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ABSTRACT As cloud-based applications become increasingly solicited by companies and individuals, the
competition between cloud providers that offer cloud services keeps increasing. To win this competition,
cloud providers must provide sufficient computing resources that will satisfy users’ demand for every
request. Workload prediction has been investigated extensively to resolve this issue using various techniques.
This paper presents a workload prediction method called CANFIS, which combines the Savitzky-Golay (SG)
filter and Chaotic time series analysis with the Adaptive Neural Fuzzy Inference System (ANFIS) to make
predictions of cloud workloads. The SG filter is used to clean data from noise and outliers, and chaotic
analysis is used to investigate the chaotic nature of workload and to build the improved ANFIS model. The
proposed method is evaluated using real workload traces from web applications (i.e., Wikipedia and NASA
Kennedy traces) and cluster applications (i.e., CPU and Memory of Google cluster). Experimental results
show that the proposed CANFIS model can improve prediction accuracy compared to existing techniques,
including simple ANFIS, Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Machine
(SVM), Long Short Term Memory (LSTM), and Neural Networks based methods. A statistical analysis is
also performed using the Friedman test, along with Finner post hoc analysis to verify the efficiency of the
proposed prediction model.

INDEX TERMS Adaptive neuro-fuzzy inference system, chaos analysis, cloud application workloads,

proactive technique, workload prediction.

I. INTRODUCTION

Cloud computing is a powerful paradigm that has been evolv-
ing in the computing field for the last few years. It allows
individuals and enterprises to deploy their applications, store
their data and obtain access to various resources deployed in
data centers that are held and managed by third-party cloud
providers. All resources in the cloud are offered as on-demand
services to users on a pay-as-you-go basis [1].

The number of companies and individuals willing to use
cloud services increases every day due to the various advan-
tages of the cloud, such as elasticity and on-demand scalabil-
ity. However, due to this quick growth in the number of cloud
users, some challenges related to efficient resource manage-
ment in data centers have begun to arise. Cloud computing
providers have to provide sufficient resources to manage the
large and complex demands of users; otherwise, the Service
Level Agreement (SLA) terms will be violated, and cloud
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providers are likely to lose their customers. Overprovisioning
resources is not the best solution, particularly when a period
of low demand occurs because in that case, the excess of
available resources will remain idle, wasting resources [2].
One possible solution to these under- and over-provisioning
issues is to have prior knowledge of upcoming demand. Cloud
providers can use this prior knowledge to perform proactive
provisioning and scheduling of resources and consequently
avoid SLA violations and maximize resource utilization [3].

A. RESEARCH MOTIVATION AND CHALLENGES

As much as the prediction of cloud workload is the solution to
the encountered problems in cloud resource management, it is
a challenge by itself. The first major challenge in workload
prediction is the presence of nonlinearity in workloads [4];
for example, demand at a given time interval could be on the
order of millions of requests but zero or on the order of ten at
the next time interval, which results in unexpected peak and
slack periods in workload patterns. These sudden fluctuations
in workload provoke under- or overestimation of required
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resources, which results in violation of SLA terms, extreme
power consumption and resource wastage [S]. The second
major challenge in workload prediction is the presence of
nonrepeating patterns [6], [7]; for example, some patterns
seem to be indistinguishable on regular workdays with the
presence of peaks in the morning as well as in the after-
noon and low demand at midnight, but they are not exactly
the same. Therefore, finding a prediction method that can
consider the aforementioned characteristics of cloud work-
loads can play an important role in improving the prediction
accuracy.

B. PROPOSED APPROACH

In this paper, we propose a prediction model that combines
chaotic time series analysis and the ANFIS model to predict
cloud workload.

First, chaotic time series analysis is used to show that the
workload system has a chaotic nature. Chaos is one form
of behavior displayed in nonlinear systems and is used to
characterize the system’s time behavior when that behavior
does not exactly repeat itself (i.e., aperiodic) and appears to
be noisy [8]. Once chaos is identified in the cloud workload,
we can say that workload time series are nonlinear, deter-
ministic and dynamic, and can be predicted on a short-term
scale [9]. Therefore, we can use a nonlinear model to perform
a short-term prediction of these chaotic workloads.

The ANFIS model [10] is an intelligent model that has
the ability to approach complex nonlinear systems and has
been explored extensively in the prediction of cloud work-
loads [11]-[13]. The good accuracy achieved by this model
is encouraging. Thus, in this paper, we also use the ANFIS
model to predict chaotic cloud workloads. To overcome the
limitation of the ANFIS model regarding the selection of
its inputs, this paper suggests the use of methods of chaotic
time series analysis, the phase space reconstruction theory,
to select these inputs.

C. CONTRIBUTIONS
In brief, the major contributions of this paper are as follows:
o To clean data from possible outliers and noise while
preserving the width and the peak of the signal, we use a
smoothing method called the Savitzky-Golay filter [14].
+ We examine the existence of chaos in cloud workloads
using chaotic time series analysis.
o We predict chaotic workloads using an ANFIS model.
o We evaluate the performance of the proposed prediction
method using various real workload traces collected
from web and cluster applications

D. ORGANIZATION OF THE PAPER

The remainder of this paper is structured as follows. The
related work is given in Section II. In Section III, the pro-
posed solution is explained in detail. Section IV evaluates
the proposed prediction model using various real workload
traces. Finally, Section VI concludes the paper.
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Il. RELATED WORK

Workload prediction is a challenging issue that has attracted
the attention of researchers in cloud computing for the last
few years. This is due to its utility in the development of
efficient resource provisioning strategies that can improve the
overall performance of the cloud system. Many studies have
investigated this issue, and each uses a different category of
prediction model.

Amiri et al. [15] presented an exhaustive review of the
application prediction methods in various aspects. They pro-
posed a taxonomy for prediction methods that can exam-
ine the principal aspects and challenges of these methods.
For statistical-based prediction models, Calheiros ef al. [16]
applied an ARIMA model to dynamically forecast and provi-
sion resources for SaaS providers. In [17], a seasonal ARMA
model was used to forecast workload data up to 168 h for-
ward using expert guidance for order optimization purposes.
Roy et al [18] predicted the workload using moving
average, exponential moving average and ARMA models.
Amekraz et al. [19] presented a strategy for ARMA model
selection based on the Gaussianity feature of the workload.
If the workload was non-Gaussian, a higher order ARMA
model was applied, while if the workload was Gaussian, the
second order ARMA model was used.

Regarding pattern matching-based techniques,
Caron et al. [20] searched for patterns in the archival data
that are similar to the current pattern to make predictions
of the workload. In [21], the authors proposed an Euclidian
distance-based string pattern matching algorithm to forecast
the workload.

For machine learning-based models, Kumar et al. [22]
proposed an artificial neural network based on self-adaptive
differential evolution (SaDE) and showed that the proposed
model outperformed the backpropagation trained neural net-
work model of [23]. Cao et al. [24] used machine learning
methods such as random forest to forecast server load using
monitoring of historical data and showed that these methods
outperform traditional time series methods in terms of pre-
diction accuracy. In [4], a workload prediction framework
was presented that combines a neural network model and
supervised learning. An improvement of the differential evo-
lution algorithm was performed to ameliorate the efficiency
of learning of the prediction model. In [25], the authors
presented a workload forecasting method based on the black-
hole algorithm. The latter was used to train the neural network
model. In [26], the authors proposed a self-directed workload
forecasting method (SDWF) that captures the prediction error
trend by calculating the deviation in recent predictions and
used it to ameliorate the accuracy of future predictions. The
authors developed an improved black-hole algorithm for the
training of network neurons to achieve more accurate predic-
tions. In [27], the authors proposed an LSTM neural network
method that uses a two-dimensional time series instead of
one to train the LSTM model. Singh et al. [28] presented an
evolutionary quantum neural network (EQNN) for workload
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TABLE 1. Review of works related to cloud workload prediction techniques.

