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ABSTRACT Malware detection is becoming more important task as we face more data on the Internet. Web
users are vulnerable to non-executable files such asWord files and HangulWord Processor files because they
usually open such files without paying attention. As new infected non-executables keep appearing, deep-
learning models are drawing attention because they are known to be effective and have better generalization
power. Especially, the deep-learning models have been used to learn arbitrary patterns from byte streams,
and they exhibited successful performance on malware detection task. Although there have been malware
detection studies using the deep-learning models, they commonly aimed at a single file format and did not
take using different formats into consideration. In this paper, we assume that different file formats may
contribute to each other, and deep-learning models will have a better chance to learn more promising patterns
for better performance. We demonstrate that this assumption is possible by experimental results with our
annotated datasets of two different file formats (e.g., Portable Document Format (PDF) and Hangul Word
Processor (HWP)).

INDEX TERMS Malware detection, byte stream, non-executables, deep learning, convolutional neural
networks, Hangul word processor, portable document format.

I. INTRODUCTION
Malware detection is an important task as more data transfers
on the Internet. Malware has been used to attack individuals,
companies, or institutions. It may just simply remove or
encrypt files of the victims, or utilize the victims as weapons
(e.g., zombie hosts) to attack ultimate targets. As described
in [1], the target files of attackers might be classified into
two categories: non-executables (e.g., Portable Document
Format (PDF) files) and executables (e.g., EXE files). The
victims are more vulnerable to non-executables such as PDF
and Microsoft Word files because they usually open such
files without payingmuch attention. Therefore, it is becoming
more important to automatically assess how malicious the
files without opening them.

There are mainly two ways of malware detection: static
analysis and dynamic analysis. The dynamic analysis detects
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malicious actions by looking at all of the step-by-step
actions conducted in an isolated virtual environment (e.g.,
virtual box), whereas the static analysis finds clues of
malicious actions by examining the files without running
them. The dynamic analysis has a non-preferred side
that different studies use different non-public emulation
environments, meaning that they are usually not reproducible.
Recently, there were few studies that analyzes byte streams
or sequences within non-executables in the static manner
[1]–[3]. The motivation of these studies is that the data-driven
models, especially deep learning models, automatically find
arbitrary patterns (e.g., relation between bytes) beneath
the byte streams, so the trained models will probably be
more robust to future variants. These studies, however, have
particular target formats (e.g., PDF), and did not consider
utilizing byte streams of different formats at the same time.

In this paper, we assume that byte streams of different
non-executable formats complement each other, so we may
expect performance improvements if deep learning (DL)
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models learn from them. Specifically, we investigate two
different non-executable formats (e.g., PDF andHangulWord
Processor (HWP)), and explain a motivation of using the two
different formats for malware detection. We demonstrate the
benefit of it by experimental results of malware detection
using our annotated datasets. As far as we know, this is
the first study that shows possibility of using different
non-executable formats for performance improvements on
malware detection task. We also examine the impact of data
size and analyze some cases that might be related to our
experimental results.

II. RELATED WORK
Malware detection is basically a binary classification task;
we need to predict a label (e.g., benign, malware) of a
given input (e.g., features extracted from files, byte stream).
There have been many studies of data-driven approach to
tackle the malware detection task in the static manner.
The most widely-used machine-learning (ML) models are
support vector machines (SVM) [4], logistic regression (LR),
decision trees, Naive bayes, ensemble models (e.g., random
forest (RF) [5], and extreme gradient boost (XGB) [6]).
For example, the RF achieved about 89% and 96% of
F1 scores on portable executable (PE) files and OpCode
sequences, respectively [7]. Another study of [8] showed
that the SVM learned arbitrary patterns from a frequency
histogram obtained from executables and achieved 95% of
true positive rate (TPR). The XGB was employed to predict
potential malicious actions within the byte sequences of PE
files [9], and achieved about 98% accuracy on the dataset
of [10]. A variant of gradient boosting model using mutual
information and feature importance was applied to byte
n-grams [11], and the proposed model had F1 scores of
98∼99% for Android malware detection. Although these
studies have shown successful performance, they have a
common limitation that they require much effort of experts
to feature engineering; so it requires extensive feature
engineering for every newly appearing malware.

