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ABSTRACT Most of the existing Medium Access Control (MAC) layer protocols for the Internet of
Things (IoT) model the traffic generated by each IoT device via random arrivals such as those in a Poisson
process. Under this model, since it is implied that IoT device traffic cannot be predicted, only reactive
MAC-layer protocols in which the network responds to the current traffic are viable. In contrast, recent work
has demonstrated that the traffic generated by an individual IoT device can be predictable, thus enabling
predictive network protocols at the MAC layer. In this paper, we investigate information-theoretic bounds
on the predictability of IoT traffic of individual devices. To this end, first, we compare the performance
achieved by the following state-of-the-art forecasters on individual IoT device traffic: Logistic Regression,
Multi-Layer Perceptron (MLP), 1-Dimensional Convolutional Neural Network (1D CNN), and Long Short
TermMemory (LSTM) as well as MLP under feature selection based on Analysis of Variance (ANOVA) and
Auto-Correlation Function (ACF). Second, we quantify the gap between the performance of these forecasters
against information-theoretic bounds as follows: For IoT devices that generate a fixed number of bits at each
generation instance, we measure the gap between the forecasting accuracy and the information-theoretic
bound established by Fano’s inequality on the probability of correct prediction. Our empirical results
show that existing forecasting schemes perform close to the information-theoretic bound in this case.
For IoT devices that generate a variable number of bits, we measure the gap between the Mean Square
Error (MSE) and the estimation-theoretic counterpart to Fano’s inequality. Our empirical results show that
the performance of existing forecasting schemes is far from the information-theoretic bound in this case. This
work motivates the machine learning community to develop forecasting schemes that approach information-
theoretic bounds. Furthermore, this work is expected to impact the development of predictive MAC-layer
protocols that exploit these bounds.

INDEX TERMS Internet of Things (IoT), network traffic, predictability, forecasting, machine learning.

I. INTRODUCTION
The application of Artificial Intelligence (AI) techniques to
the Internet of Things (IoT) is increasingly playing a sig-
nificant role in the design of next-generation wireless net-
works [1]. In particular, the application of AI techniques to
the problem of predicting the traffic from IoT devices holds
much promise in the new paradigm of ‘‘predictive networks’’,
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in which a network predicts the future input to the network,
such as the traffic generation patterns of IoT devices, and allo-
cates the network resources in advance. This contrasts sharply
with the existing paradigm of network protocols, in which the
network merely reacts to the current traffic demand on the
network [2]. Significant advantages accrue when predictive
network protocols are used in the place of reactive ones: The
amount of control overhead that occurs due to handshaking
and contention in reactive protocols is completely avoided
in predictive network protocols, and a much higher network
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FIGURE 1. Visualization of the inputs and the outputs of a forecaster for an IoT device.

performance can potentially be achieved if accurate forecasts
of the future inputs to the network can be formed.

The main motivation of this article is to demonstrate the
predictability of the traffic from individual IoT devices and
thus establish a firm foundation for the development of pre-
dictive network protocols in the near future. The demonstra-
tion of such predictability has the following two key benefits:
(1) Predictability of individual IoT device traffic will enable
the development of predictive MAC-layer protocols for IoT
in next-generation networks. (2) The quantification of the gap
between the performance of existing forecasting schemes and
the information-theoretic bounds has the potential to motivate
themachine learning community to develop novel forecasting
schemes that approach the information-theoretic bounds.

In order to clarify the concept of forecasting future IoT traf-
fic that is generated by an individual IoT device, we visualize
the traffic forecasting as in Fig. 1. In this figure, the horizontal
axis is the time axis where the left is the past, the right is
the future, and the middle line is the current time (present).
In addition, each stalagmite represents a burst in the traffic
pattern of the IoT device under consideration; these bursts are
either generated in the past (blue stalagmites) or predicted to
be generated in the future (orange stalagmites). A forecaster
is used to predict the future traffic generation based on the
traffic that falls in a certain time window in the past.

This work stands in stark contrast with the current model
of ‘‘random arrivals’’ (e.g. as in a Poisson process) that is
typically used to model the traffic from IoT devices at the
Medium Access Control (MAC) layer in most of the existing
network protocols [3]–[8]. While the random arrivals model
may be suitable for human-generated traffic, it fails to capture
the predictability inherent in machine-generated traffic in
Machine-to-Machine (M2M) communication. In this article,
we show that the traffic from a variety of IoT devices in
distinct traffic classes possesses inherent predictability.

In order to demonstrate this predictability, first, we present
the selection of the optimal length of the time window that
is considered as the input of a forecaster for the univariate
time-series traffic data. To this end, we analyze the entropy of
IoT traffic and compare it with that of a memoryless source
as a function of increasing window length.