Ref Prediction technique Workload dataset Evaluation tools Performance metrics
[4] NN + Improved adaptive dif- Nasa, Saskatchewan, and Jupyter notebook RMSE, Training time, and
ferential evolution algorithm Google cluster Convergence speed
[11] Ensemble model + Subtractive ~ Network traffic data NA MAE, MSE, and PRED
fuzzy clustering + Fuzzy Neu-
ral Network
[16] ARIMA Wikipedia Cloudsim RMSD, NRMSD, MAD, and
MAPE
[17] Seasonal ARMA achat-ville.com Java MAPE
[19] Higher order statistics +  Wikipedia Matlab MAPE and NRMSE
ARMA model
[20] String matching Animoto, LCG, NorduGrid, NA UCSB  metrics, minimum,
and SHARCNET maximum, median, and
average percentage prediction
error and Average runtime
[21] String matching Words count program, Com-  Aliyun MAPE
putational tasks, Web applica-
tions, and memory consump-
tion applications.
[22] NN + Self adaptive Differential NASA and Saskatchewan Matlab RMSE, Convergence speed,
Evolution algorithm (SaDE) and Training time
[26] NN + Improved black-hole al-  NASA, Calgary, Matlab + SPSS MSE, MAE, and MAPE
gorithm (SDWF) Saskatchewan, Google cluster,
and PlanetLab
[27] Improved LSTM Shanghai Supercomputer Cen-  NA MSE and speedup
ter
[28] Evolutionary Quantum Neural — Google cluster, PlanetLab, Phython + STAC web plat- RMSE and MAE
Network (EQNN) Nasa, Saskatchewan,  form
AuverGrid, NorduGrid,
and SharCNet
[29] ANFIS Synthetic, and RuneScape Matlab MSE,RMSE, R?
[32] Sequential pattern mining Synthetic workloads and Bit- NA Prediction precision
brain
[34] Bidirectional LSTM + Gated  Bitbrains Google Colaboratory MSE, RMSE, MAE, MAPE
Recurrent Unit
[36] Base predictors (AR and Gray  Google cluster Matlab MAE, MSE, MAPE, and error
model) + Deep belief network
+ Particle swarm optimization
[37] Ensemble  model AR, Google cluster, Facebook, Python RMSE
ARIMA, LR, SVM... Wikipedia, Grid5000,
NorduGrid, AuverGrid,
SHARCNet, and LCG
[38] SVM and LR Google cluster NA MRPE and Cumulative Rela-
tive Error
[39] Learning Automata theory PlanetLab R software Execution time, RMSD, Error
Ratio, and Absolute Error
[40] Bayesian information +  PlanetLab R software MAE, RMSE, MAPE, and
Smooth filters MASE
Proposed ~ SG filter + Chaotic time series ~ Wikipedia, Nasa, and Google ~ Matlab + STAC web plat- RMSE, MAE, MAPE, and R?

analysis + ANFIS

cluster

form

prediction. The method uses quantum computing to encode
workload information into qubits. The weight of the qubits
is adjusted using the rotation effects of the controlled-NOT
gate serve activation function. Also, the qubit weights are
optimized using the self-balanced adaptive differential evolu-
tion (SB-ADE) algorithm. In [29], the authors used an ANFIS
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model to forecast future workload and a fuzzy decision tree
algorithm to determine the suitable number of resources to
allocate in the Massively Multiplayer Online Games applica-
tions. The results of simulations indicate that their proposed
approach outperforms existing methods in terms of accuracy
and performance. Amiri et al. [30] presented a provisioning
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TABLE 2. Advantages and disadvantages of the related works.

Ref Advantages

Disadvantages

[4] Faster convergence compared to self adaptive differ-

ential evolution algorithm

Higher complexity than self adaptive differential evolution
algorithm

[11] Decrease the amount of calculation May increase time delay and Execution time

[16],[17] Simplicity Needs to be retrained to adapt to workload changes + Unsuit-
able for nonlinear and non Gaussian workloads

[19] Suitable for non Gaussian workloads Needs to be retrained to adapt to workload changes + Unsuit-
able for nonlinear and non Gaussian workloads

[20], [21] Fast Needs preprocessing + Selection of the length of pattern

[22] Accuracy improvement compared to Back-  Static prediction approach

propagation
[26] Accuracy improvement compared to Black-hole,  Higher time complexity

SaDE, and Back-propagation

[27] Accuracy improvement compared to LSTM in large-

scale computing systems

No information whether it is convenient to predict CPU or
other workloads

[28] Higher and stable prediction accuracy Higher complexity due to qubits generation and processing
[29] Accuracy improvement Selection of model parameters

[32] No assumptions about the behavior of the workload Inability to adapt to the workload changes.

[34] Accuracy improvement compared to ARIMA, LSTM,  High training time

GRU, and Bi-LSTM

[36] Accuracy improvement Time consuming

[37] Real-time learning and acceptable accuracy Higher complexity than single machine learning models
[38] Accuracy improvement Complexity increasing

[39] Accuracy improvement and less execution time com-  Prediction of one type of resources (i.e., CPU)

pared to Genetic algorithm

[40] Simplicity + Accuracy improvement compared to Ge-

netic algorithm and Ensemble model

Inability to adapt to the workload changes

method based on workload prediction. The prediction was
performed using a neural network model, while the estima-
tion of the number of physical machines was performed using
the Q learning technique. The results of simulations show
that their proposal had an important effect on the conver-
gence speed and decreases the learning time. In [31], the
authors presented a new Clustered Induced Ordered Weighted
Averaging (IOWA) Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) model to predict QoS. Their proposed model
could reduce the dimension of data and manage the nonlinear
relationship of the QoS dataset.

For sequential pattern mining-based prediction models,
Amiri et al. [32] presented for the first time a sequential pat-
tern mining-based prediction method to forecast future cloud
demand. This method, called POSITING, could extract all
behavioral patterns of workloads by investigating the corre-
lation between resources without making assumptions about
the behavior of the workload. Therefore, the proposed model
could be used for various types of workloads. Although
the proposed model yields good results, it cannot adapt to
workload changes. Thus, in [5], the authors suggested a
forecasting model that combines episode mining with online
learning (RELENTING) to ameliorate POSITING. Their
model was supposed to fulfill the adaptability characteristic
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of the prediction models along with accuracy. To improve
the space complexity of the pattern mining technique,
Amiri et al. [33] defined redundant occurrences of patterns
and proved that eliminating them does not cause any loss of
information. Using PROSPER, which is an imProved Rep-
resentatiOn of the Stream based on PointERs, the authors
developed the algorithms in [32] to identify redundant occur-
rences and eliminate them. In addition to reducing time com-
plexity, the authors proposed a solution to improve the space
complexity of the pattern mining technique. The suggested
solution consists of a data structure called the closed pattern
backward tree (CPBT), which can extract and store closed
patterns directly without processing or storing all the possible
closed patterns.

