.1 0.593 82.7 | 87.8
Image, Text,Audio 0.716 84.3 | 84.2 0.526 82.8 | 87.5

F. ABLATION STUDY

To prove the efficacy of all components in our method,
we study the Multi-attention module and Modality
respectively. Here, we discuss all comparison results based
on the MAE metric. Since we consider that the MAE metric
should be more reliable than the A2 and F1 metric on the
regression learning, especially for the small and imbalanced
datasets.

1) MULTI-ATTENTION MODULE

To confirm the effect of all components of the multi-attention
module, we show the comparison results of the model
trained by employing different attention component in Tab. 5.
For the model employing triple-attention w/o VAE-AMDT,
we use unimodal representations x,, x; and x, instead of
Wy, m; and p,. The result suggests that (self, cross, triple)-
attention improves performance when use them together.
Especially, the MAE result is improved much after adding
triple-attention, and suggests its efficacy that highlighting the
important modality.

2) MODALITY

To ensure that increasing the number of modality can improve
performance, we compare the models that are trained given
various modalities as the input, and show the results in
Tab. 8. It is clear that adding modality improves performance.
However, we note that speech text perform better than other
modality (e.g., image, audio). We believe that the language
encoder (RoBERTa model [28]) we used is more powerful
than encoders used for image and audio.

G. CASE STUDY
We show some data samples from MOSEI test set in Tab. 8.
The predicted sentiment intensity by our method is close to
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ground truth. Although we select samples randomly and the
result suggests that our method perform stable with these
data. Furthermore, we note that some predicted score is more
reasonable than ground truth. For example, the sample (ID:5)
is predicted to 0.52, which is lower than ground truth. How-
ever we note that the speech text actually represents negative
sentiment. These results not only prove that our method is not
overfitting to the training set, but also suggest that it is robust
to practical use.

VIi. CONCLUSION

We proposed (VAE-AMDT) and jointly train it with a
multi-attention module to reduce the distance difference of
various unimodal representations. As a result, we obtained
discriminative multimodal representations to further improve
performance of video-level sentiment analysis. Our method
balanced the distance difference between any modality
pairs and reduced their average distance in total (§ VI-E).
We finally improve Fl-score of the state-of-the-art Self-
MM by 3.6% on MOSI and 2.9% on MOSEI datasets
(§ VI-D), and prove the efficacy of our method in obtain-
ing discriminative multimodal representations (§ VI-E2).
In the next step, we will explore more effective approach
to improving multimodal fusion, and also plan to use
more powerful modal encoders to extract unimodal rep-
resentations such as face identification method proposed
in [37].

REFERENCES

[1] P. V. Rouast, M. T. P. Adam, and R. Chiong, “Deep learning for human
affect recognition: Insights and new developments,” IEEE Trans. Affect.
Comput., vol. 12, no. 2, pp. 524-543, Apr. 2021.

[2] T. Baltrusaitis, C. Ahuja, and L.-P. Morency, ‘““Multimodal machine learn-
ing: A survey and taxonomy,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 2, pp. 423-443, Feb. 2019.

[3] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, ‘“‘Domain-adversarial training of
neural networks,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 2030-2096,
2016.

[4] Y. Tu, M.-W. Mak, and J.-T. Chien, ‘“Variational domain adversar-
ial learning for speaker verification,” in Proc. Interspeech, Sep. 2019,
pp. 4315-4319.

[5] D.P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[6] A. Bagher Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency,
“Multimodal language analysis in the wild: CMU-MOSEI dataset and
interpretable dynamic fusion graph,” in Proc. 56th Annu. Meeting Assoc.
Comput. Linguistics, vol. 1, 2018, pp. 1-11.

[71 A. Zadeh, P. P. Liang, N. Mazumder, S. Poria, E. Cambria, and
L.-P. Morency, ‘““Memory fusion network for multi-view sequential learn-
ing,” in Proc. AAAI, vol. 32, 2018, no. 1.

[8] A. Zadeh, R. Zellers, E. Pincus, and L.-P. Morency, “MOSI: Multimodal
corpus of sentiment intensity and subjectivity analysis in online opinion
videos,” 2016, arXiv:1606.06259.