Second, we establish an information-theoretic framework
by which we compare the empirical predictability that is
achieved in forecasting the traffic of an IoT device against the
information-theoretic bounds. For IoT devices that generate a

fixed number of bits at each generation instance, we compute
the information-theoretic upper bound established by Fano’s
inequality on the probability of forecasting error. For IoT
devices that generate a variable number of bits, we compute
a lower bound of the Mean Squared Error (MSE) via the
estimation-theoretic counterpart to Fano’s inequality. Fur-
thermore, we define two performance metrics: 1) Normalized
Accuracy, which measures the gap between the accuracy that
is realized by using a forecaster and the information-theoretic
upper bound on accuracy; and 2) Normalized Reciprocal
MSE, which measures the gap between the MSE realized
using a forecaster and the information-theoretic lower bound
on MSE.

Third, we compare the performance achieved by the fol-
lowing state-of-the-art forecasters on the traffic of indi-
vidual IoT devices with respect to Normalized Accuracy
and Normalized Reciprocal MSE metrics: Logistic Regres-
sion, Multi-Layer Perceptron (MLP), 1-Dimensional Convo-
lutional Neural Network (1D CNN), Long-Short TermMem-
ory (LSTM) as well as MLP combined with Analysis of
Variance-based feature selection (ANOVA-MLP) and Auto-
Correlation Function-based feature selection (ACF-MLP).

In this work, we demonstrate not only that the traffic of
individual IoT devices is predictable but also give indica-
tions as to which forecasters achieve the best performance
with regard to distinct IoT traffic classes. Our results also
indicate the differences that may exist in the empirical pre-
dictability that is achieved across distinct IoT devices. Taking
account of such differences will be important in designing
next-generation predictive protocols based on the degree of
predictability that can be achieved for each IoT device on the
network.

In summary, the main contributions of this work are as
follows:

• We investigate the predictability of the traffic of indi-
vidual IoT devices by selecting the optimal length of the
time window for the forecaster input.

• We perform a comparative analysis of the performance
achieved by state-of-the-art forecasters on individual
IoT device traffic.

• We quantify the gap between the performance of these
forecasters against information-theoretic bounds.

The rest of this paper is organized as follows: In Section II,
we contrast our work with the articles in the existing
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TABLE 1. Summary of the recent related works on predictive network techniques for M2M/IoT in Section II-A.

literature. In Section III, we present high-level statistics
of the considered IoT traffic data and the forecasting of
IoT traffic including the hyper-parameter tuning of forecast-
ing techniques. In Section IV, we analyze the predictabil-
ity of IoT traffic that is generated by individual devices,
and we present the comparison of the performance of fore-
casting techniques against the information-theoretic bounds.
In Section V, we present our conclusions.

II. RELATIONSHIP TO THE STATE OF THE ART
We now present the relationship between our work and the
state-of-the-art works in three categories: 1) the works that
develop techniques for predictive networks based on the pre-
dictability of IoT traffic, 2) the works that present algorithms
to forecast IoT traffic, and 3) the works that use Fano’s
inequality and its counterpart for predictability analysis tar-
geting wireless communication systems. Tables 1, 2, and 3
present the summary of the recent related works for these
categories respectively.1

A. PREDICTIVE NETWORK TECHNIQUES
We present the works that develop proactive solutions to
the massive access problem. Early works have developed
proactive solutions targeting Human-to-Human (H2H) traffic
in [21]–[23] and Machine-to-Human (M2H) traffic in [24]–
[26]. For cognitive radio networks, a proactive MAC protocol
was developed by Reference [27] in order to prevent the
network against primary user emulation and data falsification
attacks.

For M2M communication, Reference [28] has developed a
resource allocation algorithm that gives access grant proac-

1We took Reference [9] as an example for the styles of these tables.

tively to the neighbors of activated devices. Reference [29]
aims to minimize total service time for the transmission
of IoT traffic packets by allocating resources proactively.
Moreover, based on the prediction of the channel condi-
tion, the video quality and resource sharing have been deter-
mined in [30] while an energy-efficient stochastic predictive
resource allocation technique has been developed in [31].
Reference [32] has developed a technique to drop a subset of
packets based on their predicted impacts on the latency and
the performance. Reference [10] has scheduled uplink access
of Industrial IoT devices for delay-critical applications based
on the prediction of activity of these devices. In additon,
Reference [33] has recently developed a predictive network
architecture based on the prediction of total generated traffic
in the network.

A recent proactive solution technique, called Fast Uplink
Grant (FUG) has been proposed by 3GPP in Release 14 to
provide an uplink grant to traffic packets by scheduling
those based on the predictions [34]–[36]. In addition, Ref-
erence [11] developed a method for FUG which uses binary
Markovian process to model the packet transmissions of IoT
devices, and Reference [12] predicts IoT traffic via each
of Support Vector Machine (SVM) and LSTM techniques
aiming to enable FUG.