A combination of two or more of the previously mentioned
models (i.e., statistical, machine learning models. . .) is also
widely used by several researchers. Notably, Karim et al. [34]
presented a hybrid prediction model called BHyPreC, which
is based on a recurrent neural network, to predict the CPU
usage workload of a cloud’s virtual machine. The proposed
model includes a gated recurrent unit (GRU) and bidirec-
tional long short-term memory (LSTM). Gong et al. [35]
presented a scaling mechanism called PRESS that uses fast
Fourier transform (FFT) to extract repeating patterns that

49811



IEEE Access

Z. Amekraz, M. Y. Hadi: CANFIS: Chaos Adaptive Neural Fuzzy Inference System for Workload Prediction in Cloud

will be used during workload predictions. If no repeating
patterns are found, PRESS uses a statistical state-driven
technique and employs a Markov chain to forecast demand.
Wen et al. [36] used particle swarm optimization with a
deep belief network (DBN) to predict CPU usage. After
preprocessing the data, the AR and gray models are used as
base prediction methods and trained to give additional input
information for the DBN.

Regarding ensemble model-based prediction approaches,
Kim et al. [37] used an ensemble model based on many
predictors to make forecasts for real-world workloads. The
authors used a total of eight predictors in their model, includ-
ing robust stepwise linear regression (RSLR), support vector
machine (SVM), and ARIMA models. In [38], the authors
made use of workload characteristics, including burstiness,
to select a convenient workload forecasting model among lin-
ear regression (LR) and SVM models. Rahmanian et al. [39]
suggested a prediction approach for CPU utilization that
uses a combination of many baseline prediction models.
The method uses the theory of learning automata to com-
pute the weight for each of the prediction models used.
Tofighy et al. [40] presented an ensemble model for load
prediction based on the Bayesian information criterion (BIC)
and smooth filters. The BIC is used to select the best element
model in every time slot using a history of resource usage.
Smooth filters are used to reduce the negative effect of out-
liers in the data. Ghobaei-Arani [41] proposed a workload
classification method that combines a biogeography-based
optimization (BBO) technique with K-means clustering to
classify workloads according to QoS needs. Also, the author
used the Bayesian learning method to decide proper resource
provisioning operations to meet the requirements of the QoS.
Etemadi et al. [42] proposed a Bayesian learning-based pro-
visioning technique for fog computing that enables dynamic
scaling of resources based on the predicted workload. Work-
load prediction is then performed using several prediction
models, including the MA, ARMA, ARIMA, and AR models.
The appropriate model that will be used to make predictions
corresponds to the model with the minimum error values.
Evaluation results demonstrated that their proposed method
could reduce the cost and delay violations and increase the
use of fog nodes. Chen et al. [11] proposed an adaptive
forecasting method that uses an improved fuzzy neural net-
work model. The latter was constructed using an ensemble
model and subtractive fuzzy clustering. Although ensem-
ble model-based approaches are effective in enhancing the
accuracy of workload prediction, they are time-consuming
compared to single-method approaches.

In the proposed approach, we use the SG filter to clean the
historical data and the Neuro-Fuzzy Inference System with
chaos theory (CANFIS) to forecast the future demand. Chaos
theory provides a new and different perspective, from which
we can visualize, analyze and understand workloads in the
cloud.

Table 1 summarizes relevant works related to workload
prediction in the cloud based on four features: (1) prediction
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FIGURE 1. The global architecture of the cloud resource management
system.

technique, (2) workload dataset, (3) evaluation tools, and
(4) performance metrics. Also, Table 2 describes some of the
advantages and disadvantages of these related works.

IIl. PROPOSED PREDICTION STRATEGY

This section presents the proposed workload prediction
model. First, the general architecture of the cloud resource
management system is introduced, and the different interac-
tions between its primary entities are briefly described. Next,
the structure of the proposed workload predictor is explained
in detail. Finally, the time complexity of the proposed predic-
tor is given.

A. CLOUD RESOURCE MANAGEMENT SYSTEM

In this section, we present the global architecture of the cloud
resource management system. The primary components of
this architecture are shown in Figure 1. The different inter-
actions between these components are shown in Figure 2.

As shown in Figure 1, the cloud resource management
system consists of five major modules: the admission con-
troller, the data warehouse, the monitor, the workload predic-
tor, and the resource manager module. We will now explain
the functionalities of these modules as well as the different
interactions between them.

At the beginning of each time slot, the monitor module
collects information about requests (e.g., amount of requests,
response time, etc.) and the state of the computing resources
(e.g., CPU, RAM, storage, etc.) from the cloud infrastructure.
The collected information is stored in the data warehouse.
Then, this information is fed into the workload predictor
module to predict future demand. The contributions of this
paper concern the workload predictor module, where the
proposed structure will be explained in detail in the next
section. The results of the prediction given by the workload
predictor module are sent to the resource manager module.
The resource manager uses the information about the state of
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[]
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Get accepted requests()

Accepted requests

Dispatch accepted requests()

FIGURE 2. Sequence diagram for cloud resource management system.

the computing resources that are stored in the data warehouse
and the prediction results to determine the scaling decisions
(i.e., scale up, scale down, or no action) that should be taken.
Next, the resource manager transfers the scaling decisions
to the cloud infrastructure and makes the required changes.
Also, the resource manager module will dispatch the accepted
user requests received from the admission controller to the
appropriate VMs according to different strategies (i.e., round
robin, first fit, etc.). Finally, the users’ requests are executed
by the selected VMs.

B. PROPOSED WORKLOAD PREDICTION METHOD

This section presents the proposed workload prediction
method. Primarily, the method consists of three steps,
as shown in Figure 3. First, historical data are processed using
a set of preprocessing operations, including extraction and
aggregation, cleaning with an SG filter, and normalization.
The resulting processed workload time series are fed to the
chaotic time series analysis module to identify the chaotic
characteristics of the workload. This analysis consists of
reconstructing the phase space and calculating the MLE to
verify the chaotic nature of the workload. Finally, the inputs
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of the CANFIS model are selected based on the chaotic study
that is performed in the previous module. The CANFIS model
is then built, trained and tested, and the prediction results are
forwarded to the resource manager. A detailed explanation
of every part of the proposed workload prediction method is
given in the rest of this section.

1) PREPROCESSING DATA

In this section, we present the preprocessing steps in
detail, including extraction and aggregation, cleaning, and
normalization.

a: EXTRACTION AND AGGREGATION
Before analyzing the chaotic features of the cloud workload,
the data in the proposed model go through three preprocess-
ing steps. The first step is data extraction and aggregation.
During this step, the desired fields in the historical workload
data (e.g., CPU usage, memory usage, number of requests)
are extracted and aggregated into equally spaced time
intervals.

In this paper, we focus on the number of requests for web
workloads and CPU usage and memory usage for cluster
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FIGURE 3. Overview of the proposed workload prediction method.

workload. Next, the workload is presented in the form of a
time series X = (x1,x2,...,X;), which is an arrangement
of workload values in chronological order with fixed time
intervals, and the workload value at time 7 is x;. In this case,
the time intervals are 60min and Smin for web and cluster
workloads, respectively.

b: SG FILTER

The resulting workload time series data from the previous
part are likely to be contaminated by noise caused by some
abnormal events, such as machine failures [43]. Therefore,
they must be cleaned before applying the prediction model.
In this paper, we use the SG filter [14] to clean data from
possible outliers and noise.

The SG filter is a smoothing method that uses convolu-
tion and polynomial least squares approximation to remove
noise while preserving the width and the peak of the original
signal. According to [43], this filter outperforms the average
filter and the median filter in terms of forecasting accuracy.
Equation 1 yields the polynomial approximation, with
2M + 1 input samples centered at ¢ = 0 (M is the “half
width” of the approximation interval):

pow
poly(c) =Y " aic' (1)
i=0
where pow < 2M + 1 is the power of the polynomial.

