
Received April 19, 2022, accepted May 5, 2022, date of publication May 10, 2022, date of current version May 16, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3174052

A Review on Recent Progress of Smart
Contract in Blockchain
CANGHAI WU , JIE XIONG , HUANLIANG XIONG, YINGDING ZHAO, AND WENLONG YI
Software College, Jiangxi Agricultural University, Nanchang 330045, China

Corresponding author: Huanliang Xiong (xionghuanliang@jxau.edu.cn)

This work was supported in part by the National Key Research and Development Projects under Grant 2020YFD1100605, in part by the
National Nature Fund Project under Grant 61762048, in part by the Scientific Research Project of Jiangxi Provincial Department of
Education under Grant GJJ190180 and Grant GJJ200428, and in part by the Scientific Research Fund Project of Jiangxi Agricultural
University under Grant 9232307210.

ABSTRACT A smart contract, in form, is represented as a piece of computer program code involving related
commercial transactions and algorithms. Essentially, this is the computerization of the pre-agreed contract
between the participants. This special contract agreement is automatically verified and executed once preset
conditions are triggered. Smart contracts are not only used in the field of financial transactions, but also
include many aspects of social life. Although smart contract technology has unique advantages, it is still in
the early stages of development, andmany problems remain to be solved. First, this article briefly summarizes
the development process of blockchain, and then focuses on the research progress of blockchain 2.0-smart
contracts. Second, the related concepts of smart contracts are presented, and the working mechanism of
smart contracts and the difficulties faced by smart contracts are elaborated. Finally, in response to these
problems and dilemmas, the corresponding solutions and ideas are summarized, and the future challenges
and development trends of smart contracts are analyzed and judged.

INDEX TERMS Blockchain, smart contract, transaction automation, non tamperability.

I. INTRODUCTION
In 2009, Bitcoin [1] with the characteristics of decentraliza-
tion and anonymity was born, which has attracted widespread
attention from people in various fields, especially experts
and scholars in the computer field, and its key technology,
blockchain [2], has also been well known. Blockchain is
a decentralized distributed ledger system, which is essen-
tially a distributed database that incorporates technologies
such as asymmetric encryption algorithms, point-to-point
transmission, consensus mechanisms, and smart contracts,
which can ensure the privacy of users during transactions,
and solve the problem that the third-party platform cannot be
trusted.

The development of blockchain technology can be divided
into three stages: 1) The programmable currency stage of
blockchain 1.0 [3], during which, a large number of dig-
ital currencies represented by Bitcoin appeared. 2) The
programmable financial stage of blockchain 2.0, the most
representative system is the Ethereum [4], which pro-
vides a Turing-complete smart contract system, allowing

The associate editor coordinating the review of this manuscript and

approving it for publication was Yinliang Xu .

developers to program any decentralized application. 3) The
programmable society stage of blockchain 3.0, which goes
beyond the ordinary economic and social fields and provides
decentralized solutions [5] for the ‘‘programmable society’’.
At this stage, the blockchain has passed the 1.0 stage and is
in the process of moving towards blockchain 2.0, that is, the
smart contract stage.

The key to the success of the Ethereum system is the adop-
tion of smart-contract technology. Smart contracts were first
proposed by Szabo [6] in 1995, emphasizing that they facil-
itate the execution of contracts through the use of protocols
and user interfaces. A smart contract is deployed to operate in
the blockchain. When predetermined conditions are satisfied,
it is triggered to execute and update the blockchain. Once a
contract related to the transaction is executed, the transaction
result cannot be changed or reversed. Smart contracts work
similar to If-Then statements [7] in other computer programs,
and in this way, smart contracts interact with real-world
assets.

This article consists of six sections: 1) A brief introduction
to the blockchain development process and its current stage.
2) An overview of the basic concepts of smart contracts,
including the development process of blockchain technology,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 50839

https://orcid.org/0000-0002-6009-6003
https://orcid.org/0000-0002-6581-2072
https://orcid.org/0000-0002-9266-3498
https://orcid.org/0000-0001-5149-5101

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

basic concepts of smart contracts, smart contract working
mechanisms, and the dilemma of smart contracts. 3) Detailed
analysis of the problems in the progress of smart contracts,
including performance, privacy, and security issues of smart
contracts. 4) In-depth summary and commentary on solutions
to key issues in smart contracts. 5) Analysis and judgment of
the challenges faced by smart contracts in the future as well
as the development trend of smart contracts. 6) Summary of
full text.

II. BASIC CONCEPTS OF SMART CONTRACTS
A. INTRODUCTION TO BLOCKCHAIN
Blockchain is a chain structure formed by the orderly con-
catenation of data blocks according to the generation time,
and is also a distributed database [8] with the characteristics
of decentralization, collective maintenance, tamper proof,
and distrust, and is especially suitable for building a pro-
grammable money system. Blockchain technology solves
two important problems for Bitcoin platform: namely the
dual payment problem and the Byzantine Generals Prob-
lem [9]. The dual payment problem, also known as ‘‘double-
spending,’’ uses the digital properties of money to complete
a payment with the ‘‘same money’’ two or more times.
Blockchain technology can solve the dual-payment problem
of a decentralized system through the verification and con-
sensus mechanism of distributed nodes without a third-party
organization, and complete the value transfer in the process of
information transmission. The Byzantine Generals Problem
is a common problem faced in the interaction process of
distributed systems that is, in the absence of a trusted central
node, how distributed nodes reach consensus and establish
mutual trust [10]. Blockchain uses digital encryption and dis-
tributed consensus algorithms to build a decentralized trusted
system without the need for trusted individual nodes. In con-
trast to the credit endorsement mechanism of traditional cen-
tral institutions (such as central banks), the Bitcoin system
forms software-defined credit [11], whichmarks a fundamen-
tal change from centralized national credit to decentralized
algorithmic credit.

Since the advent of blockchain, it has presented broad
application prospects and attracted considerable attention
from academia and industry. Blockchain technology has been
widely used in medical care, finance, Internet of Things,
energy, and many other fields. Blockchain can generally be
divided into public blockchain, consortium blockchain and
private blockchain according to the access permission. Pub-
lic blockchains are open to all users in the world, so any
user can read data and broadcast transactions on the chain.
The consortium blockchains are jointly managed by several
business-related institutions, each of which runs one or more
nodes, and the read-write permissions are limited to the nodes
in the consortium. The read-write permissions of the private
blockchains are controlled by an organization or institution,
and the qualifications of participating nodes are strictly lim-
ited [12].

Since 2016, smart contract technology represented by
Ethereum has become the focus of attention from all
walks of life, attracting extensive attention from government
departments, financial institutions, and technology com-
panies [13]. In December 2016, the first Smart Contract
Symposium was held at Microsoft’s New York City head-
quarters to, analyze and discuss the application scenarios
of smart contracts. In February 2017, the European Parlia-
ment published the report ‘‘How Blockchain Changes Our
Lives’’ [14], indicating that smart contract technology is
the most promising blockchain application. The Enterprise
EthereumAlliance (EEA) was established in the samemonth.
EEA is committed to developing Ethereum into an enterprise-
level blockchain. Its members include large financial institu-
tions such as JPMorgan Chase and ABN Amro, as well as
famous technology companies such as Microsoft and Intel.

Blockchain includes technologies such as distributed archi-
tectures, consensus algorithms, and smart contracts. Smart
contract technology can ensure that users who do not trust
each other complete transactions without any third-party
trusted intermediaries or authorities. Simultaneously, smart
contracts in digital form can be flexibly embedded in various
tangible or intangible assets, transactions, and data to realize
active or passive assets, informationmanagement and control,
and gradually build programmable smart assets, systems, and
society.

B. OVERVIEW OF SMART CONTRACTS
Definition 1 (Smart Contract): Let the contract drawn up by
the transaction parties u1, u2 . . . , uk (kεZ+) in the real world
be C , the smart contract is recorded as IC, the trusted third-
party institution isG, and under the supervision of the institu-
tionG, the parties to the contract, the result of performing the
contract C is recorded as R, that is, R = C(U ,G), then R =
IC(U), U = {u1, u2, . . . , uk}. Smart contracts automatically
complete transaction contracts that require the supervision of
a trusted third-party organization in the real world to ensure
that the contracts are actually fulfilled.

A smart contract defines a set of commitments in the form
of digitals [15]. The smart contract in the Ethereum system is
a program control protocol for digital currency assets based
on blockchain technology [16]. From the perspective of a
computer, a smart contract can be understood as a piece
of computer program code that involves related commercial
transactions and algorithms. From the public perspective,
a smart contract is a related agreement. Once the contract
preset conditions are triggered, the smart contract is automat-
ically validated and executed. Smart contracts are not only
used in the field of financial transactions, but also in many
other aspects of social life, such as agricultural scientific and
technological achievements, the Internet of Things and other
fields.

Smart contracts have a life cycle, which includes three
stages: contract generation, contract release, and contract
execution, as shown in Figure 1.

50840 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

FIGURE 1. Smart contract life cycle.

Contract generation includes several steps: contract
multi-party negotiation, contract specification formulations,
contract verification, and obtaining contract code. First, the
parties involved in the contract negotiate to clarify each
other’s rights and obligations, determine the standard contract
text and program it, and obtain the standard contract code
after verification. The contract generation process involves
two important links: the contract specification and contract
verification. Contract specifications need to be negotiated
and formulated by experts with relevant domain knowledge
and contract parties. Contract verification is carried out on a
virtual machine based on the system abstract model, which is
related to the security of the contract execution process, and
the consistency of the contract code and the contract text must
be guaranteed.

After the contract is generated, the next stage is contract
release. The signed contracts are distributed to the nodes
in P2P mode, and the node temporarily stores the received
contract in memory and waits for a consensus to be reached.

The main steps of the consensus process include:

(1) Package for contract collection. Each node package
temporarily stored contracts in the recent period to form
a contract set.

(2) Contract blocks are generated and broadcast to the
entire network. Calculate the hash value of all contracts
in the contract set and then assemble these hash values
into a new block and publish it to other nodes in the
entire network.

(3) Other nodes validate blocks. After receiving the newly
broadcasted block, other nodes compare the hash value

in the block with the Hash value of the contract set
saved for verification.

(4) Multiple rounds of comparison, consensus reached, and
the entire network broadcast. After several rounds of
sending and comparison, all nodes eventually reach
a consensus on the newly released contract, and the
consensus set of contracts is broadcast to all nodes in
the entire network in the form of blocks.

Once a contract is released, it cannot be changed. If the
preset conditions are satisfied, the contract is automatically
executed. Contract execution is based on the ‘‘event trigger’’
mechanism. The smart contract subsystem in the blockchain
system has transaction processing and preservation functions,
as well as a complete statemachine for accepting and process-
ing various smart contracts. The smart contract subsystem
periodically traverses the state machine and trigger condi-
tions of each contract, and pushes contracts that meet the
trigger conditions to the queue to be verified. The contracts
to be verified are broadcast to each node. Similar to ordinary
blockchain transactions, the node first performs signature
verification to ensure contract validity. The verified contract
will be successfully executed after reaching a consensus. The
entire contract processing process is automatically completed
by the smart contract subsystem built into the bottom layer of
the blockchain, which is open and transparent, and cannot be
tampered with.

In essence, the realization of a smart contract is to give the
object digital characteristics: that is, the object is programmed
and deployed on the blockchain to become a resource
shared by the whole network, and then trigger the automatic

VOLUME 10, 2022 50841

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

generation and execution of the contract through external
events, so as to change the state and value of digital objects in
the blockchain network. Existing smart contract technology
platforms, such as Ethereum and Hyperledger, have a Turing-
complete script development language, enabling blockchain
to support more smart contract applications in the financial
and social system fields.

Although smart contracts are not widely used, their sig-
nificant advantages have been recognized by many industry
researchers. Compared with traditional contracts, they have
the following significant advantages:

1) Reducing transaction risks. Owing to the immutable
nature of blockchain, smart contracts cannot be
changed at will once they are released on the chain.
Furthermore, all transactions stored and replicated
throughout the distributed blockchain system are trace-
able and auditable. Thus, malicious acts like financial
fraud can be greatly mitigated.

2) Reducing administrative and service costs. Blockchain
ensures the trustworthiness of the entire system through
a distributed consensus mechanism without going
through a central broker or intermediary. Once the
smart contract stored in any block is triggered, it is
broadcast to the entire blockchain network after being
verified and executed by the nodes. As a result, admin-
istrative and service costs can be significantly reduced
by eliminating the need for third-party intervention.

3) Improving the efficiency of business processes.
Removing dependency on mediation can significantly
improve the efficiency of business processes. For
example, once predefined commodity supply chain
procedures are met, such as the buyer confirming
receipt of the relevant product, financial settlement will
be automatically completed in a point-to-point manner,
thereby greatly shortening the transaction turnaround
time.

C. WORKING MECHANISM OF SMART CONTRACTS
The smart contract contains two attributes: the state variable
and state value. In the smart contract program, If-Then and
What-If statements are used to set the triggering scenarios
and response rules of the terms in the contract. Through
multi-party mutual agreement and digital signature, the user
submits the transaction initiated. After propagation through
the blockchain network and verification by each node, it is
stored in blocks of the blockchain. The user obtains the con-
tract address and contract interface, and invokes the contract
during trading. Miners accept the incentive mechanism set
by the system, contribute their computing power to verify
transactions, and generate contracts or execute contract codes
in the local sandbox after receiving the contract creation
or invocation command. The contract codes automatically
determine whether the current scenario meets the contract
trigger conditions to strictly implement the response rules
and update the world state. After the transaction is verified

to be valid, it is packaged into a new data block, which is
linked to the main chain of the blockchain after consensus
authentication [17].