Another recent proactive solution technique, called Joint
Forecasting-Scheduling (JFS), is proposed to schedule the
transmission of the traffic of individual devices based on
forecasting in [13]. Reference [14] developed theMulti-Scale
Algorithm (MSA) in which the forecasting of IoT traffic
is performed on multiple time scales in order to enhance
the scalability of JFS for a massive number of devices.
Reference [15] extended JFS to the Multi-Channel (MC)
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case. In addition, Reference [16] developed the Randomiza-
tion of Generation Times (RGT) preprocessing algorithm,
which improves the performance of IoT traffic scheduling by
using queueing theory techniques.

Furthermore, Reference [17] developed a technique, called
Emulation of Application Specific Error Function (E-ASEF),
to perform an analysis of the relationship between the fore-
casting error and the network performance under predictive
network protocols. Reference [18] designed a meta-MAC
framework, called Dynamic Automatic Forecaster Selection
(DAFS), to select the best performing forecasting scheme
with respect to the estimated network performance. For scal-
ability improvement in IoT networks, diffusion analysis on
the proactive scheduling of packet transmission is presented
in Reference [19] and Quasi-Deterministic Transmission Pol-
icy (QDTP) is developed in References [19], [20]. The results
of the works in this category show that the predictive network
protocols (i.e. predictive scheduling of packet transmissions
of IoT devices) are highly promising for the networks with
a massive number of IoT devices. However, they also show
that the performance of predictive protocols is very sensitive
to the predictability of IoT traffic. In this paper, we analyze
the predictability of the individual IoT device traffic, and we
present a comparison of the performance of ML techniques
against information-theoretic bounds.

B. IoT TRAFFIC FORECASTING
We compare our work to the previous studies on forecasting
the traffic generation patterns of IoT devices. Reference [37]
presented a comparative study of MLP, LSTM, 1D CNN,
and ARIMA models along with the state-of-the-art feature
selection algorithms, i.e. Auto-Correlation Function (ACF),
embedding dimensions, and Analysis of Variance (ANOVA)
to yield the best performing forecasters for each IoT device.
Reference [38] developed an original neural network archi-
tecture, called Feature Selection Forecasting (FSF), specifi-
cally to predict traffic generation patterns of individual IoT
devices. Reference [39] presented a deep learning approach
as Gradient Boosting (GB) model with residual networks
and stacked models to predict network traffic obtained by a
mobile network operator. Reference [40] analyzed the sent
and received stream packets to identify the 4 connected IoT
devices by using 6 different machine learning models, includ-
ing Decision Tree (DT) methods such as Random Forest (RF)
and K-Nearest Neighbors (KNN). In addition, for security
applications Reference [41] predicted IoT traffic on the edge
network considering randomness and uncertainty via sample
entropy. Reference [42] has developed an algorithm to predict
the activation (i.e. the probability of traffic transmission) of
IoT devices for each time slot.

Furthermore, Reference [43] predicted industrial IoT traf-
fic, which is modeled as a Markovian process, via Rein-
forcement Learning (RL) for anomaly detection and network
planning. Reference [44] predicted traffic of event-triggered
IoT devices. Reference [45] used Recurrent Neural Net-
works (RNN) to predict the network traffic for the parameter

optimization of a random access control scheme. In order to
forecast network traffic, linear predictors have been devel-
oped in [46], [47] to control sampling interval, while an
LSTM based predictor has been used with deep learning
in [48] and Nonlinear autoregressive exogenous (NARX)
neural network has been used in [49].

In summary, the recent research uses various ML tech-
niques such as neural networks, deep learning, and DT meth-
ods to forecast individual or aggregated IoT traffic. However,
none of these works directly investigated the predictability
of the traffic with respect to information-theoretic bounds. In
contrast, in this work, we both analyze the predictability of
IoT traffic and compute information-theoretic predictability
bounds.

C. FANO’S INEQUALITY AND ITS COUNTERPART FOR
PREDICTABILITY ANALYSIS
We use Fano’s inequality [56] to set the information-
theoretical limits for predicting IoT traffic generation. A set
of previous studies used Fano’s inequality primarily for
mobility or location prediction. Reference [50] used three
differentmeasures of entropy, namely random entropy, uncor-
related entropy and actual entropy, with Fano’s inequal-
ity to predict the mobility of individuals. Fano’s inequal-
ity is also used to find the upper bound on predictability
on the future locations of a person in [51] and to com-
pute an upper bound for the prediction of an individual’s
location in [52]. Furthermore, Reference [53] analyzed the
predictability of the radio spectrum state by using Fano’s
inequality andmeasuring statistical entropy. Theworks in this
category used Fano’s inequality to analyze the predictabil-
ity of either position of individuals or radio spectrum state.
Beside the works that use Fano’s inequality and its coun-
terpart, other information theory-based techniques are also
developed and used in IoT networks. For example, Reference
[54] developed information-aware traffic reduction to address
network congestion. In addition, Reference [55] developed
an anomaly detection method which captures the effects of
abnormal/malicious traffic on information entropy. In con-
trast, in this paper, we use Fano’s inequality and its counter-
part to analyze the predictability of traffic generation patterns
of IoT devices; to the best of authors’ knowledge, there is no
work that compares the predictability of IoT traffic against
information-theoretical bounds based on Fano’s inequality
and its counterpart.