Next, Equation 2 describes the error between the estimated
and raw values and yields the polynomial solution:

M
pow = Y (poly(c) — x(c))*

c=—M
M pow ' 2

= > (ch’—x(c)) )
c=—M \i=0

Finally, the outputs are calculated as follows:
M

poly(c) = Y h()x(c — j) 3)

c=—M
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¢: MIN-MAX NORMALIZATION

After cleaning the data with an SG filter, they go through a
normalization process. We use the min-max normalization to
scale the workload time series in the same range of [0,1]. This
normalization is described by the following formula:

Xnorm = (X - Xmin)/(Xmax - min) (4)

where X and X,,,,,, are the time series before and after nor-
malization, respectively; and X, and X;;,4x are the minimum
and the maximum of the time series X, respectively.

2) CHAOTIC ANALYSIS OF CLOUD WORKLOAD TIME SERIES
The term chaos theory is somewhat confusing: many
researchers use terms such as nonlinear dynamics, self-
organizing theory, bifurcation theory, or change theory [44].
Even though chaos theory consists of elements of chance,
chaos is not random disorder. Instead, chaos is an action
between certainty and randomness, and is thus uncertain in
the long term but feasible to estimate in the short term.

To confirm the chaotic nature of cloud workload time series
and investigate its chaotic features, it is possible to perform
a chaotic time series analysis over the cloud workload time
series. The chaosity of a time series can be inspected by
its corresponding maximal Lyapunov exponent (MLE) [45].
To calculate the MLE, the time series must first be embed-
ded in a multidimensional space called phase space to form
the trajectory matrix. In such an embedding, every point in
multidimensional space is a vector whose elements are the
delayed version of the time series. A detailed description of
the methods used for the reconstruction of the phase space,
and the calculation of the MLE is described below.

a: RECONSTRUCTION OF THE PHASE SPACE
The state of a system can be described by its state variables.
The state variables at time ¢ form a vector in an m-dimensional
space, which is called phase space. The state of a system
typically changes over time, and thus, the vector in the phase
space describes a trajectory representing the time evolution
or the dynamics of the system. The observation of a real
process usually does not yield all possible state variables.
Either not all state variables are known or not all of them
can be measured. However, because the evolution of any state
variable in a system is dependent on other state variables that
interact with it, it is possible to reconstruct the phase space
using one observation state variable of the system.
According to Takens’ delay embedding theorem [46], the
time series of any variable of the system can be used to
reconstruct the phase space; the phase space reconstruc-
tion achieved by embedding a single-variable time series is
not exactly the same as the original phase space, but its
topological properties are preserved. For example, we let
{x;:1 = 1,2...,N} be a single variable time series of a
cloud workload, where N is the length of the workload time
series. From this time series, an m-dimensional phase space
can be reconstructed, and an embedded phase vector is then
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described by:
Xi = (Xi—(m—1)t> Xi—(m=2)7s - - + » Xi) )

where 7 is the time delay; m is the embedding dimension;
and X; is a phase-space vector at discrete time i, where
ie[l+@m—11,N].

To guarantee an accurate reconstruction of phase space that
can restore attractors in phase space, optimal values of time
delay T and embedding dimension m should be determined.
Studies have reported that the suitable value of t should
be sufficiently large that x; and x;;, are rather independent
but not so large that they are completely independent in a
statistical sense [47]. Similarly, if m is too large, the density
of points defining the attractor will decrease, and the level of
contamination of the data will unnecessarily increase due to
the noise in the data [48]. However, if m is too small, distant
points on the attractor will overlap, and the attractor will be
folded.

To estimate the optimal value of 7, we use the aver-
age mutual information method (AMI) [49]. The AMI
approach measures the nonlinear dependence between suc-
cessive points x; and x;;; based on Shannon’s entropy; this
is the information we already know about the value of x;, if
we know x;. The AMI function is defined as:

P(xi, Xitr)

I(t) =Y P(xi, xitc)loga( Popay) ©
where P(x;, Xj+¢) is the joint probability density in values of
x; and X;4¢; P (x;) and P (X;4.) are the individual probability
densities in values of x; and X;y., respectively. When the
time delay becomes large, the chaotic behavior of the signal
makes the measurements x; and x;, become independent in a
practical sense, and I (7) will tend to zero. According to [49],
the suitable value of the time delay corresponds to the time
delay when the AMI reaches its first minimum.

To estimate the embedding dimension m, we use the
False Nearest Neighbors (FNN) method introduced by
Kennel et al. [50]. This method searches for the nearest
neighbors of every point in a given dimension m and then
checks to see if these points are still near neighbors in one
higher dimension m + 1. If this condition is verified, then the
dimension m is the correct embedding dimension, but if it is
not verified, then the points that were considered close neigh-
bors in the dimension m are actually “false neighbors’’, and
the dimension m is not the correct embedding dimension. This
process is repeated at higher dimensions until the percentage
of FNN becomes zero or sufficiently small.

XisXitt

b: CALCULATION OF MLE
The calculation of the MLE is the next step of the chaotic
time series analysis that follows the reconstruction of the
phase space. The MLE is used to inspect the sensitive depen-
dence on the initial conditions (i.e., the presence of chaotic
attractors).

Each dynamic system is characterized by the entire
spectrum of Lyapunov exponents, Ax(k = 1,2,...,m),
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where m is the embedding dimension. Lyapunov exponents
play a fundamental role in the description of the behavior
of dynamical systems because they describe how orbits on
the attractor move apart (or together) under the evolution of
the dynamics [47]. Lyapunov exponents show the exponential
convergence or divergence of nearby points in the multidi-
mensional space, and MLE is the maximum Lyapunov expo-
nent that determines the largest convergence or divergence.
In most cases, checking the existence of chaos requires only
a calculation of the MLE of the system. A positive value of
the latter indicates chaos, while a negative value indicates no
chaos.

Various estimation methods of MLE are described in the
literature [48], [51]. In this paper, we use the algorithm pro-
posed by Rosenstein et al. [52]. The first step of this algorithm
consists of reconstructing the phase space from a single time
series using the method described in Section II1.B.2. After
reconstructing the phase space, the algorithm looks for the
nearest neighbor of each point on the trajectory. The nearest
neighbor of the reference point X; is assumed to be X;, which
satisfies the following:

di(0) = miny, | X; — X;|| (N

where d;(0) is the initial distance from X; to its nearest neigh-
bor X;. In addition to this constraint, nearest neighbors should
have a temporal separation greater than the mean period of the
time series:

|i — ?| > meanperiod ®)

This second constraint makes it possible to consider each
pair of neighbors as nearby initial conditions for different
trajectories. From the definition of Lyapunov exponents, it is
assumed that the ith pair of nearest neighbors diverges expo-
nentially in some time period At at a rate given by the MLE:

di(j) = CieM1 VA )

where d;(j) is the distance between the ith pair of near-
est neighbors after j discrete-time steps, i.e., jAt seconds;
C; is the initial separation; and A1 is the MLE. By taking the
logarithm of both sides of Equation 9, we find:

Ind;(j) ~ InC; + A, (jAL) (10)

Equation 10 corresponds to a set of approximately parallel
lines, each with a slope roughly proportional to 1. Therefore,
the MLE can be simply calculated using the least-squares fit
to the “average” line defined by:

1
Vi = E(lndi(f)) (1)

where (. ) is the value averaged for all j.

3) CANFIS MODEL BUILDING
As mentioned earlier, it is possible for a chaotic system to
be predicted in the short term. Therefore, in this section,
we present the proposed CANFIS model that we will use to
perform workload prediction.
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The ANFIS model [10] is a combination of two intelligence
systems, a neural network (NN) system and a fuzzy inference
system (FIS), in which the NN learning algorithm is used
to determine the parameters of the FIS. NNs are nonlinear
statistical data modeling tools that can capture and model
any input-output relationships (or can learn to detect com-
plex patterns in data). FIS is the process of formulating the
mapping from a given input to an output using fuzzy logic.
This mapping provides a basis from which decisions can be
made or patterns can be discerned.