Owing to the differences in blockchain platforms and their
operating mechanisms, and the differencees in smart contract
development languages, the operating mechanisms of smart
contracts are also different. Therefore, the working mecha-
nism of the smart contract is explained from the three com-
mon aspects of the smart contract subject, the data loading
method, and the execution environment.

1) CONTRACT SUBJECT
1) A smart contract body is a complex protocol framework

for contract applications that can identify the behavior
and state of the contract.. The smart contract body
includes two main parts: protocol and module parame-
ters. The main structure of smart contract is shown in
Figure 2

2) The protocol is a procedural description of the legal text
issued by the standard organization. [18]. The protocol
includes legal standard text and standard parameters,
each of which has an identifier that represents a type.
Therefore, a protocol can be considered a fully instan-
tiated template.

3) Module parameters include the main parameters of the
smart contract and various accessory modules. The
business logic module includes customized legal texts
and parameters. This is a programmatic description
of the professional knowledge in the field of applica-
tion. It is negotiated by the contract participants and
involves the rights and obligations of multiple par-
ties. All parameters are critical parts of the contract,
as they not only directly reflect the business relation-
ship between the parties but also affect the automatic
execution of the contract.

2) DATA STORAGE AND LOADING METHODS
The main data of smart contracts include status data, trans-
action data, contract code, and application data etc. Status
and transaction data are generally stored online for easy
observation and verification. The contract code and applica-
tion data are divided into two loading methods: on -chain
and off - chain. Most blockchain systems use the on -chain
storage mode, that is, code and application data are sent to
the blockchain, and then the data and code are loaded from
the chain and executed. The disadvantage is that it occupies
the storage resources of the node and accumulates data for
a long time, resulting in a huge storage burden. The off-
chain approach stores the hashes of smart contracts on the
chain, and then stores the complete contract code in a storage
network or trusted database indexed by hashes, such as the
IPFS system and the Tower Crier platform [19]. The hash
value is calculated based on the content of the contract code to
ensure immutability of the contract. The hash index method
adopted by a blockchain system can save considerable storage

50842 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

FIGURE 2. The main structure of the smart contract.

space. Simultaneously, the invisible contract code strengthens
the protection of contract privacy.

3) THE EXECUTION ENVIRONMENT OF THE CONTRACT
At present, there are two main types of execution environ-
ments for smart contracts: virtual machines and containers
(dockers). The virtual machine and container are similar to
a sandbox that isolates and limits the resources used by
the contract while executing the contract code. A virtual
machine usually refers to the software implementation of a
computer with complete hardware functions that can execute
programs like a real machine, and is a computer simulated
by software, such as VMware. To reduce resource overhead
and improve performance, most blockchains use lightweight
virtual machine structures, such as the Ethereum Virtual
Machine (EVM). An EVM flowchart is shown in Figure 3.

Containers are kernel virtualization technologies that
provide lightweight virtualization to isolate processes and
resources. In the Linux operating system, containers are typ-
ically created by Docker, which isolates the external environ-
ment and provides an independent running environment for
smart contracts. Hyperledger Fabric uses lightweight Docker
as a smart contract execution environment. Docker uses a
sandbox mechanism with no interfaces. The program code
in Docker runs directly on the underlying operating system,
and its execution efficiency is very high. The running process
of the Docker is shown in Figure 4.

4) CONTRACT CREATION AND EXECUTION PROCESS
In ethereum system, contract creation can be regarded as a
special transaction process. The contract creation function

uses a set of fixed parameters to create a new contract and
generate a new set of states. The process is as follows:

(σ ′, g′,A) ≡ 3(σ s, o, g, p, v, i, e)

where σ is the system status, sis the transaction sender, o
is the transaction source account subject, g is the available
gas, p is the gas price, v is the account amount, i is the initial
EVM code, and e is the depth of creating the contract stack.
σ ′ is the new state of the system, g′ is the residual gas, and
A is the sub-state. Finally, by performing the initialization
EVM code, a new contract account is created, and the account
address, storage space and the main code of the account are
generated. In this process, excluding the gas consumed by the
transaction that occurs, the gas consumption of code creation
is proportional to the amount of code in the contract created.
However, once the gas surplus is less than the gas required
for code creation, a GAS exception (OOG) is generated,
and the gas surplus is set to zero and no new contracts are
created.

The contract operation model describes how the state
of the system transitions after receiving a set of bytecode
and environment data tuples. In practice, the model con-
sists of the iterative process of the whole system state and
the virtual machine state. The iterator continuously runs the
iteration function until the virtual machine is paused by
an abnormal state (OOG) or by producing normal result
data. The smart contract deployment flow chart is shown
in Figure 5.

Usually, intelligent encapsulation predefined number of
contract status, transformation rules, the trigger condition,
and deal with, such as the operation after signed by the parties

VOLUME 10, 2022 50843

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

FIGURE 3. EVM operation flow chart.

FIGURE 4. Docker running flow chart.

in the form of program code attached on the data block chain,
transmission through P2P networks and nodes in each node
of the distributed books after verification, block chain can
real-time monitoring the whole intelligent contract status,
The contract is activated and executed after the external
data source is verified to meet specific trigger conditions.
The operation flow chart of the smart contract is shown in
Figure 6.

D. THE DILEMMA OF SMART CONTRACTS
Although smart contract technology has unique advantages,
it is still in the initial stage of development, and many prob-
lems remain to be overcome, as listed in Table 1.

(1) In terms of basic performance, smart contracts have
problems such as inefficient contract execution and
difficulty in expanding contract data storage.

(2) In terms of data privacy, smart contracts are prone to
disclosure, mainly including trusted data source pri-
vacy and contract data privacy disclosure, which are
closely related to the infrastructure and the contract
layers.

(3) In terms of security, smart contracts are vulnerable
to potential security vulnerabilities, such as the oper-
ating environment, compilation process and program
characteristics of smart contracts. Smart contracts are
decentralized applications running on the blockchain,
and their security of smart contracts is largely subject
to the security of their operating environment. Smart
contracts written in high-level languages are compiled
into byte codes and executed by the transaction drivers.
These program features and the compilation execution
process also pose potential security threats. Therefore,
the security threats of smart contracts mainly come
from potential vulnerabilities at the three levels of vir-
tual machines, high-level languages, and blockchains.

III. KEY ISSUES OF SMART CONTRACTS
A. INEFFICIENT EXECUTION OF SMART CONTRACTS
The traditional blockchain adopts a single-chain data struc-
ture, outside the genesis block, where each block has only
one predecessor block, and the blocks are serially connected
by hash pointers in the order of block production time to
form a single chain [20]. In this blockchain system, smart
contracts are executed serially in chronological order, and
it takes a long waiting time until the contract is executed,
which results in a very limited number of contracts executed
per second by the system. Moreover, the distributed single-
chain structure of the blockchain system limits the execution

50844 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

FIGURE 5. The smart contract deployment flow chart.

TABLE 1. Problems with blockchain smart contracts.

FIGURE 6. The operation flow chart of the smart contract.

efficiency of contracts to a single node, which is incompatible
with popular multicore and cluster architectures, resulting in
low execution efficiency of blockchain smart contracts and
difficulty in meeting the needs of multifield applications [21].

For example, the Ethereum system currently processes an
extremely limited number of transactions per second, approx-
imately 10 to 20, however, to complete the confirmation of
these transactions, it needs to wait until the next block is
generated, and a new block is generated in Ethereum for

approximately 12 s, which limits the number of transactions
that Ethereum can confirm each time, and a large number of
contract transactions cannot be processed and confirmed in
time. Therefore, improving the execution efficiency of smart
contracts such that the blockchain system can process more
transactions per unit time is very important and urgent.

B. CONTRACT DATA STORAGE IS DIFFICULT TO SCALE
The smart contract blockchain records all the state changes of
the blockchain network from its birth to the current moment,
and requires each node to maintain a complete data backup.
In fact, these massive amounts of contract data continue to
grow rapidly. For nodes in the chain, it is extremely difficult
to store and synchronize these increasingly large amounts of
data, and the contract data storage is difficult to expand.

For example, in the Ethereum system, more than 1TB
of storage space is required to synchronize all block data
fully after the genesis block. For new nodes entering the
network, fully synchronizing blockchain data not only takes

VOLUME 10, 2022 50845

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

up a huge storage space, but also requires more than two
weeks of synchronization time. This long synchronization
period is almost unacceptable. The data in the Ethereum
system includes transaction data and the smart contract code
itself, among which the total amount of smart contract code
data accounts for a considerable proportion. Even if the smart
contract is chained separately, according to the increasingly
active trend of Ethereum and the cumulative effect of time,
its huge amount of smart contract data is also a problem that
needs to be solved urgently, and it is urgent to explore and
seek scalable storage solutions for smart contract data.

1) PRIVACY ISSUES OF TRUSTED DATA SOURCES
After applying smart contracts to a blockchain system, the
application scenarios of the blockchain become more abun-
dant and the operating environment becomes more complex.
External trusted data sources may need to be queried during
smart contract execution. These request operations are typi-
cally public available. If such public information is illegally
obtained, user privacy will undoubtedly be leaked. For exam-
ple, when a user initiates a transaction, the client calls the
corresponding transaction function, and the system creates a
smart contract for the transaction. However, the transaction
is processed by a large number of nodes in the blockchain
system, which causes all nodes to pay attention to whether
the operations and data related to the transaction are open to
all nodes. This transaction process will undoubtedly lead to
the risk of privacy leakage, especially in some data-sensitive
scenarios such as voting schemes and the medical industry.

Therefore, it is extremely important to properly handle the
relationship between sensitive private data and smart con-
tracts. For example, when using smart contracts to implement
an auction system based on the Ethereum system, an auction
system with a closed auction mechanism should be created.
Its sealed bidding rules are as follows: In the bidding stage,
bidders submit sealed bids to the auctioneer, and the amount
of each bidder is not visible to others. If a bidder bids again,
the bid will not be sealed and the winning bidder will be
selected by comparing the bid amounts. Thus, in this special
scenario, the most important private data such as transaction
amounts, have no privacy at all, which seriously damages the
closed auction mechanism.

2) CONTRACT DATA PRIVACY ISSUES
Smart contracts must be distributed to blockchain nodes
before execution. However, the physical hardware con-
figuration of blockchain nodes varies significantly. Some
nodes exhibit poor performance and have potential security
risks [23]. If the smart contract code is not written correctly,
these nodes with poor security are prone to loopholes in the
process of executing the contract code [24], resulting in the
leakage of contract data privacy.

For example, by illegally entering a weak node in the
blockchain network, an attacker can steal all smart contracts
deployed on that node. For some application scenarios
that are sensitive to contract privacy, the leakage of smart

contracts may be fatal. The attacker will deduce the contract
associated with the contract through the acquired smart con-
tract, analyze the actual behavior of the user of the relevant
contract, and compare it with real-life behavior. The user’s
identity can be obtained from the user’s real identity, and the
final result is that all of the user’s information will be made
public. Alternatively, an attacker can use the acquired smart
contract to deduce potential problems with the contract itself,
and then use hacking to attack the entire system and steal
sensitive data, which may also lead to catastrophic security
issues such as loss of confidential information.

The privacy issue of contract data may lead to de-
anonymizing attacks on the blockchain or smart contracts by
attackers. Therefore, it is imperative to seek solutions to the
privacy and security issues of smart contracts.

C. CONTRACT SECURITY VULNERABILITIES ARE
VULNERABLE TO ATTACK
The emergence of smart contracts has enriched blockchain
application scenarios, turning blockchain platforms into pow-
erful decentralized systems. However, smart contracts are
more vulnerable to attacks than normal programs. This is
because, (1) because smart contracts are used to manage
digital currency on the blockchain platform, attackers have
strong willingness and motivation to attack smart contracts to
illegally acquire and possess digital currency assets; (2) the
execution of smart contracts in the blockchain system can
theoretically guarantee the trustworthiness of contracts. How-
ever, in reality, there may be potential security loopholes in
smart contracts, and loopholes will make the execution results
of contracts unpredictable, making contracts unequal, and
thus losing the meaning of the smart contract.

Unlike traditional contracts, which are described in nat-
ural language, smart contracts are generated, verified, and
executed through program code. After the smart contract
is written in a high-level language, the contract is com-
piled into bytecode, and then executed by transaction events,
which encounter various security threats. Potential security
vulnerabilities in smart contracts mainly come from three
levels: the high-level language for writing smart contracts,
the virtual machine that supports the operation of smart con-
tracts, and the blockchain system in which the smart con-
tracts are located. At the high-level language level, common
security vulnerabilities include integer overflow, unchecked
return values, arbitrary address writing, denial of service, and
uninitialized variables etc. Smart contracts are decentralized
applications running on a blockchain, and the security threats
they face are closely related to the running environment.
At the virtual machine level, common security vulnerabilities
include code injection, short address attack, and timestamp
dependence, while at the blockchain level, common security
vulnerabilities are conditional competition and lack of ran-
domness. Ethereum is the earliest open-source smart con-
tract blockchain platform. This study considers the Ethereum
smart contract system as an example to discuss and analyze
the security vulnerabilities of smart contracts. Developers

50846 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

TABLE 2. Smart contracts execute efficiently application.

use the scripting language of the Ethereum system itself to
write smart contracts, and the related technologies are still
immature, so it is inevitable that there will be loopholes and
thus are vulnerable to attack.

Because the smart contracts deployed on the blockchain
are irreversible, once the potential security problems of
high-level language tools, virtual machine environments, and
blockchain platforms occur, they are difficult to repair, and
the resulting economic losses will be irreversible [25]. Simul-
taneously, the anonymity of the blockchain may provide con-
venience for malicious users, which in turn leads to security
issues in real-world applications. In 2017, a vulnerability
was discovered in the multi-signature wallet of Parity Wallet,
which made the wallet unprotected, and hackers could easily
invade thewallet to gain ownership, finally leading to the theft
of three large-value currency accounts in the wallet.