III. IoT TRAFFIC DATA AND ITS FORECASTING
A. CLASSIFICATION OF IoT TRAFFIC AND THE DATASET
Reference [37] has classified the IoT traffic in theMAC-layer
into four categories with respect to its periodicity and bit rep-
resentation. For a given IoT device, if the generation intervals
of the bursts of traffic generated by that device are constant,
such traffic is called ‘‘Periodic’’ traffic. Otherwise (if the
generation intervals vary with time), the traffic generated by
that device is called ‘‘Aperiodic’’. For example, if an IoT
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TABLE 2. Summary of the related works on IoT traffic forecasting in Section II-B.

TABLE 3. Summary of the related works in Section II-C.

device generates traffic when triggered by an event, then
that traffic is categorized as Aperiodic traffic. Furthermore,
if each burst has a fixed number of bits, then such traffic is
called ‘‘Fixed Bit’’. In contrast, if the number of bits that
in a single burst varies with time, then that traffic is called
‘‘Variable Bit’’. As a result, the four categories are as follows:
‘‘Fixed Bit Periodic (FBP)’’,2 ‘‘Fixed Bit Aperiodic (FBA)’’,
‘‘Variable Bit Periodic (VBP)’’, and ‘‘Variable Bit Aperiodic
(VBA)’’. The traffic category in which an IoT device falls
depends entirely on the characteristics of the traffic generated
by that IoT device; hence, it is pre-determined and fixed for
each device.3

2Note that the IoT device traffic that falls in the FBP class requires
no forecasting: if the generation time and the amount are known at any
one instant, they are known for the rest of the time. Hence, we focus on
forecasting for only for the FBA, VBP, and the VBA classes.

3If there are multiple types of traffic generated, e.g. by distinct types of
sensors on a device, we treat each distinct traffic stream separately. Hence,
every traffic stream falls in only one of these four categories.

During the analysis in this paper, we use the publicly avail-
able dataset [57] whose collection and processing method-
ology has been presented in Reference [38]. This dataset
contains the traffic generation patterns of 8 individual IoT
devices. These devices and the classes in which they fall
are as follows: FBA Class - Smart Home Energy Gener-
ation (SHEG), Non-Methane Hydrocarbon (NMHC) Gas
Sensor, and Wind Speed; VBP Class - Light Dependent
Resistor (LDR) and Relative Humidity (RH) Sensor; VBA
Class - Elevator Button, NO2 Gas Sensor, and Temperature
Sensor. In addition, for each sensor i, we present the number
of samples Ki and the number of unique burst sizes Mi in
Table 4.

B. FORECASTING OF IoT TRAFFIC
We now describe the processing of time series IoT traffic data
and the forecasting models that are used during the analysis
in this paper.
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TABLE 4. Properties of dataset.

TABLE 5. List of mathematical symbols in order of appearance.

First, we assume that the IoT traffic is generated in discrete
time. Then, let x ik denote the burst that is generated by device
i at discrete time k .4 We perform 1-step ahead forecasting
based on the traffic generated in the past time window with
duration W ; that is, at each discrete time k , any forecaster

4Table 5 presents the list of mathematical symbols in order of appearance.

predicts the value of the size of burst at k+1, denoted by x̂ ik+1,
based on {x ik−m}

W−1
m=0 . As we shall present in Section IV-A,

we analyze the predictability of IoT traffic for different values
of W .
For the forecasting of IoT traffic at the MAC layer, in this

paper, we use six different ML models, namely Logistic
Regression, MLP, ANOVA-MLP, ACF-MLP, 1D CNN and
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LSTM, where MLP-based models, 1D CNN and LSTM are
the deep learning models. There are two main reasons that
these models are selected as the forecasting schemes in this
paper: 1) We aim to compare the performance of different
types of (probabilistic, deterministic, static, recurrent) state
of the art ML models. To this end, we represent the proba-
bilistic and linear MLmodels with Logistic Regression, feed-
forward multi-layer models with the widely used universal
approximatorMLP [58], the state of the art deep learningwith
1D CNN [59], and recurrent models with LSTM (which is
able to capture temporal dependence in time-series data). 2)
References [37], [38] have shown that these models are able
to achieve successful results for the forecasting of IoT traffic
at the MAC-layer. For these models, the parameter settings
that are used during this paper are determined as follows:

• Logistic Regression: In the implementation of the
Logistic Regression model, we perform an exhaustive
search for the local optimal value of the regularization
term in the set {0.01, 0.1, 1, 10}; the method of penalty
in the set {none, l1, l2, elasticnet}; the solver in the set
{newton’s method, limited-memory Broyden–Fletcher–
Goldfarb–Shanno algorithm, library for large linear clas-
sification, stochastic average gradient, stochastic aver-
age gradient with non-smooth penalty}. For the imple-
mentation of Logistic Regression, we use the scikit-
learn library [60] in Python.