The contributions of this paper regarding the ANFIS model
concern its starting point, which is the selection of the inputs.
These inputs are selected using the phase space reconstruc-
tion method of chaos theory. The proposed chaos ANFIS
model is referred to in the remainder of this paper as the
CANFIS model.

As mentioned in Section III.B.2, the embedding dimension
corresponds to the lowest dimension that can describe the
attractor’s motion. As mentioned before, the cloud workload
system condition can be recovered from one observed work-
load time series. Thus, if we select the embedding dimension
of the collected workload data (e.g., CPU usage, memory
usage, number of requests) as the dimension of the input
space of the ANFIS model, we can restore the dynamical
features of the workload system in the embedding phase
space. Therefore, the number of ANFIS input vectors will
be equal to or higher than the embedding dimension. This
methodology resolves the problems of ANFIS inputs selec-
tion and considers the nonlinear features of the cloud work-
load system. Thus, as presented in Equation 5, the input X
and the output Y of the CANFIS prediction model are:

Xi+m—1)r
X0t (m—1)c
X = .
X1 X1+t - Xl+(m—1)t
X2 X241 cee X24(m—D1 (12)
LXN—(m—1)t XN—(m—-2)t --- XN
X1+(m—1)t+1 X2+mt
X2+(m—1)T+1 X3+mt
Y =xip1 = ) = ) (13)
XN+1 XN+1

The next step in the process of CANFIS model construction
is the selection of the type and the number of membership
functions (MFs) involved in the FIS process. The selec-
tion can be performed using expert knowledge, empirically
(i.e., by examining the desired input-output data), and/or by
trial and error if no expert is available [10]. The rule base used
in this work contains if-then rules of Sugeno type described
as follows:
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FIGURE 4. CANFIS architecture.

Rule j: If Xiyou—1)c 1S and Xoigu—1)r 1s

J
1+(m—1)t

Aé+(m_1)r, ..., and Xy is A, then:

= Z]1+(m—1):X1+(mfl)r + Z]2+(m—1)rX2+(m*1)T
ot Xy (14)

where j = 1,2, ..., n, is the number of rules, {X;,i =1+
(m— 1), ..., N} is the input vector, A‘é is the linguistic lal_ael
associated with the ith input variable in the jth fuzzy rule, f7 is

the prediction result according to the jth fuzzy rule, and zﬁ and
¥ are the parameters that are determined during the training
process.

The CANFIS architecture that implements these rules is
shown in Figure 4 and consists of five layers,: the fuzzy
layer, the product layer, normalized layer, defuzzy layer
and total output layer. The node function in each layer
is presented below. Note that fixed nodes, which are rep-
resented by circles, refer to the parameter sets that are
fixed in the system, while adaptive nodes, represented by
squares, refer to the parameter sets that are adjustable in these
nodes.

Layer 1 (Fuzzy Layer): All the nodes in this layer are
adaptive nodes with node functions described as:

OV, = (X)) (15)

wherei = 14+(m—1)t,...,N,j=1,2,...,n,and Ol is the
output of layer 1 with respect to the ith input X; in the jth fuzzy
rule, and p A (X;) is the MF of A]i, which specifies the degree to

which the given X; specifies the quantifier A]l.. Any continuous
and piecewise differentiable functions, such as generalized
bell-shaped MFs, triangular-shaped MFs, or Gaussian MFs,
can be used in this layer. For example, if the Gaussian MF is
used, it is expressed as:

L )2
oy (X) = exp [—u} (16)

2
20;

wherei=1+@m—1Drt,...,N,j=1,2,...,n, and {c;, 0j}
is the parameter set. The parameters in this layer are referred
to as the premise parameters (PPs).
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TABLE 3. Two passes in the hybrid learning algorithm for CANFIS.

FP BP
PP Fixed GD
CP LSE Fixed

Signals  Node Outputs  Error Rates

Layer 2 (Product Layer): Each node in this second layer
is a fixed node, labeled [], with the node function to be
multiplied by input signals to serve as output:

N
W= ]

i=14+(m—1)t

IJ’AJ:(Xi)s ]: 1s23-'~snr (17)

where w/ is the firing strength of the jith rule.

Layer 3 (Normalized layer): Each node in this layer is
also a fixed node that is labeled N with the node function to
normalize w/, which calculates the ratio of the jzh rule’s firing
strength to the sum of all rules’ firing strengths. Each node is
defined as follows:

i=1,2,....n (18)

where wi refers to the normalized firing strength.
Layer 4 (De-Fuzzy Layer): Each node in this layer is an
adaptive node with a node function:

04 = wif!
= W@ ey Xttty + -+ Xy + 1) (19)

wherej =1,2,...,n,and { z;, W } is the parameter set related
to the first-order polynomial. Parameters in this layer are
referred to as the consequent parameters (CPs).

Layer 5 (Total Output Layer): The single node in this layer
is a fixed node labeled ¥ with a node function to compute the
overall output as the summation of all incoming signals, and
can be expressed as:

ny
05 = overalloutput =Y = Zw/fj
j=1

S wifs
= Z}lr W’

The proposed CANFIS model uses a hybrid learning
algorithm that combines least squares estimation (LSE) with
gradient descent (GD). Every epoch of this algorithm is
composed of a forward pass (FP) and a backward pass (BP).
In the FP, the PPs are fixed. The functional signals go forward
until layer 4, and the CPs are identified by the LSE. Once
the optimal CPs are calculated, the backward pass begins.
In this pass, the GD is used to adjust the PPs. The output of
the CANFIS is calculated by setting the CPs to the values
found in the FP. By comparing the estimated output with the
real output, the output error rates of the CANFIS propagate
backward from the output to the input to adjust the PPs using

(20)

VOLUME 10, 2022

the standard backpropagation algorithm. Table 3 summarizes
the activities in each pass.

The training of the CANFIS model continues until the
specified number of epochs or the specified root mean square
error (RMSE) is achieved. When training is complete, the
training error and final MFs from the training data set are
generated. Although it is feasible for CANFIS to perform
with only a training data set, it is preferable to use a checking
data set too to enhance the accuracy and avoid overfitting
the training data. If the resulting checking error does not
meet the target error, the entire process of selecting CANFIS
parameters (i.e., type of MFs, number of MFs, epochs) should
be repeated until the goal error is met. Then, the testing data
set is used to evaluate the performance of the CANFIS model.

C. TIME COMPLEXITY

This section describes the time complexity of the proposed
prediction method. The first step is data cleaning using
SG filter. For a given time series of length N, the maxi-
mum amount of time required to execute this step is O(NV).
The second step is the estimation of the time delay t using
AMI method and requires O(N log(N)). The third step is
the calculation of the embedding dimension m using the
FNN method and requires O(N?). Next, the phase space
reconstruction takes O(N). Also, the calculation of MLE
takes O(N?). The last step is the building of the CANFIS
model. Considering the MF type to be Gaussian, this step
takes O(N?). Finally, the total time complexity of the pro-
posed method is O(N log(N)) + O(N) + O(N?).

IV. PERFORMANCE EVALUATION

This section presents the workload datasets used to evalu-
ate the proposed prediction method, the data preprocessing
stages, the experimental setup, the evaluation metrics, the
baseline methods used to evaluate the performance of the
proposed model and the results of the performed experiments.