An increasing number of incidents of hackers attacking
smart contracts show that the security problems of smart
contracts are serious. The security vulnerabilities of smart
contracts, as well as research on security vulnerabilities
of contracts, should receive more attention.

IV. PROGRESS ON KEY ISSUES OF SMART CONTRACTS
A. PROGRESS ON THE PROBLEM OF LOW CONTRACT
EXECUTION EFFICIENCY
The low efficiency of smart contract execution significantly
restricts its application and promotion. Extensive research has
been conducted on related issues, as listed in Table 2.

In the smart contract blockchain system, before all smart
contracts are put on the chain, they are executed serially by

the miner nodes, and then by the contract validator again
serially. Serial execution cannot make full use of the advan-
tages of the concurrent multicore cluster architecture, which
severely restricts system throughput and leads to low contract
execution efficiency. Dickenson et al. [26], in response to this
problem, proposed a smart contract execution framework that
supports a multi-core architecture, allowing miners and val-
idators to execute independent, conflict-free smart contracts
in parallel, with a speedup ratio of 1.33 forminers and 1.69 for
validators, respectively. Thus, the efficiency of smart contract
execution is significantly improved. Karl et al. [27] proposed
a system that supports Asynchronous and Concurrent Exe-
cution of complex smart contracts (ACE), which aims to
execute smart contracts with higher computational, storage
and communication costs on the blockchain. The ACE sys-
tem is based on the off-chain execution model. The contract
issuer designates a group of service providers to execute the
contract code independent of the consensus layer. It supports
more complex smart contracts than the Ethereum standard.
With an off-chain execution, the contract is more efficient
and flexible. The system concurrency control protocol allows
contracts to call each other across the boundaries of service
providers, but does not require all service providers to trust
each other, which allows the system to process multiple sig-
natures concurrently and reduces the time cost of verification.
Experiments show that even if the contract has an average
of 200 state changes per transaction, the total verification
cost of the block is very small at only 0.12 seconds per
block. When multiple verification signatures are performed
in parallel, the signature of each service provider reduces the

VOLUME 10, 2022 50847

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

total block verification time by 0.1 milliseconds. Therefore,
it can be seen that the ACE system reduces the time required
for the signing and verification process in the execution of
complex contracts, making contract execution more efficient.
Silvano andMarcelino [28] proposed cryptocurrency, the Iota
Tangle. The authors pointed out that the Iota tangle is also
a distributed communication protocol based on a consensus
algorithm. This protocol requires validating and referencing
two existing transactions in the ledger to create a new trans-
action. Based on proof-of-work, each new transaction affects
the total weight, which is sufficiently high to be legal. For
old transactions to be confirmed in time, a coordinator is
introduced and checkpoints are issued to periodically confirm
transactions. The architecture of the protocol can create a
barrier-free distributed network without miners, so that con-
tract transactions can be executed in parallel at a lower com-
putational cost, thereby effectively improving the efficiency
of contract execution.

Owing to the complexity of Compute-intensive Con-
tracts (CIC) leads to inefficient execution on the blockchain
and high operating costs per CIC. In response to this prob-
lem, Das et al. [29] proposed a solution called YODA to
implement CIC. YODA executes the CIC off-chain by select-
ing one or more execution sets (ES), and innovatively uses
MultI-Round Adaptive Consensus using Likelihood Estima-
tion (MIRACLE) based on sequential hypothesis testing to
perform CIC efficiently and correctly with high probability.
The experimental results show that using the YODA scheme
expands the maximum transaction value of Ethereum by a
factor of 450, and that as the number of simultaneous dense
transactions increases, the average CIC execution efficiency
on each node also increases. Sariboz et al. [30] proposed
a framework for the off-chain execution and verification of
CIC. The framework does not require a trusted execution
environment, supports computations without deterministic
results, supports general-purpose computations written in
high-level languages, outsources CIC computations to third
parties, and computes and generates correctness proofs for
CIC. This verification can be completed in polynomial time.
Using this method, the client can verify and return the correct
result more efficiently, and make contract execution more
efficient.

For the problems of low deployment efficiency in the
development, operation, and maintenance of smart con-
tracts, as a highly autonomous, distributed, and decentral-
ized application, microservices have similar characteristics
to smart contracts: therefore, these problems can be solved
by smart contract microservices. For example, in 2020, the
Cryptape Inter-enterprise Trust Automation (CITA) technol-
ogy underlying technology development team, based on the
CITA-Cloud framework, proposed a blockchain microser-
vice architecture CITA that supports smart contracts for
enterprise-level applications, which is designed to pro-
vide a stable, efficient, flexible and future-proof operating
platform for enterprise-level blockchain applications, and
released The ‘‘CITA Technical White Paper’’ [31]. The

architecture separates executor from the chain. An executor
is only responsible for computing and executing transactions,
whereas a chain is responsible for storing transactions.
The separation of calculation and storage greatly improves
the transaction processing capacity and execution efficiency
of transaction contracts. Zhang et al. [32] proposed a
microservice framework for smart contracts, and designed a
microservice-based smart contract platform called Mictract
to complete the deployment and monitoring of smart con-
tracts. The core advantage of Mictract is that it has the basic
functions of the Blockchain as a Service (BaaS) platform.
At the same time, it can provide cloud-based third-party ser-
vices for people or organizations building blockchain appli-
cations, allowing users to build, host, run, and monitor their
own blockchain applications on the cloud platform, forming
a tool chain that supports the development, operation, and
maintenance of smart contracts. The experimental results
show that Mictrac reduces the average time of deploying
contracts by 225.6s compared with the script method.Mictrac
is satisfactory in terms of smart contract deployment, upgrade
efficiency and smart contract operation monitoring. There is
a set of design principles between microservices and smart
contracts, as listed in Table 3.

Due to the lack of mutual trust among nodes, for a batch
of smart contracts contained in a block, the traditional two-
stage smart contract concurrency can only realize the con-
currency within a single node, but cannot realize the parallel
execution of contracts between nodes. To solve this prob-
lem, Fang et al. [33] proposed a new two-phase framework
based on trusted hardware Intel SGX, which can avoid the
re-execution of all smart contracts on all nodes and improve
the parallelism between nodes. And consistency between
nodes is achieved directly through state replication rather
than re-executing the transaction. We design a pre-execution
mechanism for untrusted smart contracts in memory to obtain
all the state data that the smart contracts need to access in
batches, so as to reduce frequent enclave transformations
during the execution of smart contracts. In addition, a method
for generating compact read and write sets and a data struc-
ture named Merkle Forest are proposed, which can generate
compact Merkle multiple proofs for initial data in untrusted
memory in parallel and can quickly verify the correctness
of data passing through enclave. Finally, all the techniques
proposed in this paper are integrated into the open source
system BFT-Smart to evaluate the approach of the framework
in a distributed environment. Experimental results show the
effectiveness of the proposed method.

Blockchain-based cryptocurrencies are severely limited in
terms of transaction throughput and latency. One promising
solution to this problem is payment channels, which allow
untrusted payments between two peers without draining the
blockchain’s resources. The linked Payment Channel network
(PCN) enables payments between two peers through a series
of intermediate nodes that forward and collect payment fees.
However, most existing proposals only use the shortest path
as a path for transactions, which results in frequently reused

50848 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

TABLE 3. Design principles for microservices and smart contracts.

channels being quickly exhausted. In addition, most existing
PCNS are designed almost exclusively for payments between
two parties, resulting in limited application scenarios. When
multiple payments use the same middle channel, two PCNS
cannot realize simultaneous payment. Chen et al. [34] pro-
posed a multi-payment channel (MPC) network, a payment
channel proposal that supports multiple payments using the
same intermediate channel at the same time, thus greatly
expanding the application scenarios of payment channels.
It allows any number of users to participate in the samemulti-
party channel and conduct atomic multi-party transactions
based on the original TPC. In order to support as many
transactions as possible through the blockchain network and
avoid repeated channel updates, we propose a channel selec-
tion strategy to select high-quality transaction channels so as
to improve the success rate of transactions and transaction
throughput.

Blockchains are plagued by low throughput and high
latency, which hinder their widespread adoption of more
complex applications such as smart contracts. Liu et al. [35]
proposed a new paradigm of smart contract execution. This
is a new paradigm for parallel and asynchronous smart con-
tract execution that requires neither extensive coordination
nor (adversarial) live locks, and it requires a small group
size. The authors suggest two ways to put this paradigm into
practice. First, the new paradigm is applied to Ethereum, and
it can enable Ethereum to support parallel and asynchronous
execution without any hard bifurcation. Then, a new public
and permissive blockchain SaberLedger based on the new
paradigm is proposed, and its performance is demonstrated
by implementing a prototype. It can effectively improve
the throughput of transactions and protect the security of
transactions.

To solve the problem of low efficiency in contract execu-
tion, the technologies such as concurrent execution, off-chain
computing, and contract microservices can be adopted. If the
concurrent execution method is adopted, the smart contract
execution framework of the multicore architecture may face

the compatibility problem of ‘‘soft fork’’ in the future, as well
as the compatibility problem with the smart contract sys-
tem. Using off-chain computing or executing computation-
ally intensive functional contracts by a third-party computing
platform will lead to some contract correctness verification
and contract security issues. Systematic research methods for
the microservice method of smart contracts to support the
evaluation of the microservice framework of smart contracts
are still lacking. Additionally, in terms of data scalability,
it is necessary to increase the data pluggability for blockchain
networks.

B. PROGRESS OF CONTRACT DATA STORAGE
EXPANSION PROBLEM
The difficulty of data storage expansion is not unique to
blockchain smart contracts, and traditional database sys-
tems have similar problems, as listed in Table 4.The idea
of sharding comes from the expansion technology of the
database, which improves overall performance by dividing
the database into multiple small and processable parts. Shard-
ing technology is also effective when blockchain contract
data are difficult to expand. Luu et al. [36] designed a
secure sharding protocol called Elastico for open blockchain.
Technically, Elastico can increase the throughput of contract
transactions linearly with an increase in network comput-
ing power, and can tolerate illegal nodes with a maximum
of one-quarter computing power. Experiments show that
when the network size is 400 and 800 nodes, the delays to
reach consensus are 103 and 110 s, respectively, and the
consensus time does not change significantly, confirming
that Elastico is highly scalable and extremely usable in the
next generation of cryptocurrencies. Gencer et al. [37] pro-
posed Aspen, a service-oriented blockchain-sharding proto-
col. Aspen enables the secure scaling of blocks as the number
of services increases, protecting the blockchain from block
forks. Aspen can be instantiated according to the charac-
teristics of different blockchain systems, which reduces the
resource requirements and shortens the boot time of the

VOLUME 10, 2022 50849

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

TABLE 4. Progress of contract data storage expansion application.

system. Therefore, Aspen offers a new method to improve
the scalability of blockchains. Wen et al. [38] developed a
sharding technology for blockchain systems, which designed
a blockchain-based sharing protocol, Zilliqa. Zilliqa can pro-
cess about 1,400 transactions per second on thetest network,
and the transaction efficiency is significantly improved com-
pared to the Ethereum blockchain, but for open large-scale
smart contract projects, there are still problems of inefficiency
and inability to handle large-scale transactions.

In response to the continuous expansion of contract
transaction data, which leads to the problem that the
node data download and synchronization time is too long,
Duong et al. [39] proposed a multi-mode smart contract sys-
tem PRUNE, which supports full mode and pruning mode.
Based on the two operation modes, the full mode and
pruning mode are formed, which record the complete and
compressed contract transaction data respectively. When
the system is in the pruning mode, unnecessary informa-
tion can be deleted from the ledger, freeing up the storage
space, forming lightweight nodes, and solving the prob-
lem of blockchain contract data being difficult to backup
and expand. Zhu et al. [40] proposed an architectural design
and implementation plan for a high-performance consortium
blockchain based on the research foundation of the key tech-
nologies of the consortium chain, combined with the existing
securities trading system functions of the Executive Commit-
tee. This solution realizes a high degree of combination of
business logic and consensus separation, storage optimiza-
tion, digital signature verification optimization, and other
optimization strategies to improve the performance of the
consortium chain, and build a high-performance consortium
chain.

In 2020, developers of the TaxaWebsite platform proposed
a blockchain called Taxa [41]. The Taxa uses reliable hard-
ware to create a separate external execution environment for

smart contracts to address the problem of contract data being
difficult to expand. The public chain acts as a ‘‘consensus
layer’’ and records the final token payment and contract state
transition results. The Taxa platform isolates the public chain
consensus and the execution of smart contracts, puts specific
on-chain operations under chain control, and runs efficient,
safe, and reliable smart contracts on the chain.

Wang et al. [42], based on the static and dynamic access
control methods of smart contracts, stored information in the
form of dual blockchains, and stored the user’s attribute infor-
mation in the attribute blockchain maintained by the endorse-
ment node. With an increase in the number of requests, the
average request time is stable within 12–13 ms, and the
request time will not increase because of high concurrent
requests. This data storage and access control method can
effectively solve the problems of data security and system
scalability.

It is impossible to verify the authenticity and integrity
of the smart contract triggered by the off-chain data. This
poses a challenge to the execution results of blockchain smart
contracts. If the accuracy of the acquired off-chain data is
not guaranteed, then the smart contract cannot guarantee the
correctness of its execution results. Wang et al. [43] proposed
an extended smart contract system using Oracle Machine.
The system integrates Oracle mechanisms into the input and
output modules of smart contracts. As the interface between
blockchain and the off-chain world, Oracle mechanism can
better realize the interaction between smart contracts and off-
chain data, and improve the integrity of smart contracts in
the execution process. By designing the incentiveMechanism
of Oracle Mechanism for nodes, nodes can be encouraged to
treat their input data more carefully. There are also rewards
for nodes that provide accurate, realistic data. As a result,
the efficiency and accuracy of the whole system have been
greatly improved.