Deep-learning (DL) models are drawing much attention,
and they are known to be a solution for the limitation
of the traditional ML models because they are capable
of capturing latent features automatically. The DL models
are multi-layered perceptron (MLP) with a deep structure
(i.e., many hidden layers), and the deep-learning technique
is essentially a part of the machine-learning technique.
As deeper structure is known to have a big power to
discover patterns from data, there have beenmany studies that
proposed different techniques (e.g., residual connection [12],
batch normalization [13], drop-out [14]) for allowing the
model to have more hidden layers without suffering from
the problem of vanishing (or exploding) gradient. Other than
the standard structure of MLP model, there are several well-
known types of DL models such as recurrent neural networks
(RNN) [15], convolutional neural networks (CNN) [16],
attention-based models [17], and graph neural networks

(GNN) [18]; of course, there are many studies that designed
hybrid models consisting of two or more types.

There are few studies that utilized the power of the DL
models for malware detection by analyzing byte streams,
and CNN-based models are drawing attention because of
its efficiency (e.g., speed) without losing much effectiveness
(e.g., accuracy). The byte stream is a sequence of bytes, and
every file is basically a byte stream. There is only a difference
in the way of interpreting the information stored in the file
depending on the file format. For example, a text file consists
of a set of human-readable strings. However, in the end, since
only bits such as 0 and 1 are stored in the computer memory,
a byte stream can be extracted from all files in byte units.

A part of byte stream is also a byte stream, and some
previous studies assumed that byte streams having malicious
actions within files might have particular patterns that can
be used for malware detection. For example, Raff et al. [3]
designed a shallow structure using convolutional layers that
analyze byte streams of portable executable (PE) headers.
Their shallow architecture takes a byte stream of 1-2M
length as an input, and achieved about 94% accuracy.
Note that they used the byte stream as an input for the
model without employing any other hand-crafted features.
Another architecture using consecutive convolutional layers
was designed for analyzing byte streams of PDF files [2],
one of the most widely-used non-executables, and it achieved
98% of F1 score. Jeong et al. proposed a CNN model
using spatial pyramid structure to grasp the underlying
patterns of Hangul word processor (HWP) files that is a
well-known non-executable in South Korea [1], where new
malware attacks via the HWP files keep appearing due to the
circumstance between the South and North Korea. Although
these existing studies achieved successful performance, they
commonly focused on a single file format (e.g., PDF). In this
paper, we investigate to use data of multiple formats, and
demonstrate it by experimental results of malware detection
task.

III. PROPOSED METHOD
This paper aims at solving the malware detection task that
is basically a binary classification; we want to develop a
model that predicts a label (malware or benign) of a given
byte stream of a non-executable. The overview of our method
is depicted in Fig. 1. We basically utilize byte streams of
multiple file formats for training a classification model for
a specific file format.

A. MALWARE DETECTION USING BYTE STREAMS OF
MULTIPLE FORMATS
Assuming that we have a target file format ft of the malware
detection task, and we have training datasets DF

train for a
certain list of file formats F = {f1, f2, . . . , f|F |} including
the target format ft as well as a test dataset Dfttest . Note that
the training datasets cover all file formats, whereas the test
dataset is only for the target format, as shown in Fig. 1.
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FIGURE 1. Overview of the proposed method.

When the malware detection model M ft is trained in a
supervised manner for the target format, the model is trained
not only with Dfttrain but also with all other datasets DF

train.
If we want to have a separated validation set Dftval out of
the training datasets, the validation set should be sampled
from Dfttrain but not from other datasets in order to make the
validation set to have similar characteristics to the test set.