A. DATASETS

To evaluate the prediction method introduced in this paper,
we used two types of cloud workload traces from real
world applications: 1) web workload traces from Wikipedia
servers [53] and NASA servers [54]; and 2) cluster workload
traces from Google cluster servers [55]. These two types of
workloads have different features that allow us to evaluate the
proposed proposal in a more reliable, generic and realistic
way. A summary of the evaluated workload information is
given in Table 4, and detailed information on these workloads
is presented in the following paragraphs.

1) WEB WORKLOAD TRACES
The web workloads describe the behavior of web application
models on cloud computing. In this paper, we use two web
workload traces: the Wikipedia trace [53] and the NASA
trace [54].

The Wikipedia trace is used in many different studies
[16], [37] and contains the number of http requests that
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FIGURE 6. Original cluster workload traces with 5-minute time intervals.

are received for each project resource, such as static pages
and images, which were collected in 1-hour intervals. The
trace also contains the project name and the language of
each accessed resource. In this experiment, we consider
only requests to English Wikipedia resources dated from
midnight, January 01, 2015 to 23 pm, March 31, 2015
(a total of three months). The Wikipedia workload is shown
in Figure 5(a). As shown in the figure, the Wikipedia time
series exhibits strong seasonal behaviors in addition to some
trends.

The NASA trace is also used in many different stud-
ies [4], [22] and consists of two logs that contain the HTTP
requests to NASA Kennedy Space Center WWW server
in Florida. The first log was collected between 00:00:00
July 1, 1995 and 23:59:59 July 31, 1995. The second log
was collected between 00:00:00 August 1, 1995 and 23:59:59
August 31, 1995. During these two months, the server
received 3,461,612 requests with timestamps with a 1-second
resolution. We note that from 01/Aug/1995:14:52:01 until
03/Aug/1995:04:36:13, there was no access recorded because
the web server was shut down due to the Hurricane Erin [54].
This workload is shown in Figure 5(b).

The Nasa series exhibits repetition in some periods. How-
ever, compared to the Wikipedia workload, the NASA work-
load is more dynamic, which means that the requests issued
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TABLE 4. Summary of the evaluated web and cluster workloads.

Workload Trace Duration  Prediction
Interval
Wikipedia 90 days .
Web 60 min
Nasa 60 days
Google CPU 29 days .
Cluster 5 min
Google Memory 29 days

to the NASA website might increase by a larger margin and
a faster speed.

2) CLUSTER WORKLOAD TRACES

The cluster workloads describe the behavior of big data ana-
Iytic and cluster application models on clouds. Similar to
many other studies [43], [26], this paper considers two cluster
workload traces (CPU and memory usages) of the Google
cluster [55]. Google Workload is a 29-day workload trace
published by Google in 2011 that contains approximately
650000 jobs, 20 million tasks and 12500 machines. The job
includes one or more tasks, and every task may consist of
multiple processes. The information related to each job and

VOLUME 10, 2022



Z. Amekraz, M. Y. Hadi: CANFIS: Chaos Adaptive Neural Fuzzy Inference System for Workload Prediction in Cloud

IEEE Access

TABLE 5. Parameters of CANFIS model.

Web workloads Cluster workloads

Wikipedia Nasa CPU memory

Type of MFs gaussmf gaussmf gaussmf  gaussmf
Number of MFs 2 3 2 3
Epochs 10 80 10 10

task, such as the job ID, the task ID, the measurement period,
the mean CPU usage rate, the canonical memory, the mean
local disk space used and others are given in this trace.

Figures 6(a) and 6(b) show the two traces and highlight that
cluster workloads are dynamic and vary markedly compared
to web workloads, which makes it challenging to predict this
type of workload.

B. EXPERIMENTAL SETUP

In this paper, we perform experiments on a machine equipped
with an Intel® Core™ i5-6300U processor running at
2.40 GHz and 16 GB of memory. We use MATLAB R2017a
software to implement the method and to perform simula-
tions. The statistical analysis was conducted using the STAC
web platform [56]. The data traces are split into training,
checking and testing parts. The first 60% of the data are
used to train the model, the next 20% of data are used for
checking, and the remaining 20% are used to test the model.
All experiments are repeated 10 times, and the mean accuracy
is stated to mitigate randomness. Values of M and pow for the
SG filter are set equal to 6 and 3, respectively. Table 5 shows
the primary parameters used in the building of the CANFIS
model. The impact of these parameters on the prediction
results will be discussed later in this paper.

C. PERFORMANCE METRICS

The goals of the evaluation of the proposed prediction method
are twofold. First, we measure the prediction accuracy for the
evaluated workloads. Second, we measure the training time
of the proposed prediction method because prediction in a
predetermined time is essential for every workload prediction
method.

To evaluate the prediction accuracy of the proposed
method, we use the following metrics, which are widely used
in many different studies [22], [34], [43], [57]. For all metrics,
x; and X; are the real and predicted values of the workload,
respectively, and n is the forecast horizon:

« Root mean square error (RMSE): This is a quadratic
scoring rule that measures the errors’ average magni-
tude. Thus, RMSE can be described as the square root of
the average of the squared differences between real and
predicted values. The RMSE is beneficial when large
errors are specifically unwanted because it gives high
weights to large errors. A lower value of RMSE indicates
higher accuracy in the prediction method. The formula
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of the RMSE metric is given in Equation 21:

Z?:] (xi — )Afi)z

n

RMSE = 21

o Mean absolute error (MAE): The MAE is the average
of the absolute values of the differences between the
real and predicted values. Unlike RMSE, MAE assigns
equal weights to all errors because it is a linear score.
A smaller MAE value indicates a better fit of the fore-
casting model. Equation 22 presents the mathematical
formula of the MAE metric:

Z?: 1 lx; — Xl
n

« Mean absolute percentage error (MAPE): MAPE is the
average of the absolute percentage errors. This percent-
age is defined as the ratio of the difference between
predicted and real values to real values, as shown in
Equation 23. A lower value of MAPE suggests a higher
prediction accuracy of the model:

n x,-—fc,-
pIE=
n

MAE = (22)

MAPE = 100 x (23)

o R? coefficient: This coefficient measures how well the
prediction model fits the real data. Its value lies in the
range [0,1], and the closer the value is to 1, the better
the prediction model. The corresponding mathematical
formula is given in Equation 24:

S — )2

R=1-==
Z?:l(xi —X)?

(24)
where ¥ = % Yo ().

D. BASELINES

To validate the effectiveness of investigating the chaosity
of cloud workloads and selecting ANFIS inputs based on
chaos theory, we compare the proposed method with the
baseline ANFIS model (called the ANFIS model in this
paper). We also compare the CANFIS model against three
well-known baseline models: the LSTM, SVM, and ARIMA
models. The following paragraphs provide a description of
these baselines.

LSTM: The long short-term memory (LSTM) network [58]
is an advanced recurrent neural network that can memorize
data sequences from earlier stages for the aim of future use.
This process is possible due to the gates and the memory line
that are incorporated in the LSTM network.

SVM: Support vector machine (SVM) [59] is a machine
learning model that is used in both classification and regres-
sion problems. SVM operates by constructing a hyperplane
in multidimensional space to separate the data into classes.
Using an iterative method, SVM generates an optimal hyper-
plane with minimum error.

ARIMA: The autoregressive integrated moving aver-
age (ARIMA) model [16] is a statistical model that is used
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FIGURE 8. Percentage of false nearest neighbors. (a) Wikipedia workload. (b) NASA workload.

to predict time series. The model begins by transforming the
nonstationary time series data into stationary data using a
d-order difference method. Then, the autocorrelation and the
partial autocorrelation functions of the resulting time series
are plotted and analyzed to determine the suitable orders p
and q for the autoregressive model’s lags and the moving
average model’s lags, respectively. Finally, the model uses the
least-squares method to estimate parameters and then makes
predictions of the future values.

E. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the results of the different exper-
iments performed using the selected workloads to validate
the performance enhancement of the proposed method. First,
the results of the chaotic analysis of cloud workload are pre-
sented. Then, the prediction results of the proposed method
are given, and an evaluation of the prediction accuracy of the
proposed method is made by conducting a comparative study
between the proposed method and the baselines and some
other new neural network-based methods. Finally, a statis-
tical analysis is performed to confirm the efficiency of the
proposed model.

1) RESULTS OF CHAOTIC ANALYSIS OF CLOUD WORKLOAD
As mentioned in Section III.B.2, the first step in chaotic
time series analysis is the reconstruction of the phase space
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by determining the optimal values of t and m. Taking the
Wikipedia and NASA workloads as examples, the AMI and
the percentage of FNN of the time series are calculated and
displayed in Figures 7 and 8.

As shown in the results, the AMI of the Wikipedia and
NASA time series reaches its first minimum at the time delay
equal to 7 and 8, respectively. In contrast, the percentage of
FNN becomes zero when the embedding dimension is 5 for
both Wikipedia and Nasa time series. These time delay and
embedding dimension values will be used for phase space
reconstruction of the Wikipedia and NASA time series. The
phase space reconstruction parameters for Google CPU and
Google memory time series are calculated using the same
methods and are presented in Table 6.

TABLE 6. The values of 7, m and MLE for web and cluster workloads.

Workload Trace T m MLE
Wikipedia 7 5 2.25E- 05
Web
Nasa 8 5 342E-05
Google CPU 1 3 0.0017
Cluster
Google Memory 1 3 0.0019

Now, the phase space can be reconstructed, and a further
investigation of chaos characteristics in cloud workloads can
be performed. This investigation can be done by calculating
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the MLE for each time series using the method described in
Section II1.B.2. The results of the MLE for every time series
are also presented in Table 6. According to the results, the
MLEs of different workload data are all positive, demonstrat-
ing that the workload time series exhibits chaotic behavior.

2) PREDICTION ACCURACY

Figure 9 shows the results of the prediction of the
web workloads using the CANFIS model. The proposed
CANFIS model clearly captures the Wikipedia workload
and the NASA workload patterns effectively, and the fore-
casted values of the workloads using CANFIS are very near
the real values. Therefore, the CANFIS model can achieve
high prediction accuracy for both the Wikipedia and NASA
workloads.

To demonstrate the effectiveness of the CANFIS model,
a comparison with four baseline methods (i.e., ANFIS,
LSTM, SVM, ARIMA) using RMSE is shown in Figure 10.
All RMSE results are normalized to the CANFIS RMSE
results. The value 1.00 refers to the results of the proposed
CANFIS model, while higher values indicate poor perfor-
mance. The reduction in prediction error is calculated as in [4]
using the following formula:

Errotieduction = RMS%VIS??SEP * 100, (25)
where RMSEp and RMSEp are the RMSEs of the baseline
methods and the proposed method, respectively.

The RMSE metric in the latter formula can be replaced
with any other error metric. On average, in terms of RMSE,
the CANFIS model reduces the prediction error up to 77.58%,
80.35%, 79.21% and 80.54% against ANFIS, LSTM, SVM
and ARIMA, respectively, on web workloads. This result
occurs because the CANFIS model can recognize the sea-
sonality and trends within this type of workload and can
concurrently follow their changes.

Table 7 shows the MAE, MAPE and R? outputs for the two
web workloads. Similar to the RMSE results, the CANFIS
model achieves higher accuracies in terms of these metrics
compared to the baseline methods for both the Wikipedia and
NASA workloads. For example, MAE for the CANFIS model
with Wikipedia and NASA workloads are 0.0056 and 0.0055,
respectively, meaning that on average, the CANFIS model
reduces MAE up to 77.31%, 79.76%, 78.41% and 80.12%
compared to ANFIS, LSTM, SVM and ARIMA, respectively.
Similarly, on average, the CANFIS model can reduce the
error in terms of MAPE up to 80.01%, 82.41%, 81.11%
and 82.69% against ANFIS, LSTM, SVM and ARIMA,
respectively. Regarding the R? coefficient, the values of this
coefficient for the CANFIS model with Wikipedia and NASA
workloads are 0.9990 and 0.9960, respectively, which are
near 1, indicating that the proposed model has a good fit.

Figure 11 shows the cumulative distribution func-
tion (CDF) of forecasting errors in web workloads. The
x-axis denotes the absolute prediction error (i.e., |Actual; —
Prediction;|), while the y-axis represents the cumulative
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probability of the errors. The curves for the CANFIS model
are skewed to the left more than the curves for the baseline
methods, which means that the majority of the CANFIS fore-
casting errors are smaller than those of the baseline methods
for both the Wikipedia and NASA workloads. In addition, the
results from the baseline methods have longer tails, meaning
that they produce more extreme forecasting errors.

The results of the prediction of the cluster workloads using
the CANFIS model are shown in Figure 12. Again, similar
to the web workloads, the predicted values of CPU usage
and memory usage using the proposed CANFIS model are
near the real values, indicating that the CANFIS model can
achieve good prediction accuracy for cluster workloads. This
result can be confirmed by looking at the RMSE results
shown in Figure 13. On average, the CANFIS model can
reduce the RMSE error up to 65.35%, 67.26%, 65.47% and
66.95% against ANFIS, LSTM, SVM and ARIMA, respec-
tively, on cluster workloads.

By considering the other prediction errors shown in
Table 8, the CANFIS model has the lowest errors for the two
cluster traces. For example, on average, the CANFIS model
shows a reduction of MAE error up to 62.74%, 65%, 63.08%
and 63.92% against ANFIS, LSTM, SVM and ARIMA mod-
els, respectively. The CANFIS model shows MAPE results of
2.2888% and 1.5273% with CPU usage and memory usage,
respectively. These results imply, on average, a 56.69%,
59.96%, 56.95% and 58.86% reduction in the MAPE error
compared to ANFIS, LSTM, SVM and ARIMA, respectively.
The values of the R? coefficient for the CANFIS model with
CPU usage trace and memory usage trace are 0.9973 and
0.9938, respectively. Because these values are near 1, we con-
clude that although cluster workloads do not contain a stable
seasonality and trend, the CANFIS model can still produce
predictions with higher accuracy.

The CDF of forecasting errors in cluster workloads is
shown in Figure 14. Both the CPU usage and memory usage
CDF curves for the CANFIS model are skewed to the left
more than the curves for the baseline methods. Again, this
result indicates that most prediction errors for both CPU
usage and memory usage are small compared to those of the
baseline methods.