50850 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

TABLE 5. Improve intelligence and privacy application.

For the problem that blockchain nodes need huge storage
to cope with the increasing size of the blockchain ledger over
time, several compression schemes have been proposed to
alleviate this storage problem by compressing the blockchain
ledger based on redundancy, modular functions, and hash
functions. This requirement leads to conditional participation
and verification of participants, thus weakening the decen-
tralization of blockchain systems. However, these schemes
have the limitation of accumulating compression results to
validate reserved blocks. Accumulation gradually reduces
the storage capacity of blockchain ledger within the storage
capacity of resource-limited nodes, thus reducing the verifi-
cation capability of nodes. Kim et al. [44] proposed a selec-
tive compression scheme of lightweight nodes in blockchain
system to prevent the accumulation of compression results.
The checkpoint chain is the second blockchain that stores
checkpoints that compress existing blocks through the block
Merkle tree. An update process is also proposed to prevent the
accumulation of checkpoints by combining them. Because
a large number of blocks can be verified with only a few
checkpoint updates, resource-limited blockchain nodes can
reduce the storage of blockchain ledgers and achieve high
verification capabilities. Finally, compared with the exist-
ing compression schemes, the proposed scheme can achieve
an average reduction in storage overhead and an average
improvement in verification capability, which are 76.02%
and 13.90%, respectively. In addition, when performing the
update process, the corresponding performance improve-
ments were 86.14% and 15.44%, respectively.

To address the problem of smart contract data being diffi-
cult to expand, technologies such as sharding protocols, side

chains, and lightweight nodes can be used to improve the scal-
ability of the blockchain. Sharding protocols and side chains
are mainly used to improve the overall scalability of contract
data. Lightweight nodes are mainly to improve the scalable
performance of a single node. However, these technologies
still face challenges in terms of solving the scalability prob-
lem of contract data. For example, the application of these
technologies may lead to increased computing power and
node centralization. Owing to the extremely low computing
power of side chains, it is difficult to ensure the security of
transactions and blocks.

C. PROGRESS OF SMART CONTRACT PRIVACY ISSUES
Smart contracts are a new stage in the development of
blockchain technology, and their privacy protection strategies
and methods have changed. The privacy protection of smart
contracts typically adopts a combination of zero-knowledge
proof and a trusted execution environment, as listed in
Table 5.

Kosba et al. [45] proposed a smart contract system, Hawk,
which ensures confidentiality by executing off-chain con-
tracts and publishing only on-chain zero-knowledge proofs.
In addition, the hawk is designed as a single node, and its
availability is not high. Hawk supports only limited contract
types and does not have the general functionality of other
similar systems. The idea of combining a ledger and trusted
hardware to execute smart contracts is briefly mentioned in
Hawk, but omits key system design issues: for example, its
permissionless ‘‘proof of publication’’ ignores the lack of
trust in some environments and technical difficulties caused
by the wall clock time. Zhang et al. [46] proposed a trusted

VOLUME 10, 2022 50851

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

data input system called Town Crier. Town Crier allows
users to send private data requests. Specifically, the contract
encrypts the request with the public key of the town crier
before sending the request. Decrypt with a private key to
ensure that other users in the blockchain cannot view the
requested content. The Microsoft coco framework [47] is a
parallel and independent smart contract system for migrating
existing smart contract systems (such as Ethereum) to the
trusted execution environment provided by software guard
extensions (sgx). However, if we look at the information,
only one white paper provides a general overview, and
details of the protocol and implementation have not been
released.

Smart contract privacy protection systems are now based
on trusted hardware, particularly Intel’s sgx, which is
used in a variety of applications in distributed systems.
Hunt et al. [48] Ryoan, a distributed sandbox platform, used
sgx to limit privacy leakage of sensitive data. The system
cannot address the state integrity and confidentiality issues
throughout its life cycle. Cheng et al. [49] proposed Ekiden,
a system that addresses important privacy concerns by com-
bining a blockchain with a robust law enforcement envi-
ronment. Ekiden implemented efficient, confidential, and
highly scalable smart contracts based on a novel architec-
ture that separates consensus and execution. Ekiden supports
secure communication between long-term smart contracts
across different trust domains, can implement mitigations to
maintain data integrity, and limits data leakage to mitigate
potential failures in trusted runtime environments. Therefore,
Ekiden allows independent services to run longer than a
single node, user, or project and ensures the privacy of smart
contracts.

Kalodner et al. [50] proposed a cryptocurrency system
supporting a smart contract Arbitrum with better privacy
than previous solutions. Arbitrum used a customized virtual
machine architecture to reduce the cost of on-chain dis-
pute resolution, taking most of the implementation of virtual
machine behavior off-chain and reducing the cost of on-chain
resolution. The internal state of the virtual machine is not
revealed to the validator unless there is a dispute between
the two sides of the transaction. Even in the event of a
dispute, transacting parties can only obtain information about
one step of execution, and the vast majority of states are
opaque to transacting parties. This unique system mecha-
nism guarantees the flexibility and privacy of contract data.
Origo, a project aimed at strengthening the protection of
the privacy of Ethereum smart contracts, was proposed [51].
It utilizes cryptographic promises to protect the confiden-
tiality of contract records, combined with reliable hardware
and zero-knowledge proofs to guarantee the confidentiality
of contract processes and results. In addition, the contract
requires certain currencies to be pledged to prevent malicious
acts by both parties or to reveal the privacy of others. In the
event of malicious activity, the pledged currency is confis-
cated. Unlike traditional blockchains, not all origo nodes
fulfil their contracts. Instead, participants chose a node on the

network responsible for fulfilling the contract and generating
zero knowledge.

Centralized providers have a negative impact on the pri-
vacy of their users because they are able to read and collect
all kinds of data about their users and even pay to associate it
with their identity. On the other hand, decentralized storage
solutions likeGNUnet lack vendor involvement because there
is no viable business model. Kopp et al. [52] proposed a
decentralized storage system called PriCloud to address these
issues. It allows users to pay storage providers in anonymous
currency. The blockchain, where transactions are encrypted
and hardened, makes payments untraceable and unlinkable.
Storage smart contracts that determine the duration of storage
are included in the blockchain, allowing payments to be
executed automatically. The storage provider may make pay-
ments from the contract if it provides valid proof of storage
of the documents specified in the contract at certain points
in time. Therefore, the storage provider will only receive
payment if it stores the user’s files in good faith. Our Pri-
Cloud system provides incentives to participate by offering
privacy-protecting financial incentives for participating as a
storage provider.

In response to the privacy issue of smart contract trans-
actions for enterprise blockchain users, in the context
of the standardization of Know Your Customer (Kyc),
Kapsoulis et al. [53] proposed a decentralized privacy pro-
tection method that was developed using two-modes smart
contracts to realize user privacy protection on the enterprise
blockchain. Through the public Kyc smart contract, the user
registration and off-chain storage of Kyc information are
realized. The repository information is managed through a
private-kyc smart contract. Therefore, sensitive information
is not stored in the blockchain. In this way, users’ sensi-
tive information cannot be accessed from blockchain nodes,
which protects the privacy of blockchain smart contracts.

The traditional access control model mainly relies on a
centralized trusted server to mediate every attempt of clients
to access resources, which is faced with serious challenges of
single point of failure and lack of transparency. Hao et al. [54]
proposed an access control framework based on smart con-
tracts, which enables owners to implement resource access
control in a reliable, auditable, and scalable manner. Access
control contracts are deployed on the blockchain to flexibly
manage attribute-based resource access policies and make
trusted access decisions for customers. A set of properties is
distributed to clients through an off-chain signature signed by
the owner to determine their permissions without consuming
expensive on-chain storage space. Finally, we implemented
an experimental prototype on the Ethereum test network and
conducted extensive experimental and theoretical analysis to
evaluate its scalability and efficiency.

When blockchain technology is applied to decentral-
ized traditional applications, blockchain verifiers may need
to obtain sensitive off-chain data to execute smart con-
tracts. Wan et al. [55] proposed an efficient authentica-
tion zero-knowledge proof protocol called ZK-DASnark.

50852 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

ZK-AuthFeed, an off-chain data feed scheme with
zero knowledge authentication, is designed. It combines
ZK-SNARK and digital signature to achieve privacy and
authenticity of off-chain data input of smart contracts on
blockchain. Following the strategy of ‘‘compute off the chain,
verify on the chain’’, zkAuthFeed can significantly reduce the
computing costs of blockchain verifiers.

For the privacy protection protocols of various smart con-
tracts, a trusted execution environment is generally used as a
trusted computing environment for smart contract execution,
and the zero-knowledge proof method is usually used to
provide proof conditions for the execution of smart contracts.
However, these protocols are computationally expensive, dif-
ficult to implement, and depend on hardware and cryptogra-
phy to ensure state integrity and confidentiality.

D. PROGRESS OF SMART CONTRACT SECURITY ISSUES
Smart contracts involve the transaction of digital assets
and are open source, so they are inherently vulnerable to
attack and destruction. Once potential security loopholes are
exploited and attacked, the security of the entire blockchain
system is seriously threatened, which is bound to cause incal-
culable losses. Usually, before a smart contract is executed,
it needs to use detection tools are required to eliminate
the existence of security loopholes, to ensure the credibility
and reliability of its execution in the chain. Detection tools
often use automated vulnerability mining techniques that can
efficiently identify potential security vulnerabilities in smart
contracts.

Automated vulnerability mining is an important research
field in software vulnerability mining. The primary methods
used include fuzzing testing, symbolic execution, formal ver-
ification and other technologies. As a growing class of decen-
tralized applications, smart contracts are very different from
traditional applications in terms of the operating environ-
ment, life cycle, application characteristics, and traditional
vulnerability mining techniques are difficult to use directly
for mining the potential vulnerabilities of smart contracts.
Existing research focuses on the application of traditional
software vulnerability mining techniques to smart contracts,
as listed in Table 6.

1) FUZZING
Fuzz testing is a relatively effective software-analysis
method. The main idea is to build a large number of test
cases for programs, track abnormal behaviors during pro-
gram execution, and identify and loopholes in programs [56].
Building test cases is the key step in fuzzing. Generally, there
are two test case construction methods: generation and muta-
tion. Generation-based fuzzy testing is suitable for situations
where the input format of the test is relatively clear or the
format requirements are relatively strict, such as programs
that interact with file management systems or protocols.
The tester generates test cases according to the input format
to improve efficiency. Mutation-based fuzzing tools change
the seed based on the original input and feedback from the

program. The mutation techniques include bit flipping, incre-
menting, decrementing, and copying.

Fuzzing technology is widely used in traditional program
vulnerability mining, and has been proven to be very effec-
tive. The American Fuzzy Lop (AFL) [57] is a very popular
fuzzing tool, which is mainly oriented to the vulnerabil-
ity mining of C/C++ applications on the Linux platform.
The tool adopts a fuzzing scheme based on coverage feed-
back to guide the seed mutations. In applications, at least
hundreds of memory corruption vulnerabilities in popular
applications, public function libraries and operating system
kernels have been discovered. On this basis, a large number
of follow-up studies have focused on optimizing the seed
selection strategy, mutation strategy, path recording strategy,
etc. [58]–[61] to improve the efficiency of vulnerability min-
ing, and have achieved very good experimental results. These
findings demonstrate that fuzzing is a very effective method
for exploiting vulnerabilities.

Liu et al. [62] designed a ReGuard tool based on a fuzzing
method to identify reentrance errors in smart contracts. This
tool introduces a finite perpetual motion machine-reentrant
perpetual motion machine in the core detector. By mod-
eling and then calling the reentrancy function to observe
whether the ether transmission phenomenon occurs, and at
the same time, a check report is generated, and the user
checks the report to confirm whether the reentrancy occurs.
Liao et al. [63] proposed a vulnerability detection scheme
based on the combination of machine learning and fuzzing,
which can learn to detect unknown vulnerabilities, improve
the vulnerability detection rate, and affect the detection of
integer overflow vulnerabilities.

In 2018, the security research organization Trail of Bits
released Echidna [64], an open-source smart-contract fuzzing
solution, on its blog. Echidna provides a relatively complete
Ethereum smart contract fuzzing framework that can analyze
and simulate the execution of smart contract source code, and
generate random transaction data that conform to the con-
tract calling specification to test the contract fuzzily. Echidna
introduces coverage information to detect the execution effi-
ciency of fuzzing, but does not delve into more effective seed
generation strategies. In addition, Echidna does not provide
a general vulnerability detection method, and testers still
need to add specific vulnerability detection code to the con-
tract source code, and judge whether there is a vulnerability
through the return value status. Although Echidna is a rela-
tively perfect industrialization-fuzzing testing framework for
smart contracts, it still fails to solve the two major challenges
in fuzzing testing of smart contracts: it is difficult to generate
effective test cases and to effectively detect vulnerabilities.

Jiang et al. [65] proposed ContractFuzzer, a smart contract
fuzzing research scheme that is mainly used for the vul-
nerability detection of smart contracts. ContractFuzzer was
developed based on Geth, the client of the Ethereum Go
language version, and performs offline vulnerability detec-
tion by recording the command log when the smart con-
tract is executed. Detection models have been established

VOLUME 10, 2022 50853

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

TABLE 6. Automated vulnerability mining application.

for seven types of vulnerabilities, including gas deficiency,
exception delivery, reentrancy, timestamp dependency, trans-
action sequence dependency, code injection, and asset freez-
ing, and use the instruction log to detect whether the current
contract execution triggers the vulnerability. In terms of input
generation, ContractFuzzer generates transactions randomly

by randomly generating call parameters, transaction amounts,
and transaction-sending addresses. In addition, to trigger
reentrancy vulnerabilities, it specially designs a unique attack
proxy contract, and attempts to trigger the reentrancy vul-
nerability in the tested contract by calling the tested contract
through the attack proxy contract.