There is a learning concept, multi-task learning (MTL),
that allows a model to learn and solve two or more tasks
at the same time. The motivation behind the MTL concept
is that the model may learn better through the relationship
between multiple tasks. The MTL is different from transfer
learning; the MTL aims at solving all the tasks at the same
time whereas the transfer learning exploits a source task
to solve a target task. The MTL is mostly implemented by
parameter sharing that allows the parameters are trained for
two or more different tasks at the same time. There are two
parameter sharing ways of theMTL concept: soft sharing and
hard sharing. Most previous work of MTL concept adopts
the hard sharing; it has a single model that has parameters
shared across different tasks. The soft sharing way assumes
that there are task-specificmodels that share their parameters.
These ways are somewhat related to our proposed method,
but they are different because the MTL concept assumes
that the model takes the same or similar input for solving
multiple tasks closely related to each other. For example, [19]
applied the MTL concept for malware detection and malware
classification tasks, and their model takes the same shape
of sparse binary input vector for solving the tasks; that is,
it assumes that we want to solve the two tasks at the same
time for a given input. Similarly in [20], their model takes
the same input sequence of API calls for solving malware
classification and file access pattern generation task. On the
other hand, we aim at malware detection task for a specific
file format because we will not want to have to run the model
on two or more file formats every time. We assume that byte
streams of multiple different file formats may complement to
each other, and propose a way of utilizing the byte streams of
different file formats for training malware detection model.

Even though our method is generally applicable to any set
of file formats, we focused two non-executables, PDF and
HWP, in this paper; the number of file formats |F | = 2.
There are two reasons for this. First, the PDF is one of the

most widely-used file formats in the world as reported in [21],
so we chose the PDF as it seems to contain more diverse
malicious patterns than other formats. Second, because of
the special situation between South Korea and North Korea,
North Korea continuously cyber-attack South Korea, and
malicious code attacks on HWP files is increasing. As the
HWP files are widely used by South Korean governments
and institutions, it becomes important to develop a robust
malware detection model for HWP files.

We use and compare two recently designed CNN models
for measuring our method: MalConv [3] and SPAPConv [1].
TheMalConv has a shallow andwide architecture using a gate
mechanism, and the SPAPConv enhanced embedding rep-
resentation by employing spatial pyramid average pooling.
These models commonly adopt an embedding layer because
each byte token is not numerical but a categorical value; the
embedding layer generates a distributed representation (i.e.,
real-numbered vector) from a given byte token. Although
these CNN models are known to be able to capture arbitrary
features automatically without feature engineering, it is still
important to study data characteristics for better model design
and parameter engineering. The byte streams of the PDF and
HWP files have different lengths on average. As reported
in [22], the PDF byte streams are normally 1,000 bytes long,
whereas the HWP byte streams often have millions of bytes.
Following the previous studies [1], [22], we set the input
length Ipdf of the PDF-specific detection model Mpdf to be
1,000, and the input length of the HWP-specific detection
model Ihwp is 100,000. To manage the huge gap of input
length between the two models, we compare two different
padding strategies: post padding and stretch padding [1].
The post padding is widely used in many previous studies,
whereas the stretch padding is to spread the element values of
the stream evenly and make it a longer stream. Specifically,
the PDF streams are much shorter than the HWP streams,
so just padding the back of the PDF stream may degrade
the performance of CNN model because many convolutional
operations run on byte sequences made of only padding
tokens. On the other hand, the stretch padding has a potential
to alleviate this problem as it allows the convolutional
operations run on the evenly spread byte tokens; more details
of the stretch padding can be found in [1].

B. BYTE STREAMS OF HWP AND PDF FORMATS
To better understand and find motivation of utilizing the byte
streams of HWP and PDF files, we investigated the byte
streams and studied some cases related to our method. One or
more byte streams exist in a single file, as depicted in Fig. 2,
and malicious actions can appear in any of these streams. If a
byte stream has at least one malicious action, then the stream
is called malicious or malware stream, whereas the benign
stream contains no malicious action at all.

The purpose of malware includes stealing industrial secrets
from infrastructure, collecting personal information, and
making money demands using ransomware. In the past,
PE files were mainly used to achieve this purpose, but
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FIGURE 2. Malicious and benign byte streams within files.