• Multi-Layer Perceptron (MLP): In the design of the
MLP model, the architectural hyperparameters are as
follows: the number of layers E , the number of neurons
ne at each layer e ∈ {1, . . . ,E}, and the activation
function of each neuron. First, we set the value of E
to 4 (which includes the output layer). Then, in order
to make a 1-step ahead forecast, we set the n4 = 1;
that is, there is only one neuron in the output layer.
Furthermore, we select the activation function of each
neuron in each of the other three layers as ReLU (Rec-
tified Linear Unit), and the activation function of each
neuron at e = 4 (the output layer) as linear.5 Finally,
we find the local optimal value of ne for each layer e ∈
{1, 2, 3} within the range [2, 256] by using only integral
powers of 2 for each hyperparameter by searching over
100 randomly generated points in the E-1 dimensional
space, where E-1 is the number of hidden layers in the
neural network. We shall refer to this particular search
method as ‘‘random search’’ in the rest of this paper.
We also use MLP with two different feature selection
methods, namely ANOVA-based and ACF-based fea-
ture selection. In the ANOVA-based feature selection,
we first compute the F-ratio [61] between each feature
and the desired output. Then, we sort all features with
respect to their F-ratios in descending order and select
the first twelve features from this sorted sequence of fea-

5Since the traffic patterns in each of the VBA and the FBA classes include
samples that correspond to zero traffic generation, we use softmax as the
activation function at the output layer of all of the forecasting models.

tures. In the ACF-based feature selection, based on the
ACF of each dataset, we select the following features:
{1, 2, 3, 4, 5} ∪ {12j}10j=1 for RH, the first 3 samples for
NO2, {23j}5j=1, and the highest 12 values of the ACF for
LDR, Temperature, Elevator Button, Wind Speed and
SHEG.

• 1-Dimensional Convolutional Neural Network (1D
CNN): The internal architecture of the 1D CNN model
in our studies is comprised of a convolution layer, a max
pooling layer and four fully connected layers. We set
the kernel size of each of the convolution layers and the
max pooling layer to 3. We also set the stride of the
convolution layer to 2. We set the activation function of
the convolution layer and that of each neuron at each of
the first three hidden layers to ReLU . We do not use any
activation function for any neuron at the output layer.
Furthermore, we set the number of neurons at the output
layer to 1. Then, we perform random search in order
to find the local optimal number cCNN of convolution
filters at the convolution layer and the local optimal
number ce of neurons at each hidden layer e ∈ {1, 2, 3}.
We select the search intervals and the points in each
search interval as follows: The interval for cCNN is set to
[2, 256] sampled at integral powers of 2. The interval for
ce for each e ∈ {1, 2, 3} is set to [2, 256] and is sampled
at multiples of 2.

• Long-Short Term Memory (LSTM): In the internal
architecture of the LSTM, the following hyperparame-
ters need to be determined: the number of LSTM layers,
the number of LSTM units in each LSTM layer, the
number ELSTM of fully connected layers, the number of
neurons in each hidden layer, and the activation function
of each LSTM unit or neuron at each layer. We use
one LSTM layer and three hidden layers, where the last
hidden layer is the output layer. The activation function
of each unit in the LSTM layer and of each neuron in
the first two hidden layers is selected as ReLU . We use
the linear activation function for all of the neurons at the
output layer. Furthermore, there is only one neuron in the
output layer to perform 1-step ahead forecasting. Then,
we perform random search (as defined for MLP above)
in order to find the local optimal number of LSTM units,
which is denoted by hLSTM , as well as the local optimal
number of neurons, denoted by he in each of the layers
e ∈ {1, 2}. The range of the search interval is [2, 256].
We use integral powers of 2 in this interval for the value
of hLSTM , and multiples of 2 for each e ∈ {1, 2}.

IV. ANALYSIS OF PREDICTABILITY AGAINST
INFORMATION-THEORETIC BOUNDS
In this section, we aim to analyze the predictability of IoT
traffic against information-theoretic bounds. To this end,
we first present the calculation of the entropy of IoT traffic
that is chopped up into sequential timewindows, andwe show
the selection of the best value of the window size W . Then,
using this entropy calculation, we analyze the predictability
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of traffic in the FBA class based on Fano’s inequality [56] and
the predictability of traffic in the VBP and VBA classes based
on the estimation-theoretic counterpart to Fano’s inequality.