[9] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and
R. Salakhutdinov, “Multimodal transformer for unaligned multimodal
language sequences,” in Proc. ACL, 2019, p. 6558.

[10] Y. Wang, Y. Shen, Z. Liu, P. P. Liang, A. Zadeh, and L.-P. Morency, “Words
can shift: Dynamically adjusting word representations using nonverbal
behaviors,” in Proc. AAAI 2019, pp. 7216-7223.

[11] Y. Wang, J. Wu, and K. Hoashi, ‘“Multi-attention fusion network for video-
based emotion recognition,” in Proc. Int. Conf. Multimodal Interact.,
Oct. 2019, pp. 595-601.

51323



IEEE Access

Y. Wang et al.: VAE-Based Adversarial Multimodal Domain Transfer for Video-Level Sentiment Analysis

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]
[34]
[35]
[36]

[37]

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 6000-6010.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL, 2019, pp. 4171-4186.

'W. Rahman, “Integrating multimodal information in large pretrained trans-
formers,” in Proc. ACL, 2020, p. 2359.

W. Yu, H. Xu, Z. Yuan, and J. Wu, “Learning modality-specific represen-
tations with self-supervised multi-task learning for multimodal sentiment
analysis,” in Proc. AAAI, 2021, pp. 10790-10797.

S. Mai, H. Hu, and S. Xing, “Modality to modality translation: An adver-
sarial representation learning and graph fusion network for multimodal
fusion,” in Proc. AAAI, 2020, pp. 164-172.

A. Shenoy and A. Sardana, ‘“Multilogue-Net: A context-aware RNN for
multi-modal emotion detection and sentiment analysis in conversation,”
in Proc. 2nd Grand-Challenge Workshop Multimodal Lang. (Challenge-
HML), 2020, pp. 19-28.

D. Hazarika, R. Zimmermann, and S. Poria, “MISA: Modality-invariant
and -specific representations for multimodal sentiment analysis,” in Proc.
28th ACM Int. Conf. Multimedia, 2020, pp. 1122-1131.

D. H. Kim, W. J. Baddar, J. Jang, and Y. M. Ro, “Multi-objective based
spatio-temporal feature representation learning robust to expression inten-
sity variations for facial expression recognition,” IEEE Trans. Affect.
Comput., vol. 10, no. 2, pp. 223-236, Apr. 2019.

M. Li, H. Xu, X. Huang, Z. Song, X. Liu, and X. Li, “Facial expression
recognition with identity and emotion joint learning,” IEEE Trans. Affect.
Comput., vol. 12, no. 2, pp. 544-550, Apr. 2021.

Z. Huang, M. Dong, Q. Mao, and Y. Zhan, “Speech emotion recognition
using CNN,” in Proc. 22nd ACM Int. Conf. Multimedia, Nov. 2014,
pp. 801-804.

A. M. Badshah, J. Ahmad, N. Rahim, and S. W. Baik, “Speech emo-
tion recognition from spectrograms with deep convolutional neural net-
work,” in Proc. Int. Conf. Platform Technol. Service (PlatCon), Feb. 2017,
pp. 1-5.

P. Song and W. Zheng, “‘Feature selection based transfer subspace learning
for speech emotion recognition,” IEEE Trans. Affect. Comput., vol. 11,
no. 3, pp. 373-382, Jul. 2020.

R. Panda, R. Malheiro, and R. P. Paiva, “Novel audio features for
music emotion recognition,” IEEE Trans. Affect. Comput., vol. 11, no. 4,
pp. 614-626, Oct. 2020.

W. Jiao, H. Yang, I. King, and M. R. Lyu, “HiGRU: Hierarchical gated
recurrent units for utterance-level emotion recognition,” in Proc. NAACL,
2019, pp. 397-406.

J. Islam, R. E. Mercer, and L. Xiao, “Multi-channel convolutional neural
network for Twitter emotion and sentiment recognition,” in Proc. NAACL,
2019, pp. 1355-1365.