recently, attacks using document files are increasing. This
attack exploits vulnerabilities and functions provided by
programs that read and edit document files. Hangul word
processor (HWP) provides JavaScript and Visual Basic
For Application (VBA) macro functions, and Encapulated
PostScript (EPS) files for high-quality pictures can be
inserted into documents. Especially, the JavaScript language
is often used as ameans tomakewriting interactiveweb pages
easier, and PDFs uses the JavaScript to format data, calculate
data, validate data, or specify actions. For this reason, even
if the document format is different, when the program
supports the same language, such as JavaScript, it can be
helpful to use a part of a specific document-type malware
for deep learning training in a different document format.
In addition, attackers are always devising new attack methods
to circumvent existing detection rules; for example, as one of
the ideas, attackers try to apply malicious code of a different
file format to create a newmalicious code that operates on the
target file. In many cases, other vulnerabilities for different
document types do not work properly in a specific document
type, but the potential for malware execution still exists. For
example, CVE-2014-1761 utilizes a vulnerability in Rich
Text Format (RTF), which has been included in the PrvText
stream in HWP. As another example, CVE-2017-11882
uses a vulnerability in Microsoft Office Word. Since the
purpose of the malicious behavior is the same, it may be
advantageous to use a document-type malware sample in
a different format for deep learning training of the target
document.

IV. EXPERIMENT
A. DATA AND ENVIRONMENT
We got 1,856 HWPfiles and 12,367 PDF files from anti-virus
company, and its statistics are summarized in Table 1, where
every malware file has at least one malicious byte stream;
for example, as shown in Fig. 2, there are two malicious
streams and one benign stream in the sample file, so this
sample is a malware file as it contains malicious streams. The
byte streams are extracted from the files using the algorithm
of [22]. The per-stream annotation was performed by using
malware detection tools and manual confirmation by human

TABLE 1. Number of data files.

TABLE 2. Number of byte streams.

experts. Table 2 summarizes the statistics of byte streams.
Note that, for each target, byte streams of the two formats
are used to train the corresponding model. For example, when
we trainMpdf , the byte streams of PDF and HWP are used for
training, where the HWP byte streams are only for training; in
this case, the HWP byte streams for Mpdf are sampled from
the set of all HWP files while we kept its label ratio as similar
as possible to the label ratio of PDF files.

We adopted two recent malware detection models for
experiments: MalConv and SPAPConv. The SPAPConv
was implemented exactly same as in [1], and MalConv
was implemented as done in [3] but with 2-dimensional
convolution instead of 1-dimensional convolution. This mod-
ification is borrowing the idea of SPAPConv, and it exhibited
performance improvements (e.g., 4-5% of accuracy). The
input length of PDF byte streams was 1K, and the input
length of HWP byte streams was 100K. We used a machine
having Intel(R) Core(TM) i9-10900X CPU@3.70GHz and
two graphics processing unit (GPU) of GeForce RTX 3090.
The models were implemented using Python3 language with
Tensorflow packages.

B. RESULTS
We independently conducted experiments for different target
formats (e.g., PDF, HWP). For each target format, we per-
formed three experiments and averaged per-class precision,
recall, and F1 scores. Following the training recipe of
SPAPConv [1], we applied batch normalization [13] for the
convolutional layer and drop-out technique [14] for the fully-
connected layer. For MalConv, we also took the drop-out
technique for the fully-connected layer as done in [3]. For
both models, we adopted the cost function of cross-entropy
and Adam optimizer [23] with initial learning rate 0.001. The
label ratio is skewed as shown in Table 2, so we employed the
cost-sensitive learning technique. With the validation dataset,
we got the proper number of epochs (e.g., 5-10 epochs) by a
grid searching.

The per-class performance of HWP malware detection
is described in Table 3, where HWP+PDF indicates that
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TABLE 3. Malware detection performance on HWP byte streams, where P, R, and F1 represent precision, recall, and F1 score (%), respectively.

TABLE 4. Malware detection performance on PDF byte streams, where P,
R, and F1 represent precision, recall, and F1 score (%), respectively.

the model is trained using HWP and PDF byte streams
together, and stretch and post represent the stretch padding
and the conventional post padding, respectively. As the
PDF byte streams are relatively shorter than the HWP
byte streams in length, the PDF byte streams are mostly
padded in either of the two padding ways. Interestingly,
with MalConv, training with both byte streams together
exhibits performance improvements; especially, precision of
malware case was dramatically improved. In terms of the
F1 score, using the two byte streams (i.e., HWP+PDF)
was superior to using only HWP byte streams. The best
F1 score was achieved when we use the stretch padding,
and this is consistent with the results of [1]. On the other
hand, with SPAPConv, we did not observe any performance
improvement. Fig. 3 shows the per-class receiver operating
characteristic (ROC) curves of MalConv and SPAPConv,
where the padding way is chosen based on their recall values.
The SPAPConv exhibits smooth curves, and it might be
preferable if we want a detection model with smaller false
negative rates.