Specifically, we use Fano’s inequality to relate the random-
ness inherent in time-series binary data (as quantified by the
entropy of the probabilistic model of those data) to the prob-
ability of predicting those data correctly. Intuitively, the more
random the binary data, the lower the probability of correct
prediction. Fano’s inequality gives the precise relationship
between the entropy and the probability of correct prediction.
This relationship is independent of the particular forecaster
used and must be satisfied by all forecasters. We apply Fano’s
inequality to FBA data, which is a binary-valued time series,
in which the device either generates no bits or a constant
number of bits at each discrete time.

The estimation-theoretic counterpart to Fano’s inequality
generalizes this relationship from binary data to data that take
values on a continuum. In this case, the probability of incor-
rect prediction is replaced appropriately by the MSE. Then,
the counterpart to Fano’s inequality specifies the precise rela-
tionship between the differential entropy of the probabilistic
model of the data and the lowest possible MSE that can be
achieved by any forecaster on such data. We apply Fano’s
inequality to VBP and VBA data. The multiple values taken
on by data in these classes are approximated by a continuum,
and the deviations are measured via the MSE.

A. ENTROPY OF IoT TRAFFIC WITH SEQUENTIAL TIME
WINDOWS
First, let the time series IoT traffic be the collection of bursts
that are generated by device i as {x ik}

Ki−1
k=0 , where Ki denotes

the total number of samples for device i in the considered
dataset. Then, we split this time series traffic of device i into
sequences over timewindows of durationW , and we compute
the set of sequences, denoted by Ti(W ) as

Ti(W ) = {{x ik}
(w+1)W
k=wW+1}

b(Ki−1)/W c
w=0 (1)

Accordingly, the entropy of Ti(W ), denoted by Si(W ),
is computed as

Si(W ) = −
∑

T ′∈Ti(W )

P(T ′)log2P(T ′) (2)

where P(α) denotes the probability of sequence α.
Now, we aim to determine the best value of W by com-

paring the actual entropy Si(W ) (calculated in (2)) with the
entropy for the case where the generator of the traffic is
a memoryless source that is distributed uniformly over the
alphabet of the source at device i.6 We let yik denote the traffic
data that is generated by such a memoryless source that has
the same distribution as the instantaneous traffic generated by
device i. Then, the set of sequences for yik , denoted by T̃i(W ),

6In our implementation, we consider only those values of data that are
actually observed to be generated by the source to belong to the source
alphabet.

FIGURE 2. Determination of W ∗ for each device in the FBA class via the
comparison of Si (W ) and S̃i (W ) for W ∈ {1, . . . , 100} resulted in
W ∗ = 13 for (a) SHEG, W ∗ = 9 for (b) NMHC and W ∗ = 15 for (c) Wind
speed.

is computed as

T̃i(W ) = {{yik}
(w+1)W
k=wW+1}

b(Ki−1)/W c
w=0 (3)

Accordingly, the entropy of the sequences for thememoryless
source, denoted by S̃i, is calculated as

S̃i(W ) = −
∑

T ′∈T̃i(W )

P(T ′)log2P(T ′) (4)

Subsequently, we compare Si(W ) and S̃i(W ) for device
i in each of FBA, VBA and VBP classes in Figures 2-4,
respectively, and we select the best value of the window size
W as

W ∗ = argmin
W∈{1,...,100}

(Si(W ) | Si(W ) ≥ S̃i(W )− ε) (5)

where W ∗ is selected to minimize the actual entropy Si(W )
while keeping the difference between Si(W ) and S̃i(W )
greater than or equal to a threshold ε, and we set ε =
3

100 max Si(W ). In this way, we aim to minimize the actual
entropy while there remains a gap between the actual entropy
and the entropy of the memoryless source.

Fig. 2 displays the comparison between Si(W ) and S̃i(W )
for W ∈ {1, . . . , 100} for each of (a) SHEG, (b) NMHC and

VOLUME 10, 2022 55609



M. Nakıp et al.: Predictability of IoT Traffic at MAC Layer Against Information-Theoretic Bounds

FIGURE 3. Determination of W ∗ for each device in the VBA class via the
comparison of Si (W ) and S̃i (W ) for W ∈ {1, . . . , 100} resulted in
W ∗ = 100 for (a) Elevator button, W ∗ = 12 for (b) NO2 and W ∗ = 10 for
(c) Temperature.

(c) Wind Speed. The results in Fig. 2 (a) show that although
Si(W ) decreases as W increases, the gap between Si(W ) and
S̃i(W ) also decreases with increasingW and becomes almost
zero forW > 20. The reason is that the number of samples is
too low forW > 20 that the actual data is very similar to the
data of the memoryless source. In addition, we see that the
gap between Si(W ) and S̃i(W ) decreases below 3% of Si(W )
(which is the value of ε in (5)) after W = 13; thus, we select
W ∗ = 13. Similarly, based on the results in Fig. 2 (b) and
Fig. 2 (c), we select W ∗ = 9 for NMHC and W ∗ = 15 for
Wind Speed.