50854 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

Zhang et al. [66] designed a smart contract fuzzer,
ETHPLOIT, which exploits three types of complex and
unsolvable constraints when using symbolic execution in
smart contracts and blockchain attribute vulnerabilities
related to timestamps and block numbers. Related technolo-
gies: static taint analysis, detected EVM environments, and
dynamic seeding strategies. Seeds refer to the parameters and
variables that are fed backwhen running a transaction. Updat-
ing the seeds in real time can provide precise parameters.
The use of taint analysis and dynamic seeding strategies can
improve the efficiency of generating valid inputs. Compared
to other vulnerability detectors, ETHPLOIT can detect many
types of security vulnerabilities.

Ashraf et al. [67] proposed a new technology, GasFuzzer.
It consists of two policies. The gas-Greedy strategy is based
on the insight that the Gas consumption executing the trans-
action provides lightweight information about the executed
program code to process the blockchain state of the associated
smart contract. GasFuzzer uses this information to eliminate
trades that further generate mutant trades. Experiments show
that GasFuzzer can detect more Exceptions Disorder secu-
rity vulnerabilities than ContractFuzzer, the previous most
advanced black-box technology, without compromising its
ability to detect other types of security vulnerabilities. The
novelty of the gas-leveling strategy is that it develops a new
test data adequacy standard and uses it to guide the generation
of variation trades with lower Gas quotas. Experiments show
that this strategy is effective in detecting Exceptions Disor-
der security vulnerabilities that are omitted from the above
experiments. Through this work, it can be concluded that by
focusing on high-cost transactions and manipulation of Gas
quotas, the fuzzy testing process for some of the most serious
security vulnerabilities that can arise in smart contracts can
be significantly improved.

Zhou et al. [68] proposed a SMARTGIFT method that
learns from the transaction records of real-world smart con-
tracts in order to generate practical test inputs for new smart
contracts being tested. A prototype implementation of the
approach utilizes BERT pre-trained model to embed function
signatures, allowing efficient search of similar functions from
large datasets of functions implemented in smart contracts
deployed in the real world. With 66,528 transaction records
collected, SMARTGIFT was able to generate relevant test
inputs for about 77% of smart contract functions, superior
to baseline fuzziness testing methods. Experiments further
show that the input generated by SMARTGIFT is comple-
mentary to the input obtained through the fuzziness test.
We further evaluated the potential of detecting smart contract
vulnerabilities using the test input generated by SMART-
GIFT. By providing test input generated by SMARTGIFT to
ContractFuzzer, a state-of-the-art tool, 131 of the 154 smart
contract vulnerabilities from the benchmark were correctly
detected. These experimental results suggest that the actual
input generated by SMARTGIFT is meaningful for testing
smart contracts and demonstrating the potential to detect
smart contract vulnerabilities.

Choi et al. [69] proposed SMARTIAN to enhance fuzzy
testing of smart contracts through static and dynamic data
flow analysis. First, the method statically analyzes the smart
contract bytecode to predict which sequences of transactions
will lead to valid tests and determine whether each trans-
action should meet certain constraints. This information is
then passed to the fuzzy-testing phase and used to build the
initial seed corpus. In fuzziness testing activities, lightweight
dynamic data flow analysis is performed to collect data flow-
based feedback to effectively guide fuzziness testing. You
don’t need source code to find errors in real-world smart
contracts. The results showed that SMARTIAN was more
effective than the most advanced tools available at finding
known general security vulnerabilities in specific contracts.
SMARTIAN also outperforms other tools in terms of code
coverage.

Echidna and ContractFuzzer are representative works of
the early use of fuzzing for smart contract vulnerability
mining, but the fuzzing strategies adopted by Echidna and
ContractFuzzer are relatively rudimentary, and it is difficult
to achieve high code coverage. ETHPLOIT uses three related
technologies: static taint analysis, a detected EVM environ-
ment, and a dynamic seed strategy, which can effectively find
blockchain attribute vulnerabilities related to timestamps and
block numbers. ILF uses deep learning methods to generate
better test case sequences to improve coverage, however, its
solutions are only oriented to specific contracts, and rely on
the contract’s source code or calling interface specifications,
making it difficult to expand on a large scale. Fuzzing testing
can effectively exploit the security vulnerabilities of smart
contracts, but there are still problems such as the inability
to automate the testing of contracts without source code or
calling interface information, poor effectiveness of the calling
sequence, and the low accuracy of vulnerability detection.
The use of fuzz testing to conduct large-scale testing of
source-free smart contracts and how to find loopholes in
testing more accurately are still urgent issues to be solved in
smart contract fuzz testing.

2) SYMBOLIC EXECUTION
Symbolic execution is a traditional automatic vulnerability
mining technology that is widely used in smart contract vul-
nerability mining. The symbolic execution engine provides
a symbolic virtual running environment for the target code,
abstracts the external input required by the program into
symbolic values with variable values, and explores program
branches as much as possible by continuously solving path
constraints. The main idea of symbolic execution is to con-
vert uncertain inputs during program execution into symbolic
values to promote program execution and analysis.

Symbolic execution enables a more precise and compre-
hensive analysis of programs than fuzzing does. Rich infor-
mation collected during symbolic execution can be used for
vulnerability identification. However, under the influence of
structures, such as branches and loops, symbolic execution
often faces problems, such as path explosion, which results

VOLUME 10, 2022 50855

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

in a large time overhead when analyzing large programs.
Compared to traditional applications, smart contracts have
smaller code sizes, fewer paths, and shorter lengths, which
aremore suitable for analysis using symbolic executionmeth-
ods. However, because the constraints of smart contracts are
transferred between different paths, the symbolic execution
idea for traditional programs can only collect constraints on
a single contract path in smart contracts, and not global con-
straints, which is the symbolic execution of smart contracts.
However, this approach presents challenges.

Luu et al. [70] proposed an automated contract vulner-
ability mining system, called Oyente. Oyente provides a
streamlined contract symbol execution engine for developers
to write contracts. Oyente includes detection solutions for
four types of contract vulnerabilities, including conditional
competition, timestamp dependency, unchecked return value,
and reentrancy vulnerabilities. The detection of common vul-
nerabilities, such as integer overflow, integer underflow, and
call stack overflow, has been added to the open source code
of the Oyente system, and Oyente designed a validator to
filter out false positives generated by the analyzer. Oyente
is a contract vulnerability mining tool at the bytecode level.
It dynamically explores the program control-flow graph in
the process of symbol execution and detects contract vul-
nerabilities based on information such as path constraints
and variable sources. Although some of Oyente’s detection
schemes are not perfect and the detected vulnerabilities are
not sufficiently comprehensive, their pioneering work still
provides good support for follow-up research.

In 2017, Consensys developed a symbolic execution
engine called Mythril [71] that can analyze various EVM
bytecode-based contracts.Mythril provides a wealth of exten-
sion interfaces, and developers canwrite custom vulnerability
detection logic based on it. At present, Mythril officially pro-
vides 14 vulnerability detection functions, including integer
overflow, arbitrary address writing, and timestamp depen-
dence. Unlike Oyente, Mythril simulates a situation in which
the contract is called multiple times in reality by means of
multiple symbolic executions. This method avoids the error
caused by initializing global variables to arbitrary symbolic
values, and truly depicts the actual situation of contract exe-
cution. However, each round of symbolic execution must
continue on all branch states generated by the previous round
of symbolic execution, resulting in an exponential increase in
the number of paths that need to be explored, resulting in a
large time overhead.

The imitation-learning-based Fuzzer proposed in 2019 [72]
(ILF) is a smart contract fuzzing solution based on symbolic
execution and neural network, which is dedicated to gen-
erating better test cases and transaction sequences in smart
contract fuzzing. Because smart contracts have global state,
it is difficult to provide coverage guidance feedback for test
cases with a single function to improve global coverage.
Because the constraints in some functions are introduced
by the global state variables, the values of these function
variables may depend on the modification of other functions.

Therefore, to improve global program coverage and achieve
a better vulnerability mining effect, it is necessary to generate
a reasonable calling sequence. In solving the problem of
global constraints, symbolic execution can directly solve the
solution space state of constraints, and the effect of symbolic
execution is better than that of fuzzing. Therefore, the ILF’s
solution is to first generate a large number of excellent call
sequences with the help of a symbolic execution engine, and
then learn the characteristics of these excellent call sequences
through neural networks to guide the fuzzing engine to
generate excellent scheduling strategies.

Mossberg et al. [73] proposed Manticore, which is a
dynamic symbolic execution engine for smart contracts. This
improves the analysis efficiency and code coverage by speci-
fying the variable values. Manticore abstracts the execution
process of the contract into three states: ready, busy, and
terminated, and transitions can be made between these three
states. When a symbolic variable must be converted to one
or more concrete values, a corresponding ready state is cre-
ated and processed, terminating when the program exits or
an exception occurs. Unlike other tools that analyze a sin-
gle contract, Manticore can support the analysis of multiple
contracts, which is equivalent to symbolizing the Ethereum
world. Additionally, Manticore supports the symbolic execu-
tion of other binaries.

Wang et al. [74] proposed ContractWard to use machine
learning technology to detect vulnerabilities in smart con-
tracts. First, the binary characteristics are extracted from the
simplified operation codes of smart contracts. Secondly, five
machine learning algorithms and two sampling algorithms
are used to construct the model. ContractWard was eval-
uated using 49,502 real-world smart contracts running on
Ethereum. Experimental results demonstrate the effective-
ness and efficiency of ContractWard.

Chen et al. [75] proposed DefectChecker, a symbol-based
executionmethod and tool for detecting eight contract defects
that could lead to bad behavior in smart contracts on the
Ethereum blockchain platform. DefectChecker can detect
contract defects from the bytecode of a smart contract.
DefectChecker can detect contract defects from bytecode
without the need for source code, and developers can use
DefectChecker to check that the smart contracts they invoke
are secure, even if the called contracts are not open source,
which can make their contracts more secure.

Jin et al. [76] proposed a cross-platform open source
framework called EXGEN for automatically generating
exploits for smart contracts on EOS and Ethereum. EXGEN
first converts ethereum or EOS contracts into intermedi-
ate representations (IR). EXGEN then generates symbolic
attack contracts with partially sequential transactions, and
then signs attack contracts with the target to find and resolve
all constraints. Finally, EXGEN materializes all symbols to
generate attack contracts that contain multiple transactions,
and verifies the availability of the resulting contracts on the
private chain by crawling values from the public chain. The
evaluation showed that EXGEN successfully outperformed

50856 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

teEther, the most advanced tool, in generating exploits for
vulnerable Solidity contracts. The evaluation also showed
that EXGEN was able to find 50 Zero-day vulnerabilities
in 24 EOS smart contracts.

As one of the efficient and effective smart contract vulnera-
bility detectionmethods, deep learningmethod has been stud-
ied for its fast detection speed and high detection accuracy.
More recently, deep learning methods using convolutional
neural networks (CNN) have been actively investigated to
transform image classification from smart contracts to vul-
nerable or unassailable. However, the semantics and context
of smart contracts can be ignored when they are simply
converted into images and analyzed, leading to false detection
alerts. To detect vulnerable smart contracts while preserving
their semantics and context, Hwang et al. [77] proposed
a new code-targeting CNN architecture called CodeNet.
To improve the performance of CodeNet, a data preprocessor
was designed to convert smart contracts into images while
maintaining locality. According to the experimental results
of various types of vulnerabilities, the proposed vulnerabil-
ity detection method based on CodeNet has good detection
performance and detection time compared with the most
advanced vulnerability detection tools known to all.

In summary, the proposed schemes effectively improve the
performance of symbolic execution mining vulnerabilities,
but also significantly increase the computational time and
resource overhead of analysis work, and cannot completely
solve the problem of state-space explosion. Nevertheless,
tomaintain a balance between vulnerabilitymining efficiency
and computational overhead, symbolic execution remains a
relatively mainstream smart contract vulnerability mining
solution.

3) FORMAL VERIFICATION
Formal verification is an important means of solving the
security problem of smart contracts and an important research
direction for smart contracts. The formal verification method
is an effective means of deterministic verification of smart
contracts. The concept, judgment and reasoning of smart
contracts are transformed into smart contract models through
formal language, which can eliminate the ambiguity and
incompatibility of natural language. Formal verification tools
are then used to model, analyze, and verify smart contracts,
conduct semantic consistency testing, and automatically gen-
erate verified contract codes [78].

Hirai et al. [79] formally described Ethereum smart
contract instructions. They used Isabelle/HOL to formally
describe the instruction semantics in the Ethereum virtual
machine, and manually proved the security of a program
based on the description results. Because it supports only
some of the instructions in Ethereum, it cannot describe the
complete semantics of the contract.

Xiao et al. [80] proposed the smart contract specification
language SPESC. The language defines some specifications
of smart contracts that can support the collaborative design of
contracts and provide technical support for multiple people to

write smart contracts. The SPESC specification language is
extremely simple to define smart contracts, and it helps users
clarify the rights and obligations involved in the contract,
just like writing real-world contracts in natural language.
Park et al. [81] formally verified a smart contract with a
deposit function in Ethereum, using the K framework. They
first compile smart contracts to bytecode and then formalize
and verify the bytecode. This method ensures that the func-
tion and security of smart contracts do not depend on the
compiler’s correctness.