C. Huang, A. Trabelsi, X. Qin, N. Farruque, L. Mou, and O. Zaiane,
“Seq2Emo: A sequence to multi-label emotion classification model,” in
Proc. NAACL, 2021, pp. 4717-4724.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized BERT
pretraining approach,” 2019, arXiv:1907.11692.

1. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 27, 2014.

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “‘Adversarial
autoencoders,” 2015, arXiv:1511.05644.

T. Baltrusaitis, P. Robinson, and L.-P. Morency, “OpenFace: An open
source facial behavior analysis toolkit,” in Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV), Mar. 2016, pp. 1-10.

S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199-210, Feb. 2011.

S. Albanie and A. Vedaldi, “Learning grimaces by watching TV,” in Proc.
Brit. Mach. Vis. Conf., 2016.

O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in
Proc. Brit. Mach. Vis. Conf., 2015, pp. 1-12.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” 2016, arXiv:1608.03983.

N. Samadiani, G. Huang, Y. Hu, and X. Li, “Happy emotion
recognition  from  unconstrained videos using 3D  hybrid
deep features,” IEEE  Access, vol. 9, pp.35524-35538,
2021.

51324

YANAN WANG (Student Member, IEEE)
received the B.S. degree in engineering from
Aoyama Gakuin University, in 2015, and the M.S.
degree in engineering from The University of
Electro-Communications, Japan, in 2017. He is
currently pursuing the Ph.D. degree in engineering
with Keio University, Japan. He works as an Asso-
ciate Research Engineer with KDDI Research in
multimodal modeling topics. His research interests
include multimodal representation learning, emo-
tion recognition, knowledge graph, and graph representation learning. He is
a Student Member of JSAI, a regular member of IEICE, and an Editorial
Committee Member of IEICE Human Communication Group.

JIANMING WU received the B.E. degree from
Shanghai Jiao Tong University, in 1998, and the
M.E. and Ph.D. degrees from Waseda University,
in 2002 and 2005, respectively. He has been with
KDDI Research Inc., since 2005, where he is cur-
rently the Research Manager of the Multi-Model
Communication Laboratory. His research inter-
ests include NLP dialogue-Al, facial expression
recognition, face id recognition, and multimodal
emotion detection. He is a member of IEICE and
IPSJ, and an Editorial Committee Member of IEICE Human Communication
Group.

KAZUAKI FURUMAI received the B.S. and M.E.
degrees from Kobe University, Japan, in 2018 and
2020, respectively. He works as an Associate
Research Engineer with KDDI Research in mul-
timodal modeling topics. His research interests
include multimodal representation learning, neural
language processing, knowledge graph, and graph
representation learning.

SHINYA WADA received the B.E. and M.E.
degrees from Kyushu University, in 2005 and
2007, respectively. He works as a Senior Man-
ager with the Multimodal Modeling Laboratory,
KDDI Research, Inc. His research interests include
multimodal representation learning, human activ-
ity recognition, and time-series analysis. He is a
member of IEICE.

SATOSHI KURIHARA (Member, IEEE) received
the B.E. and ML.E. degrees in computer sci-
ence and the Ph.D. degree from Keio University,
Tokyo, Japan, in 1990, 1992, in 2000, respec-
tively. In 1992, he joined the Basic Research
Division, Nippon Telegraph and Telephone
Corporation (NTT). In 2004, he joined the Grad-
uate School of Information Science and Technol-
ogy, Institute of Scientific and Industrial Research,
Osaka University, Osaka, Japan. In 2013, he joined
the Graduate School of Information Systems, The University of Electro-
Communications. Since 2018, he has been with the Faculty of Science and
Technology, Keio University, as a Professor. Since April 2021, he has been
the Director of the Center of Advanced Research for Human-AI Symbiosis
Society. His research interests include multiagent systems, ubiquitous com-
puting, and complex network research. He is a member of ACM, AAAI,
the Information Processing Society of Japan (IPSJ), the Japan Society
of Artificial Intelligence (JSAI), the Institute of Electronics, Information
and Communication Engineers (IEICE), the Society for Economic Science
with Heterogeneous Interacting Agents (ESHIA), and the Japan Society of
Software Science and Technology (JSSST).

VOLUME 10, 2022