Fig. 3 presents the comparison between Si(W ) and S̃i(W )
for W ∈ {1, . . . , 100} for each of (a) Elevator Button,
(b) NO2 and (c) Temperature. Based on the results in Fig. 3
(b), we select W ∗ = 12 for NO2, and based on the results
Fig. 3 (c), W ∗ = 10 for Temperature. In addition, the results
in Fig. 3 (a) show that the gap between Si(W ) and S̃i(W )
does not decrease below 3% of Si(W ) until W = 100; thus,
W ∗ = 100 for Elevator Button.

Finally, in Fig. 4, we present the comparison between
Si(W ) and S̃i(W ) for W ∈ {1, . . . , 100} for each of (a) LDR
and (b) RH. For the VBP class, we select W ∗ = 22 for LDR

FIGURE 4. Determination of W ∗ for each device in the VBP class via the
comparison of Si (W ) and S̃i (W ) for values of W ∈ {1, . . . , 100} resulted in
W ∗ = 22 for (a) LDR and (b) W ∗ = 13 for RH.

and W ∗ = 13 for RH respectively based on the results in
Fig. 4 (a) and Fig. 4 (b).

B. ANALYSIS FOR FIXED BIT - EVENT-TRIGGERED
TRAFFIC (FBA) BASED ON FANO’S INEQUALITY
We now present an analysis of the predictability of IoT traffic
in the FBA class by calculating an upper bound for the
accuracy achievable with any forecasting scheme.

First, we let S∗i denote the entropy of the traffic generation
of device i that is measured from real data under the optimal
selection of window length, W ∗. Also, let 5max

i denote the
maximum accuracy that any forecaster can achieve for the
traffic of device i.

Then, the well-known Fano’s inequality [56] is

S∗i ≤ H (5max
i )+ (1−5max

i )log2(Mi − 1), (6)

where H (5max
i ) is the binary entropy function which is

defined as

H (5max
i ) ≡ −5max

i log2(5max
i )

− (1−5max
i )log2(1−5max

i ). (7)

Thus, in our case for the traffic generation patterns in the
FBA class whereMi = 2, (6) simplifies to

S∗i ≤ H (5max
i ). (8)

Based on (8), we calculate the upper bound 5max
i for the

accuracy which is presented in Table 6 for each device i in
the dataset [57]. The results in this table show that the upper
bound for accuracy is slightly above 0.8 for SHEG and Wind
Speed devices; that is, the traffic generation of these devices
is more than 80% predictable. On the other hand, while5max

i
for NMHC equals 0.66, the traffic patterns of SHEG and
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TABLE 6. Value of 5max
i for each device i that falls in the FBA class in the

dataset.

Wind Speed devices are significantly more predictable than
that of NMHC.

Subsequently, we analyze the performance of distinct fore-
casting schemes which have been used for the forecasting of
IoT traffic in recent works [37], [38]. To this end, we define
‘‘Normalized Accuracy’’, denoted by 5i,f

normalized as a metric
that measures the ratio of the accuracy that is achieved by
forecaster f to the upper bound of the accuracy for device i;
that is,

5
i,f
normalized ≡

5
f
i

5max
i

, (9)

where 5f
i is the accuracy achieved by forecaster f . Note

that for the traffic of device i, 5i,f
normalized is the ratio of the

accuracy that is achieved by forecaster f to the accuracy upper
bound.

Fig. 5 displays the values of 5i,f
normalized for various fore-

casting schemes for each of the SHEG, NMHC and Wind
Speed devices. In Fig. 5 (a), for the SHEG device, we see
that Logistic Regression, MLP, LSTM and ANOVA-MLP
forecasters achieve at least 85% of the accuracy upper bound,
where Logistic Regression is the best performing model with
5
i,f
normalized = 0.89. In Fig. 5 (b), the results for NMHC device

show that all of the forecasters achieves more than 80% of
the upper bound, while the value of5i,f

normalized is in the range
[0.8, 0.89] for all forecasters, where ACF-MLP is the best and
LSTM is the worst performing model. In Fig. 5 (c), for Wind
Speed device, we see that LSTM significantly outperforms
all of the other forecasters by achieving 89% of the accuracy
upper bound, 5max

i .

C. ANALYSIS FOR VARIABLE BIT TRAFFIC (VBA & VBP)
BASED ON COUNTERPART TO FANO’S INEQUALITY
We now extend our analysis for the case where the IoT
devices generate varying numbers of bits in each burst. To this
end, we use the estimation counterpart to Fano’s inequality
(given by Theorem 8.6.6 in [62]), which is adapted for the
predictability analysis of Variable Bit Traffic as

MSEfi ≥
1

2πe
e2h
∗
i , (10)

where MSEfi is the Mean Squared Error (MSE) that is mea-
sured for the predictions of forecaster f for device i, and h∗i
denotes differential entropy of traffic generation pattern of
device i for W ∗.