Table 4 summarizes the per-class performance of PDF
malware detection. As theHWPbyte streams aremuch longer
than the PDF byte streams, we got samples of 1000-bytes
from the HWP byte streams so the PDF+HWP byte streams
have the same length. As shown in this table, we observed
that the MalConv has shown the performance improvement
but it was not that much, whereas the SPAPConv does not
exhibit any improvement. This result is similar to the HWP
malware detection result of Table 3, and this might be related
to two factors as follows. The first factor is the model size.
The number of parameters of MalConv and SPAPConv are
1M and 70K, respectively, therefore the SPAPConv might
not have enough power to encode the underlying patterns of
different file formats. The second factor is themodel architec-
ture, especially what representation it takes for convolutional
operations. The MalConv feeds the conventional embedding
representations to the convolutional operations, whereas the
convolutional layer of SPAPConv takes as input the result of
1-level spatial pyramid average pooling (SPAP) layer. The

FIGURE 3. Receiver operating characteristic (ROC) curves of (up) MalConv
with stretch padding and (down) SPAPConv with post padding, where
area indicates area under the curve (AUC) score.

SPAP layer extracts a representative value for each region of
an arbitrary size that allows it to yield an output of a fixed
size; that is, long streams will be roughly looked at whereas
short streams are closely looked at. Since the difference in
length between the PDF and HWP byte streams is large, the
SPAP layer might act like a telescope for two objects with
a huge difference in distance, so it eventually confused the
entire model.

V. DISCUSSION
By experimental results, we observed that using byte streams
of different formats helps to increase performance of malware
detection. One may ask how much impact the amount of
different formats have (e.g., 50% of PDF byte streams for
HWP malware detection). Table 5 shows the results of HWP
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TABLE 5. Malware detection performance on HWP byte streams with
different amount of PDF byte streams with the stretch padding for
training, where P, R, and F1 represent precision, recall, and F1 score (%),
respectively.

malware detection, where HWP+PDF(50%) indicates that
we used HWP training data and only a half of the PDF byte
streams with the stretch padding to train the model. The
half of PDF byte streams was randomly sampled from the
PDF byte streams used for HWP+PDF(stretch) of Table 3.
The performance of HWP+PDF(50%) was about halfway
between HWP+PDF(stretch) and HWP only, so it can be
seen that the performance increased in proportion to the
amount of the PDF byte streams. Based on this result, we can
say that the reason for small improvements of MalConv in
Table 4 is that the amount of HWP byte streamswas relatively
much smaller than that of the PDF byte streams. We also
tried to feed only PDF byte streams to the HWP malware
detection model, and its performance is very low as shown
as PDF(100%) in the Table 5. We may conclude from this
result that the byte streams of different file formats have their
own distinct underlying patterns, but using additional format
streams allows the detectionmodel to learn more complicated
patterns so that the model has a chance to achieve better
performance.

We analyzed cases that finally succeeded inmalware detec-
tion using MalConv model trained with HWP+PDF streams
but failed by the model trained with only HWP streams.
We found that there are some keywords commonly appeared
in HWP and PDF streams. For example, a malicious HWP
sample of hash value ‘e83f8064e’ had a stream containing
JavaScript code that includes functions such as SaveToFile,
RegWrite, GetSpecialFolder, push, fromCharCode, parseInt,
substr, and charAt. These functions have turned out to
often appear in PDF streams as well, so they were used
as keyword-based features in our previous study [24]. This
implies that the model found and exploited promising
patterns of PDF streams that can be used for HWP malware
detection.

VI. CONCLUSION
We examined the possibility of using byte streams of different
file formats for malware detection of non-executables of a
specific format. By experimental results, we showed that
using byte streams of different formats may contribute to
performance improvements. We also analyzed the impact of
data size, and found that some Javascript functions commonly
appeared in HWP and PDF formats that might be related
to the performance improvements by using PDF and HWP
streams together. As a future work, we are collecting and
annotatingmore data withmalware types, andwill investigate
how much using different stream formats affects different

malware types. We will also expand to other formats such as
Word and Powerpoint.
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