Kalra et al. [82] designed ZEUS, which is an automatic for-
mal verification tool that supports five security vulnerabilities
in smart contracts. ZEUS converts the Solidity source code
to the LLVM intermediate language, and uses XACML to
write validation rules, and further uses the SeaHorn [83] val-
idator for formal verification. Similar to previous solutions,
the advantage of converting the Solidity code to the LLVM
intermediate language is that it can use formal verification
solutions for traditional programs. The disadvantage is that
it may be difficult to express all the semantics of smart
contract programs during the conversion process, particularly
smart contracts. ZEUS has designed five security vulnerabil-
ity detection rules that can determine the security of a target
program in the process of formal verification. Antonino and
Roscoe [84] abstracted the Solidity language based on the
behavior of Ethereum smart contracts. Using this approach,
Solidity’s model checker solidifier was created. The process
converts Solidity into Boogie, an intermediate verification
language, which is then verified using the Corral boundary
model checker [85] to verify the functionality of the smart
contract.

Yang et al. [86] combined symbolic execution and a higher-
order logic theorem to design a Formal Symbolic Process Vir-
tualMachine of Ethereum (FSPVM-E), which is an extension
of Curry Howard’s isomorphic [87] application and can be
used to verify the security and reliability of smart contracts
at the source code level. The virtual machine FSPVM-E was
developed based on the higher-order logic theorem proving
in the formal proof assistant Coq. It uses the Coq theorem
proving assistant to program the smart contract system, and
uses the Hoare logic in Coq to verify the security attributes.
The FSPVM-E can automatically execute Ethereum-based
smart contracts, and scan smart contracts for possible security
vulnerabilities.

Alqahtani et al. [88] proposed a formal method of model
checking to verify the security of interactive smart contracts
developed and controlled by different entities. The authors
used the NuSMV model checker and behavioral interaction
prioritization tool to model the behaviors and interactions of
smart contracts to verify whether the smart contracts meet
the requirements of system functionality. A case study of the
American Petroleum Institute confirmed the applicability of
this method and used it to verify the security of interactive
smart contracts on the Fabric blockchain platform.

Nam and Kil [89] proposed a novel form verification
technique by using ATL (Alternating-Time Temporal Logic)

VOLUME 10, 2022 50857

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

model checks to analyze blockchain smart contracts. The
given smart contract is first translated in the language of
MCMAS, a state-of-the-art ATL model checker for multi-
agent systems. If the attacker’s contact information is given,
it will also be simplified to MCMAS. Otherwise, the loosest
attacker model is introduced and then encoded as MCMAS.
In addition, the method adds an environment agent that man-
ages their turn. Finally, verify the multi-agent systemwith the
ATL properties that the developer wants to check. If MCMAS
returns true, these properties are determined to be satisfied.
Otherwise, MCMAS provides a counterexample that can go
a long way toward helping developers to correct errors in
contracts. In addition, three case studies are presented to show
that this verification technique can be successfully applied to
real-world smart contracts.

As blockchain technology evolves, the use of smart con-
tracts is diversifying. Blockchain-based smart contracts are
suitable for areas where integrity and transparency must be
guaranteed with distributed ledger technology at its core.
However, the system cannot be modified once deployed, so it
is important to ensure that the system complies with the
requirements and principles of the smart contract during the
design phase. To solve this problem, Park et al. [90] used
the UPPAAL model checking tool of time attribute to specify
and verify the system to model and verify the Dutch auction
trading system based on smart contract, and set time con-
straints for each template and state in the modeling process.
Furthermore, by specifying the time constraint as a range,
the price will fall at the correct time. Various scenarios at
the end of the auction were supplemented by simulations
and verified by using TCTL that all attributes derived from
the functional requirements were met. Formal verification of
UPPAAL proves that the system is accurate and error-free.

In summary, formal verification technology is widely used
to detect whether a smart contract satisfies the security
attribute rules defined by the contract designer, but it is not as
widely used as fuzzing and symbolic execution in some com-
mon vulnerability detection. Compared to solutions based on
other vulnerability mining technologies, most formal verifi-
cation methods are currently not highly automated, and the
detected vulnerabilities do not necessarily have an accessible
program path. Therefore, the use of formal verification tech-
nology to mine general vulnerabilities in smart contracts still
presents challenges.

4) OTHER TECHNOLOGIES
Zhou et al. [91] proposed a smart contract vulnerability min-
ing method called SASC, based on static program analysis
technology. Through the automatic analysis of the smart
contract’s source code, SASC determines the function call
topology in the contract and the control flow characteris-
tics inside the function, and detects the illegal use of vari-
ables such as blockchain timestamp and transaction source
address (tx.origin), thereby flagging and reporting security
vulnerabilities.

Tikhomirov et al. [92] designed a static analysis tool called
SmartCheck for Ethereum smart contracts. SmartCheck
works at the Solidity source code level of the smart contract,
which further performs syntax and lexical analyses on the
source code, and uses XML to describe the result of the
abstract syntax tree after analysis. On this basis, Xpath [93]
is used to check the security properties of smart contracts to
detect loopholes in contracts, such as reentrancy, timestamp
dependence, denial of service, and fund locking.

In 2020, Slither [94] launched a static analysis frame-
work open-source project focused on smart contract program
analysis. Based on the static analysis of the smart contract
source code, the project designed two modules: printer and
detector, which were used to analyze smart contracts. Its
anomaly detection can detect as many as forty kinds of
anomalies of smart contract, including a variety of secu-
rity vulnerabilities. Slither created an intermediate language
called SlitherIR, which implements all static program anal-
ysis work at the intermediate language level, helping extend
the analysis framework to different high-level languages and
types.

V. CHALLENGES AND DEVELOPMENT TRENDS
OF BLOCKCHAIN SMART CONTRACTS
A. CHALLENGES OF BLOCKCHAIN SMART
CONTRACT TECHNOLOGY
Smart contracts have several advantages. For example,
an intermediate guarantor is no longer required for trans-
actions, and both parties to the transaction no longer have
to worry about trust issues, which will speed up contract
verification and execution. A smart contract corresponds to a
piece of program code, but once deployed in the blockchain,
it cannot be changed. Because the blockchain can be regarded
as a distributed database and smart contracts are deployed
in the blockchain system, it also has the advantage of a dis-
tributed system, which can ensure the security and reliability
of data. However, smart contract technology is still far from
practical application and faces many challenges.

(1) The development language of contracts is still imma-
ture, and there is a lack of effective detection
and processing methods for potential vulnerabilities.
For example, the solidity development language of
Ethereum lacks safe handling methods for problems
such as function variables and operation symbols out
of bounds, and most developers do not have enough
semantic understanding of these development lan-
guages to use Turing machines flexibly, which can
easily lead to security vulnerabilities in smart contracts.
Since then, Ethereum smart contracts cannot be mod-
ified once deployed, and it is particularly difficult to
solve the security problem in smart contracts. If the
smart contract code design contains errors, there is no
direct error-correction method after deployment into
the chain. Therefore, it is necessary to design a method
for modifying and ending the contract state. However,

50858 VOLUME 10, 2022

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

this kind of method is contrary to the principle of ‘‘code
is law’’ of Ethereum itself, or even if this method is
designed, it is difficult to be recognized by the entire
Ethereum node. If some nodes are not recognized,
another blockchain is formed. Therefore, this type of
security problem for smart contracts is one of the chal-
lenges it faces.

(2) The smart contract execution efficiency and data- pro-
cessing ability of mainstream blockchain platforms are
not high. Because mainstream blockchain platforms
such as Ethereum and Hyperledger can be regarded
as distributed databases, each node shares the data of
the entire blockchain, resulting in the data-processing
capability of the platform being no greater than that
of a single node. Another problem is the serial exe-
cution of blockchain smart contract code leads to a
low ability to process data. Several researchers have
proposed sharding and multichannel solutions. These
technical solutions are expected to be applicable to
existing blockchain platforms. However, owing to the
immaturity of existing technologies and their com-
plex security situation, these technologies have not
yet been applied to blockchain platforms. Therefore,
applying these technologies to mainstream blockchain
platforms to improve the execution efficiency and data
processing capabilities of smart contracts is the second
challenge.

(3) It is difficult for smart contracts to achieve storage
expansion. The storage space of each block in the
blockchain is fixed in size: accordingly, the size of
the block is limited and cannot be expanded. The
immutable nature of blockchain is that it can only add
transaction data, and cannot modify or delete transac-
tion data. Once the block data record is incorrect, it can
only be solved by appending the correct record so that
the complete modification process will be recorded.
This mechanism is conducive to the decentralization of
the system, but it severely limits the scalability of block
storage. With the continuous increase in the number of
transactions, the blockchain data will occupy the entire
space, so it is urgent to realize scalable storage of smart
contracts.

(4) The maintainability of a smart contract system is poor,
and there are certain security risks. Because the smart
contract cannot be modified once deployed, the main-
tainability of the code is poor, which causes serious
hidden dangers to the system. If there is a security
loophole in the smart contract deployed in the chain,
there is no way to modify and supplement it, but
to update the contract code and redeploy it, wast-
ing storage space. In fact, smart contracts cannot be
tampered with because the underlying characteristics
of the blockchain are difficult to modify. Therefore,
researchers can improve the maintainability of smart
contracts by upgrading, iterating and deleting smart
contracts.

B. DEVELOPMENT TREND OF BLOCKCHAIN SMART
CONTRACT TECHNOLOGY
The operation of smart contracts based in the Ethereum is
called the beginning of the blockchain 2.0 stage. Currently,
an increasing number of blockchain platforms have begun
to support the operation of smart contracts. Smart contracts
are an important means of managing the digital assets in the
blockchain. Smart contract technology has received increas-
ing attention and has become a popular research topic. There-
fore, we will make the following predictions regarding the
development trends of smart contracts.

(1) Continuous improvement in smart-contract execution
efficiency performance. At present, smart contracts
are limited by the performance of blockchain systems
and cannot handle data with complex logic and large
throughput. Therefore, the performance of smart con-
tracts must be improved urgently. Some researchers
have proposed a second-layer expansion chain method,
which creates an off-chain execution environment
for smart contracts through trusted hardware, records
transaction payments and contract execution results on
the chain, separates the execution of smart contracts
from the consensus process, and guarantees the effi-
ciency and privacy of smart contracts. Therefore, con-
tinuous optimization and improvement based on this
scheme is important ways to improve the efficiency of
smart contract execution.

(2) Overall improvement in smart-contract security perfor-
mance. The security performance of smart contracts is
affected by multilevel factors, such as cryptography,
consensus mechanisms, and smart contracts. Security
problems cannot be well resolved from only a sin-
gle aspect of smart contracts. Existing research has
failed to fully and comprehensively solve the security
problems faced by blockchain. Therefore, considering
multi-level and multi-faceted influencing factors will
be an important reference for designing a more secure
and perfect blockchain security protection scheme from
a global perspective.

(3) Scale of formal verification of smart contracts and
unification of verification tools. At present, formal
verification tools for smart contract source code and
Ethereum bytecode are generally in the initial stage
and lack large-scale applications. Many methods can
only detect a single category or a few vulnerabilities,
and require considerable manpower. The vulnerabili-
ties that these vulnerability detection tools can detect
are different and there is an overlap in the detectable
vulnerabilities between some tools, which makes the
detection of contract vulnerabilities particularly com-
plex and extremely inconvenient. Therefore, the formal
verification of smart contracts needs to move towards
the direction of scale and the unification of vulnerabil-
ity security detection and verification tools to improve
detection efficiency and reduce detection costs.

VOLUME 10, 2022 50859

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

(4) Cryptographic security technology is used to meet
the challenges of quantum computing. The premise
of the birth of blockchain technology is that cryptog-
raphy technology is safe and reliable, but there are
some loopholes, and there is also the possibility of
cracking in the cryptography technology, which poses
a huge challenge to the security of the blockchain
system. The concept of quantum computing poses
a challenge to the security of blockchain, especially
the quantum computing Shor algorithm proposed in
1994, which is a great threat to encryption algorithms
such as DES. Once the cryptography technology on
which the blockchain relies is cracked, the security
and privacy of the blockchain system will not be guar-
anteed and blockchain technology will lose its most
important advantages. Therefore, designing a trustwor-
thy cryptographic security technology under the chal-
lenges of quantum computing will become the focus of
blockchain technology development.

(5) Coordination and integration of smart contracts and
traditional laws. Currently, smart contracts are in the
stage of complementing and cooperating with tradi-
tional contracts. In the future, on the one hand, it is
necessary to strengthen smart contracts’ understanding
of the law, establish smart contract review standards,
reduce errors, andmake smart contracts within the legal
review standards. On the other hand, it is also neces-
sary to supplement existing laws to clarify the various
situations of smart contracts and the exact meaning
expressed by the parties to the transaction to avoid
difficult accountability afterwards. Through these two
aspects, the purpose of strengthening the coordination
and integration of smart contracts and traditional laws
is achieved.

VI. CONCLUSION
Smart contract technology is a new stage in the development
of the blockchain technology. It is widely used, not only in
the field of financial transactions, but also in many aspects of
social life. Despite the advantages of smart contract technol-
ogy, it is still in the early stages of development and there are
still many issues to be resolved.