According to Equation (8.94) in [62], differential entropy
can be used to bound the discrete entropy. The application of

FIGURE 5. Comparison of various forecasters with respect to 5
i,f
normalized,

i.e. normalized accuracy, for SHEG, NMHC and wind speed devices whose
traffic fall in FBA class.

this bound to our case gives h∗i ≥ S∗i . Hence, we set a lower
bound to the forecasting error as

MSEfi ≥
1

2πe
e2h
∗
i ≥

1
2πe

e2S
∗
i , (11)

and we compute the lower bound for MSEfi , denoted by
MSELB

i , as

MSELB
i =

1
2πe

e2S
∗
i . (12)

First, in Table 7, we present the lower error bound MSELB
i

for each device i whose traffic generation pattern falls in the
VBA or VBP class. For the VBA class (the first three rows of
this table), we see that the traffic generated by NO2 device
is the most predictable with MSELB

i = 0.18 compared
with the traffic generated by Elevator Button and that by
Temperature. Furthermore, for the VBP class (in the lower
part of this table), we see that the value of MSELB

i for the
LDR device is lower than that for RH, which shows that the
traffic generation pattern of LDR ismore predictable than that
of RH. Finally, based on the results for both VBA and VBP
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TABLE 7. Value of MSELB
i for each device i that falls in the VBA and VBP

classes in the dataset.

FIGURE 6. Comparison of various forecaster with respect to E i,f
normalized,

i.e. normalized reciprocal MSE, for (a) Elevator button, (b) NO2 and
(c) Temperature devices whose traffic generation patterns fall in VBA
class.

classes, the order of devices with respect to predictability is as
follows: LDR, NO2, RH, Temperature, and Elevator Button.
Next, we analyze the performance of different forecast-

ing schemes which are presented in Section III-B. To this
end, we define ‘‘Normalized Reciprocal MSE’’, denoted by
E i,fnormalized, as a metric that measures how precise the predic-

FIGURE 7. Comparison of various forecaster with respect to E i,f
normalized,

i.e. normalized reciprocal MSE, for (a) LDR and (b) RH devices whose
traffic generation patterns fall in VBP class.

tions of forecaster f are compared to the lower bound of error
for device i; that is,

E i,fnormalized ≡
MSELB

i

MSEfi
. (13)

We present E i,fnormalized for each of the Elevator Button,
NO2, and Temperature devices in Fig. 6. For all of the
devices whose traffic generation patterns fall in the VBA
class, we see that LSTM significantly outperforms other
forecasters. In addition, LSTM achieves almost themaximum
normalized reciprocal MSEwith 0.99 (i.e. MSE under LSTM
is almost equal to the lower error bound) for Temperature, and
it also achieves 0.6 Normalized Reciprocal MSE for Elevator
Button and NO2 devices.

Finally, Fig. 7 displays E i,fnormalized for the LDR and RH
devices whose traffic belong to the VBP class. For the LDR
device, our results in Fig. 7 (a) show that the MLP-based
forecasters (MLP, ANOVA-MLP and ACF-MLP) slightly
outperform the other forecasters with E i,fnormalized ≈ 0.25.
On the other hand, for this set of results, we see that none of
the forecasters can perform better than 4×MSELB

i . Moreover,
for the RH device in Fig. 7 (b), we see that none of the
forecasters can perform better than almost 3×MSELB

i while
LSTM and theMLP-based forecasters perform better than 1D
CNN and Logistic Regression with E i,fnormalized ≈ 0.34.

V. CONCLUSION
In this paper, we have presented the analysis on the pre-
dictability of IoT traffic at the MAC layer and have defined
information-theoretic performance bounds (i.e. upper bound
for accuracy and lower bound for MSE) by using Fano’s
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inequality and the counterpart to Fano’s inequality. We also
have compared the performance of well-known ML tech-
niques against these bounds. We have performed the analysis
as well as the performance comparison on a publicly available
dataset contains the raw traffic generation patterns of various
IoT devices.

The results of our analysis show that the traffic gener-
ation pattern of the majority of considered IoT devices is
predictable with more than 80% accuracy or less than 0.4
MSE. On the other hand, the comparison results in this paper
show that the ML techniques used to forecast IoT traffic in
the current literature perform very close to the upper bound
for FBA traffic class while the performance of the majority of
these techniques is far from the performance bound for VBA
or VBP traffic classes.

In our future work, we shall (1) develop advanced Neural
Network architectures as well as ML algorithms specific to
each traffic class (FBA, VBA, and VBP); (2) investigate the
development of novel forecasting schemes that approaches
information-theoretic bounds, especially in the case of Vari-
able Bit traffic; (3) develop predictive MAC-layer protocols
that exploit the information-theoretic bounds on forecasting
performance presented in this paper.
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