This paper introduces the concepts related to blockchain
smart contracts, and then focuses on the current difficulties of
smart contracts and the progress of solutions to these difficul-
ties. First of all, it briefly introduces the development process
of blockchain, and then focuses on the research progress
of smart contracts in blockchain 2.0 stage. To accurately
understand the concept of smart contracts, this paper provides
a formal definition of smart contracts and elaborates on the
working mechanism of smart contracts, including the main
body of smart contracts, data loading methods, and contract
execution environment. Secondly, it summarizes the current
difficulties faced by smart contracts, such as low execution
efficiency, difficult expansion of data storage, easy disclo-
sure of privacy, vulnerability to potential attacks, etc. Several

related studies have been conducted in response to these
problems. For example, (1) using scalable capacity expansion
solutions, such as increasing block capacity, directed acyclic
graphs, and sharding, to solve the efficiency and storage per-
formance problems of smart contracts; (2) the combination of
zero knowledge proof technology and trusted execution envi-
ronment to improve the privacy protection ability of smart
contracts; and (3) using fuzzing, symbolic execution, formal
verification and other technologies to mine the potential secu-
rity vulnerabilities of smart contracts and reduce their secu-
rity risks. Finally, the challenges faced by blockchain smart
contract technology are analyzed, and future development
trends are discussed.

REFERENCES
[1] R. Böhme, N. Christin, B. Edelman, and T. Moore, ‘‘Bitcoin: Eco-

nomics, technology, and governance,’’ J. Econ. Perspect., vol. 29, no. 2,
pp. 213–238, 2015.

[2] M. Nofer and M. Gomber, ‘‘Blockchain,’’ Bus. Inf. Syst. Eng., vol. 59,
pp. 183–187, Mar. 2021.

[3] J. L. Zhao, S. Fan, and J. Yan, ‘‘Overview of business innovations and
research opportunities in blockchain and introduction to the special issue,’’
Financial Innov., vol. 2, no. 1, pp. 1–7, Dec. 2016.

[4] G. Wood. (2014). Ethereum: A Secure Decentralised Generalised
Transaction Ledger, Ethereum Project Yellow Paper. [Online]. Available:
https://www.mendeley.com/catalogue/db13375c-94f2-394a-a770-
a51001b0404d/

[5] D. Efanov and P. Roschin, ‘‘The all-pervasiveness of the blockchain tech-
nology,’’ Proc. Comput. Sci., vol. 123, pp. 116–121, Jan. 2018.

[6] N. Szabo, ‘‘Formalizing and securing relationships on public networks,’’
First Monday, vol. 2, no. 9, pp. 1–21, Sep. 1997.

[7] P. He, G. Yu, Y. F. Zhang, and Y. B. Bao, ‘‘Survey on blockchain tech-
nology and its application prospect,’’ Comput. Sci., vol. 44, no. 4, pp. 1–7,
Apr. 2017.

[8] Y. Yuan and F. Y. Wang, ‘‘The state of the art and future trends,’’ Acta
Automatica Sinica, vol. 42, no. 4, pp. 481–494, 2016.

[9] A. M. Antonopoulos,Mastering Bitcoin: Unlocking Digital Cryptocurren-
cies. Sebastopol, CA, USA: O’Reilly Media, 2014.

[10] J. Fan, L.-T. Yi, and J.-W. Shu, ‘‘Research on the technologies of byzantine
system,’’ J. Softw., vol. 24, no. 6, pp. 1346–1360, Jan. 2014.

[11] B. Hou and F. Chen, ‘‘A study on nine years of bitcoin transactions: Under-
standing real-world behaviors of bitcoin miners and users,’’ in Proc. IEEE
40th Int. Conf. Distrib. Comput. Syst. (ICDCS), Nov. 2020, pp. 1031–1043.

[12] X. J. Cai, ‘‘The principle of blockchain and its core technology,’’ J. Com-
put., vol. 44, no. 1, pp. 84–131, Jan. 2021.

[13] V. Buterin, A Next-Generation Smart Contract and Decentralized Applica-
tion Platform. Zug, Switzerland: Etherum, Jan. 2014, pp. 1–36.

[14] L. Savron, ‘‘How blockchain technology could change our lives,’’Ursidae,
Undergraduate Res. J. Univ. Northern Colorado, vol. 8, no. 1, p. 10,
Apr. 2019.

[15] L. Zhang, B. X. Liu, R. Y. Zhang, B. X. Jiang, and Y. J. Liu, ‘‘Overview of
blockchain technology,’’Comput. Eng., vol. 45, no. 5, pp. 1–12,May 2019.

[16] S. Rouhani and R. Deters, ‘‘Security, performance, and applica-
tions of smart contracts: A systematic survey,’’ IEEE Access, vol. 7,
pp. 50759–50779, 2019.

[17] L. Ouyang, S. Wang, Y. Yuan, X. Ni, and F. Y. Wang, ‘‘Smart contracts:
Architecture and research progresses,’’ Acta Automatica Sinica, vol. 45,
no. 3, pp. 445–457, 2019.

[18] C. D. Clack, V. A. Bakshi, and L. Braine, ‘‘Smart contract tem-
plates: Foundations, design landscape and research directions,’’ 2016,
arXiv:1608.00771.

[19] F. Zhang and E. Cecchetti, ‘‘Town crier: An authenticated data feed for
smart contracts,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 270–282, doi: 10.1145/2976749.2978-326.

[20] X. L. Cao, J. H. Zhang, and B. Liu, ‘‘Review on security, privacy, and
performance issues of blockchain,’’ Comput. Integr. Manuf. Syst., vol. 27,
no. 7, pp. 2078–2094, Jul. 2021.

50860 VOLUME 10, 2022

http://dx.doi.org/10.1145/2976749.2978-326

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

[21] S. R. M. Sekhar, G. M. Siddesh, S. Kalra, and S. Anand, ‘‘A study of use
cases for smart contracts using blockchain technology,’’ Int. J. Inf. Syst.
Social Change, vol. 10, no. 2, pp. 15–34, Apr. 2019.

[22] L. V. Antonio, ‘‘Smart contracts: A review of security threats alongside
an analysis of existing solutions,’’ Entropy, vol. 22, no. 2, pp. 203–232,
Feb. 2020.

[23] P. W. Shor, ‘‘Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,’’ SIAM J. Comput., vol. 26, no. 5,
pp. 1484–1509, 1997.

[24] N. Atzei, ‘‘A survey of attacks on Ethereum smart contracts (SoK),’’
in Proc. 6th Int. Conf. Princ. Secur. Trust, vol. 10204, Apr. 2017,
pp. 164–186, doi: 10.1007/978-3-662-54455-6_8.

[25] Y. D. Ni, C. Zhang, and T. T. Yin, ‘‘A survey of smart contract vulnerability
research,’’ J. Cyber Secur., vol. 5, no. 3, pp. 78–99, May 2020.

[26] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, ‘‘Adding concur-
rency to smart contracts,’’Distrib. Comput., vol. 33, nos. 3–4, pp. 209–225,
Jul. 2019.

[27] K. Wüst, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun, ‘‘ACE: Asyn-
chronous and concurrent execution of complex smart contracts,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020, pp. 587–600,
doi: 10.1145/3372297.3417243.

[28] W. F. Silvano and R. Marcelino, ‘‘Iota tangle: A cryptocurrency to com-
municate internet-of-Things data,’’ Future Gener. Comput. Syst., vol. 112,
pp. 307–319, Nov. 2020.

[29] S. Das, V. J. Ribeiro, and A. Anand, ‘‘YODA: Enabling computationally
intensive contracts on blockchains with Byzantine and Selfish nodes,’’
2018, arXiv:1811.03265.

[30] E. Sariboz, K. Kolachala, G. Panwar, R. Vishwanathan, and S. Misra,
‘‘Off-chain execution and verification of computationally intensive
smart contracts,’’ in Proc. IEEE Int. Conf. Blockchain Cryptocur-
rency (ICBC), May 2021, pp. 1–3. [Online]. Available: https://ieeexplore.
ieee.org/document/9461142

[31] CITA Technical White Paper, CRYPTAPE, Hangzhou, China,
2019. [Online]. Available: https://www.chainnode.com/doc/3507

[32] F. L. Zhang and P. Y. Hou, ‘‘Framework for architecting smart con-
tracts using microservices,’’ J. Softw., vol. 32, no. 11, pp. 3423–3439,
Aug. 2021.

[33] M. Fang, Z. Zhang, C. Jin, and A. Zhou, ‘‘High-performance smart con-
tracts concurrent execution for permissioned blockchain using SGX,’’ in
Proc. IEEE 37th Int. Conf. Data Eng. (ICDE), Apr. 2021, pp. 1907–1912,
doi: 10.1109/ICDE51399.2021.00175.

[34] Y. Chen, X. Li, J. Zhang, and H. Bi, ‘‘Multi-party payment channel
network based on smart contract,’’ IEEE Trans. Netw. Service Manage.,
early access, Mar. 22, 2022, doi: 10.1109/TNSM.2022.3162592.

[35] J. Liu, P. Li, R. Cheng, N. Asokan, and D. Song, ‘‘Parallel and
asynchronous smart contract execution,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 33, no. 5, pp. 1097–1108, May 2022, doi: 10.1109/TPDS.
2021.3095234.

[36] L. Luu, ‘‘A secure sharding protocol for open blockchains,’’ in Proc. CCS
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 17–30, doi:
10.1.145/2976749.2978389.

[37] A. E. Gencer, R. V. Renesse, and E. G. Sirer, ‘‘Service-oriented sharding
with Aspen,’’ 2016, arXiv:1611.06816.

[38] Zilliqa. Next-Gen High Throughput Blockchain Platform. Accessed:
Mar. 4, 2022. [Online]. Available: https: //www.zilliqa.com

[39] T. Duong, ‘‘Multi-mode cryptocurrency systems,’’ in Proc. BCC 2nd
ACM Workshop Blockchains, Cryptocurrencies, Contracts, May 2018,
pp. 35–46, doi: 10.1145/320523-0.3205237.

[40] L. Zhu, H. Yu, S. X. Zhan, W. W. Qiu, and Q. L. Li, ‘‘Research on high-
performance consortium blockchain technology,’’ J. Softw., vol. 30, no. 6,
pp. 1577–1593, Jun. 2019.

[41] Taxa Website. Accessed: Apr. 7, 2022. [Online]. Available:
https://taxa.network/

[42] J. Wang, H. Yu, H. Zhen, and L. Han, ‘‘Access control methods of data
sharing in cloud storage based on smart contract,’’ Netinfo Secur., vol. 21,
no. 11, pp. 40–47, Nov. 2021.

[43] Y. Wang, H. Liu, J. Wang, and S. Wang, ‘‘Efficient data interaction
of blockchain smart contract with Oracle mechanism,’’ in Proc. IEEE
9th Joint Int. Inf. Technol. Artif. Intell. Conf. (ITAIC), Dec. 2020,
pp. 1000–1003, doi: 10.1109/ITAIC49862.2020.9338784.

[44] T. Kim, S. Lee, Y. Kwon, J. Noh, S. Kim, and S. Cho, ‘‘SELCOM:
Selective compression scheme for lightweight nodes in blockchain sys-
tem,’’ IEEE Access, vol. 8, pp. 225613–225626, 2020, doi: 10.1109/
ACCESS.2020.3044991.

[45] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:
The blockchain model of cryptography and privacy-preserving
smart contracts,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2016, pp. 839–858. [Online]. Available: https://ieeexplore.ieee.org/
document/7546538/citations#citations

[46] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, ‘‘Town
crier: An authenticated data feed for smart contracts,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 270–282, doi:
10.1145/2976749.2978326.

[47] Microsoft. The Coco Framework: Technical Overview. Accessed: Feb. 8,
2022. [Online]. Available: https://github.com/Azure/coco-framework

[48] T. Hunt and Z. Zhu, ‘‘Ryoan: A distributed sandbox for untrusted compu-
tation on secret data,’’ ACM Trans. Comput. Syst., vol. 35, no. 4, pp. 1–32,
Nov. 2017, doi: 10.1.145/3231594.

[49] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, ‘‘Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,’’ in Proc. IEEE
Eur. Symp. Secur. Privacy (EuroS&P), Jun. 2019, pp. 185–200. [Online].
Available: https://ieeexplore.ieee.org/documen-t/8806762

[50] H. Kalodner and S. Goldfeder, ‘‘Arbitrum: Scalable, private smart con-
tracts,’’ in Proc. SEC 27th USENIX Conf. Secur. Symp., Aug. 2018,
pp. 1353–1370, doi: 10.5555/3277-203.3277305.

[51] ORIGO. (2019). Origo Privacy Preserving Smart Contract
blockchain. [Online]. Available: https://origo.net-work/whitepaper

[52] H. Kopp, D.Mödinger, F. J. Hauck, and F. Kargl, ‘‘Cryptographic design of
PriCloud, a privacy-preserving decentralized storage with remuneration,’’
IEEE Trans. Depend. Secure Comput., vol. 18, no. 4, pp. 1908–1919,
Aug. 2021, doi: 10.1109/TDSC.2019.2942300.

[53] N. Kapsoulis, A. Psychas, G. Palaiokrassas, A. Marinakis, A. Litke, and
T. Varvarigou, ‘‘Know your customer (KYC) implementati-on with smart
contracts on a privacy-oriented decentralized architecture,’’ Future Inter-
net, vol. 12, no. 2, pp. 1–41, Feb. 2020.

[54] J. Hao, C. Huang, W. Tang, Y. Zhang, and S. Yuan, ‘‘Smart contract-
based access control through off-chain signature and on-chain evaluation,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 4, pp. 2221–2225,
Apr. 2022, doi: 10.1109/TCSII.2021.3125500.

[55] Z. Wan, Y. Zhou, and K. Ren, ‘‘zk-AuthFeed: Protecting data feed
to smart contracts with authenticated zero knowledge proof,’’ IEEE
Trans. Depend. Secure Comput., early access, Feb. 23, 2022, doi:
10.1109/TDSC.2022.3153084.

[56] J. Li, B. Zhao, and C. Zhang, ‘‘Fuzzing: A survey,’’ Cybersecurity, vol. 1,
no. 1, pp. 45–57, Dec. 2018.

[57] R. K. Prakash, ‘‘Hardiness sensing for susceptibility using American
fuzzy lop,’’ in Proc. ITM Web Conf., Mar. 2021, Art. no. 01003, doi:
10.1051/itmconf/202-1370100.3.

[58] C. Aschermann, S. Schumilo, and T. Blazytko Jan. 2019), REDQUEEN:
Fuzzing With Input-to-State Correspondence. NDSS. [Online]. Available:
https://www.researchgate.net/public-ation/348915535_REDQUEEN_
Fuzzing_with_Input-to-State_Correspondence

[59] P. Chen and H. Chen, ‘‘Angora: Efficient fuzzing by principled search,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 711–725. [Online].
Available: https://ieeexplore.ieee.org/d-ocument/8418633

[60] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, ‘‘Col-
lAFL: Path sensitive fuzzing,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2018, pp. 679–696. [Online]. Available: https://ieeexplore.ieee.or-
g/document/8418631

[61] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
‘‘VUzzer: Application-aware evolutionary fuzzing,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2017, pp. 1–14. [Online]. Available:
https://www.ndsssymposium.org/nds-s2017/ndss-2017-programme/
vuzzer-application-aware-evolutionary-fuzzing

[62] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, ‘‘ReGuard:
Finding reentrancy bugs in smart contracts,’’ in Proc. 40th Int. Conf.
Softw. Eng., Companion, May 2018, pp. 65–68. [Online]. Available:
https://ieeexplore.ieee.org/docume-nt/8449446

[63] J.-W. Liao, T.-T. Tsai, C.-K. He, and C.-W. Tien, ‘‘SoliAudit: Smart
contract vulnerability assessment based on machine learning and fuzz
testing,’’ in Proc. 6th Int. Conf. Internet Things: Syst., Manage. Secur.
(IOTSMS), Oct. 2019, pp. 458–465. [Online]. Available: https://ieeexplo-
re.ieee.org/document/8939256

[64] (Mar. 2018). Echidna. A Smart Fuzzer for Ethereum. Trail Bits
Blog. [Online]. Available: https://blog.trai-lofbits.com/2018/03/0-
9/echidna-a-smart-fuzzer-forethereum/

VOLUME 10, 2022 50861

http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1145/3372297.3417243
http://dx.doi.org/10.1109/ICDE51399.2021.00175
http://dx.doi.org/10.1109/TNSM.2022.3162592
http://dx.doi.org/10.1109/TPDS.2021.3095234
http://dx.doi.org/10.1109/TPDS.2021.3095234
http://dx.doi.org/10.1.145/2976749.2978389
http://dx.doi.org/10.1145/320523-0.3205237
http://dx.doi.org/10.1109/ITAIC49862.2020.9338784
http://dx.doi.org/10.1109/ACCESS.2020.3044991
http://dx.doi.org/10.1109/ACCESS.2020.3044991
http://dx.doi.org/10.1145/2976749.2978326
http://dx.doi.org/10.1.145/3231594
http://dx.doi.org/10.5555/3277-203.3277305
http://dx.doi.org/10.1109/TDSC.2019.2942300
http://dx.doi.org/10.1109/TCSII.2021.3125500
http://dx.doi.org/10.1109/TDSC.2022.3153084
http://dx.doi.org/10.1051/itmconf/202-1370100.3

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

[65] B. Jiang, Y. Liu, and W. K. Chan, ‘‘ContractFuzzer: Fuzzing smart con-
tracts for vulnerability detection,’’ in Proc. 33rd ACM/IEEE Int. Conf.
Automated Softw. Eng., Sep. 2018, pp. 259–269. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9000089

[66] Q. Zhang, Y. Wang, J. Li, and S. Ma, ‘‘EthPloit: From fuzzing to efficient
exploit generation against smart contracts,’’ in Proc. IEEE 27th Int. Conf.
Softw. Anal., Evol. Reeng. (SANER), Feb. 2020, pp. 116–126. [Online].
Available: https://ieeexplore.ieee.org/document/9054822

[67] I. Ashraf, X. Ma, B. Jiang, and W. K. Chan, ‘‘GasFuzzer: Fuzzing
ethereum smart contract binaries to expose gas-oriented exception secu-
rity vulnerabilities,’’ IEEE Access, vol. 8, pp. 99552–99564, 2020, doi:
10.1109/ACCESS.2020.2995183.

[68] T. Zhou, K. Liu, L. Li, Z. Liu, J. Klein, and T. F. Bissyande, ‘‘SmartGift:
Learning to generate practical inputs for testing smart contracts,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2021, pp. 23–34,
doi: 10.1109/ICSME52107.2021.00009.

[69] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, ‘‘SMAR-
TIAN: Enhancing smart contract fuzzing with static and dynamic data-
flow analyses,’’ in Proc. 36th IEEE/ACM Int. Conf. Automated Softw.
Eng. (ASE), Nov. 2021, pp. 227–239, doi: 10.1109/ASE51524.2021.
9678888.

[70] S. Badruddoja, R. Dantu, Y. He, K. Upadhayay, and M. Thompson,
‘‘Making smart contracts smarter,’’ in Proc. IEEE Int. Conf. Blockchain
Cryptocurrency (ICBC), May 2021, pp. 254–269. [Online]. Available:
https://ieeexplor e.ieee.org/document/9461148

[71] B. Mueller. Mythril-Reversing and Bug Hunting Framework for the
Ethereum Blockchain. Accessed: Apr. 18, 2022. [Online]. Available:
https://pypi.org/project/mythril

[72] J. He, M. Balunovim, N. Ambroladze, P. Tsankov, andM. Vechev, ‘‘Learn-
ing to fuzz from symbolic execution with application to smart con-
tracts,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 531–548, doi: 10.1145/3319535.3363230.

[73] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, ‘‘Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,’’
in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Nov. 2019, pp. 1186–1189. [Online]. Available: https://ieeexplore.iee
e.org/document/8952204

[74] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, ‘‘ContractWard:
Automated vulnerability detection models for Ethereum smart contracts,’’
IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1133–1144, Apr. 2021, doi:
10.1109/TNSE.2020.2968505.

[75] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen,
‘‘DEFECTCHECKER: Automated smart contract defect detection
by analyzing EVM bytecode,’’ IEEE Trans. Softw. Eng., early access,
Jan. 27, 2021, doi: 10.1109/TSE.2021.3054928.

[76] L. Jin, Y. Cao, Y. Chen, D. Zhang, and S. Campanoni, ‘‘EXGEN: Cross-
platform, automated exploit generation for smart contract vulnerabilities,’’
IEEE Trans. Depend. Secure Comput., early access, Jan. 7, 2022, doi:
10.1109/TDSC.2022.3141396.

[77] S.-J. Hwang, S.-H. Choi, J. Shin, and Y.-H. Choi, ‘‘CodeNet: Code-
targeted convolutional neural network architecture for smart contract vul-
nerability detection,’’ IEEE Access, vol. 10, pp. 32595–32607, 2022, doi:
10.1109/ACCESS.2022.3162065.

[78] J. Zhu, K. Hu, and B. J. Zhang, ‘‘Review on formal verification of
smart contract,’’ Acta Electronica Sinica, vol. 49, no. 4, pp. 792–804,
Nov. 2021.

[79] Y. Hirai, ‘‘Defining the ethereum virtual machine for interactive theorem
provers,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur., Nov. 2017,
pp. 520–535, doi: 10.1007/978-3-319-70278-0_33.

[80] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu, ‘‘SPESC: A specification
language for smart contracts,’’ in Proc. IEEE 42nd Annu. Comput. Softw.
Appl. Conf. (COMPSAC), Jul. 2018, pp. 132–137. [Online]. Available:
https://ieeexplore.ieee.org/docume-nt/8377649

[81] D. Park, ‘‘End-to-end formal verification of Ethereum 2.0 deposit smart
contract,’’ in Proc. Int. Conf. Comput. Aided Verification, Jul. 2020,
pp. 151–164, doi: 10.1007/978-3-030-53288-8_8.

[82] S. Kalra, ‘‘ZEUS: Analyzing safety of smart contracts,’’ in Proc.
Netw. Distrib. Syst. Secur. Symp., Jan. 2018, pp. 1–12, doi: 10.1472-2/
NDSS.2018.23092.

[83] SeaHorn. A Verification Framework. Accessed: Mar. 5, 2022. [Online].
Available: https://seahorn.github.io

[84] P. Antonino and A. E. Roscoe, ‘‘Form alising and verifying smart con-
tracts with Solidifier: A bounded model checker for Solidity,’’ 2020,
arXiv:2002.02710.

[85] A. Lal, ‘‘Corral: A solver for reachability modulo theories,’’ in Proc.
24th Int. Conf. Comput. Aided Verification, Jul. 2012, pp. 427–443, doi:
10.1007/978-36.42-31424-732.

[86] Z. Yang, H. Lei, and W. Qian, ‘‘A hybrid formal verification system in coq
for ensuring the reliability and security of Ethereum-based service smart
contracts,’’ IEEE Access, vol. 8, pp. 21411–21436, 2020.

[87] P. Wadler, ‘‘Propositions as types,’’ Commun. ACM, vol. 58, no. 12,
pp. 75–84, Nov. 2015.

[88] S. Alqahtani, X. He, R. Gamble, and P. Mauricio, ‘‘Formal verifi-
cation of functional requirements for smart contract compositions in
supply chain management systems,’’ in Proc. Annu. Hawaii Int. Conf.
Syst. Sci., 2020, pp. 1–10. [Online]. Available: http://hdl.handle.net/10125/
64392

[89] W. Nam and H. Kil, ‘‘Formal verification of blockchain smart contracts
via ATL model checking,’’ IEEE Access, vol. 10, pp. 8151–8162, 2022,
doi: 10.1109/ACCESS.2022.3143145.

[90] W. S. Park, H. Lee, and J.-Y. Choi, ‘‘Formal modeling of smart
contract-based trading system,’’ in Proc. 23rd Int. Conf. Adv.
Commun. Technol. (ICACT), Feb. 2021, pp. 48–52, doi: 10.23919/
ICACT51234.2021.9370462.

[91] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and H. Kurihara,
‘‘Security assurance for smart contract,’’ in Proc. 9th IFIP Int. Conf. New
Technol., Mobility Secur. (NTMS), Feb. 2018, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/8328743

[92] S. Tikhomirov, ‘‘Smar tCheck: Static analysis of Ethereum smart
contr acts,’’ in Proc. 1st Int. Workshop IEEE Comput. Soc.,
May 2018, pp. 9–16. [Online]. Available: http s://ieeexplore.ieee.org/
document/8445052

[93] Xpath Cover Page—W3C. Accessed: Mar. 24, 2022. [Online]. Available:
https://www.w3.org/TR/xpath/all/

[94] (2020). Crytic/Slither. [Online]. Available: https://github.com/crytic/
slither

CANGHAI WU born in 1979. She received the
master’s degree from Jiangxi Normal University,
in 2007. She is currently an Associate Professor
with the Software College, Jiangxi Agricultural
University. Her main research interests include
blockchain, parallel distributed processing, and
cloud computing.

JIE XIONG is currently pursuing the mas-
ter’s degree with Jiangxi Agricultural Univer-
sity, China. His current research interests include
blockchain and agricultural informatization.

HUANLIANG XIONG was born in 1977.
He received the Ph.D. degree in computer software
and theory from the Department of Computer
Science, Tongji University, in 2017. He is cur-
rently an Associate Professor with Jiangxi Agri-
culture University, where he is the Faculty of the
Software College. His research interests include
blockchain, parallel distributed processing, and
cloud computing.

50862 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2020.2995183
http://dx.doi.org/10.1109/ICSME52107.2021.00009
http://dx.doi.org/10.1109/ASE51524.2021.9678888
http://dx.doi.org/10.1109/ASE51524.2021.9678888
http://dx.doi.org/10.1145/3319535.3363230
http://dx.doi.org/10.1109/TNSE.2020.2968505
http://dx.doi.org/10.1109/TSE.2021.3054928
http://dx.doi.org/10.1109/TDSC.2022.3141396
http://dx.doi.org/10.1109/ACCESS.2022.3162065
http://dx.doi.org/10.1007/978-3-319-70278-0_33
http://dx.doi.org/10.1007/978-3-030-53288-8_8
http://dx.doi.org/10.1472-2/NDSS.2018.23092
http://dx.doi.org/10.1472-2/NDSS.2018.23092
http://dx.doi.org/10.1007/978-36.42-31424-732
http://dx.doi.org/10.1109/ACCESS.2022.3143145
http://dx.doi.org/10.23919/ICACT51234.2021.9370462
http://dx.doi.org/10.23919/ICACT51234.2021.9370462

C. Wu et al.: Review on Recent Progress of Smart Contract in Blockchain

YINGDING ZHAO was born in 1965. He received
the Ph.D. degree in electronic physics and devices
from Tsinghua University, in 1992. He is cur-
rently a Professor and the Dean with the School of
Software, Jiangxi Agricultural University, China.
He has presided over or participated in more than
ten scientific research projects, such as ‘‘Network
water army identification research in social net-
works’’ and ‘‘Design and implementation of nav-
igation and positioning system based on Beidou

satellite.’’ He has published more than 20 academic papers. His research
interests include agricultural information technology, networks, and infor-
mation security.

WENLONG YI received the M.S. and Ph.D.
degrees in computer science and engineering
from Saint Petersburg Electrotechnical Univer-
sity ‘‘LETI,’’ Russia, in 2008 and 2018, respec-
tively. He is currently an Associate Professor
with the School of Software, Jiangxi Agricultural
University, China. His research interests include
distributed systems, the Internet of Things, and
cryptography. He is a Senior Member of the China
Computer Federation (CCF).

VOLUME 10, 2022 50863