In addition to the baseline methods, the proposed approach
is also compared with some new neural network-based meth-
ods, EQNN [28] and SDWF [26]. Table 9 shows the error
reduction percentage ETroryeqycrion Of the proposed model
against the ARIMA model and the Erroreguciion Of the
EQNN[28] and SDWF [26] models against the ARIMA
model. This percentage is calculated using Equation 25 pre-
sented earlier in this section. In this study, the RMSEp corre-
sponds to the RMSE of the ARIMA model, while the RMSEp
corresponds to the RMSE of the proposed CANFIS model,
EQNN model [28], or the SDWF model [26]. The error
reduction percentage of the proposed CANFIS model against
the ARIMA model is much higher than the error reduction
percentage of EQNN [28] and SDWF [26] models against
the ARIMA model with both the NASA and Google CPU
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FIGURE 9. Actual vs predicted web workloads using the proposed method. (a) Wikipedia workload prediction results. (b) Enlarged part. (c) NASA

workload prediction results. (d) Enlarged part.
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FIGURE 10. Normalized RMSE results in web workloads.
TABLE 7. Performance comparison of the proposed and the baseline methods with web workloads.
Wikipedia Nasa
MAE MAPE R? MAE MAPE R?
ARIMA 0.0331 9.4340 0.9612 0.0241 16.6462 0.8636
SVM 0.0291 8.3371 0.9683 0.0230 15.9059 0.8710
LSTM 0.0336 9.1933 0.9605 0.0231 16.5657 0.8735
ANFIS 0.0261 7.4001 0.9751 0.0230 16.2764 0.8769
CANFIS 0.0056 1.7071 0.9990 0.0055 2.7497 0.9960

49822

VOLUME 10, 2022



Z. Amekraz, M. Y. Hadi: CANFIS: Chaos Adaptive Neural Fuzzy Inference System for Workload Prediction in Cloud IEEEACC@SS

rpesessasass '
——— CANFIS
—— ANFIS
------- LSTM 1 1
----- SVM | 1
““““““ ARIMA 1 1
\ \ \ ‘ ‘ ‘

| | | | L L | | |
0 002 004 006 008 01 012 014 016 018 02 0 0.02 0.04 0.06 0.08 0.1 012 0.14
Absolute error Absolute error

(a) (b)
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FIGURE 12. Actual vs predicted cluster workloads using the proposed method. (a) Google CPU prediction results. (b) Enlarged part. (c) Google memory
prediction results. (d) Enlarged part.

TABLE 8. Performance comparison of the proposed and the baseline methods with cluster workloads.

CPU Memory
MAE MAPE R? MAE MAPE R?
ARIMA 0.0285 8.6335 0.9200 0.0177 2.7399 0.8313
SVM 0.0295 8.6985 0.9130 0.0167 2.5556 0.8603
LSTM 0.0290 8.7924 0.9186 0.0184 2.8271 0.8284
ANFIS 0.0285 8.4700 0.9171 0.0168 2.5631 0.8579
CANFIS 0.0080 2.2888 0.9973 0.0078 1.5273 0.9938
datasets. For the Google memory dataset, the performance being the model with the lowest error reduction percentage

of the three evaluated models is similar with SDWF [26] (i.e., 53.13%), followed by the proposed (i.e., 59.18%) and
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TABLE 9. Performance comparison using error reduction percentage
Erroryeduyction-

Nasa Google CPU  Google Memory
EQNN [28]  54.30% 19.82% 64.84%
SDWF [26] -56.67% -7.21% 53.13%
CANFIS 77.72% 74.68% 59.18%

the EQNN [28] model (i.e., 64.84%). Therefore, the proposed
CANFIS model outperforms the existing forecasting models
and can thus improve workload prediction accuracy.

3) IMPACT OF MODEL PARAMETERS ON PREDICTION
RESULTS

The performance of the CANFIS model depends on the
values of its initial parameters. Therefore, in this section,
we evaluate the impact of some of these parameters, such
as the type of MFs, the number of MFs, and the number of
epochs, on the accuracy of the prediction results in terms of
RMSE for every dataset used.

a: IMPACT OF THE TYPE AND THE NUMBER OF MFs
To build the CANFIS model, various types of MFs
(i.e., Gaussian, Generalized Bell, triangular, etc.) are used,
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and the number of MFs is varied from 1 to 3 for each input
data. Tables 10-13 show the impact of the number and the
type of MFs on the prediction accuracy for every workload
dataset in terms of RMSE with epoch = 10. The best CANFIS
model that produces the smallest RMSE error is the model
with 2 Gaussian MFs for the Wikipedia workload and 3 Gaus-
sian MFs for the NASA workload. For the Google CPU
workload, the CANFIS model with 2 MFs of three different
types: Gaussian, Generalized Bell, and triangular, yields the
same smallest value of RMSE (i.e., 0.0115). For the Google
memory workload, the most suitable CANFIS model is the
one with 3 Gaussian MFs.

b: IMPACT OF THE NUMBER OF TRAINING EPOCHS

To evaluate the impact of the number of training epochs on
the prediction results, we use different numbers of training
epochs (i.e., 10, 50, 80, 120) to train the CANFIS model for
every dataset. The results are shown in Table 14. We set the
type and the number of MFs for every dataset based on the
results of Tables 10-13. Increasing the number of epochs does
not yield a marked improvement in the prediction accuracy.
For the Wikipedia, Google CPU and memory workloads,
using 10 epochs to train the CANFIS model is sufficient to
give the smallest RMSE error. For the NASA workload, the
smallest RMSE error is obtained for 80 epochs.
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TABLE 10. Impact of the type and the number of MFs on prediction accuracy for Wikipedia workload (Epoch = 10).

Type of MFs gaussmf gauss2mf gbellmf trimf trapmf pimf
Number of MFs 2 3 2 3 2 3 2 3 2 3 2 3
RMSE 0.0073  0.0074 0.0074 0.0077  0.0074 0.0075 0.0076  0.0076  0.0075 0.0087  0.0077  0.0081

TABLE 11. Impact of the type and the number of MFs on prediction accuracy for Nasa workload (Epoch = 10).

Type of MFs gaussmf gauss2mf gbellmf trimf trapmf pimf
Number of MFs 2 3 2 3 2 3 2 3 2 3 2 3
RMSE 0.0076 ~ 0.0073  0.0075 0.0077  0.0076  0.0074  0.0076 ~ 0.0075 0.0077 0.0076  0.0077  0.0075

TABLE 12. Impact of the type and the number of MFs on prediction accuracy for google CPU workload (Epoch = 10).

Type of MFs gaussmf gauss2mf gbellmf trimf trapmf pimf
Number of MFs 2 3 2 3 2 3 2 3 2 3 2 3
RMSE 0.0115 0.0117 0.0116 0.0117 0.0115 0.0118 0.0115 0.0117 0.0118 0.0118 0.0118 0.0119

TABLE 13. Impact of the type and the number of MFs on prediction accuracy for google memory workload (Epoch = 10).

Type of MFs gaussmf gauss2mf gbellmf trimf trapmf pimf
Number of MFs 2 3 2 3 2 3 2 3 2 3 2 3
RMSE 0.0120 0.0119 0.0121 0.0120 0.0121 0.0123 0.0122 0.0125 0.0125 0.0122 0.0125 0.0121
TABLE 14. Impact of the number of epochs on prediction performance in TABLE 16. Friedman test (significance level « = 0.05).
terms of RMSE.

Accuracy metric  Statistic  p-value
Epochs  Wikipedia Nasa Google CPU  Google memory

Result

RMSE 427273 0.02229  Ho,,. is rejected
10 0.0073 0.0073 0.0115 0.0119 :

MAE 8.03448  0.00217  Ho,, is rejected
50 0.0074 0.0073 0.0115 0.0126

MAPE 13.00000  0.00026 ~ Hg,, is rejected
80 0.0074 0.0072 0.0115 0.0126
120 0.0075 0.0072 0.0115 0.0125

TABLE 17. Rankings of friedman test.

TABLE 15. Training time of the proposed and some baseline methods

with web and cluster workloads. Method Rank

RMSE MAE MAPE

Training time (s) CANFIS 1.00000 1.00000 1.00000

Web workloads Cluster workloads Average ANFIS 275000 2.50000 2.50000

Y

Wikipedia  Nasa CPU  Memory SVM 3.50000 3.12500 2.75000

ARIMA 3.07 2.09 247 3.10 2.68 ARIMA 3.75000 3.87500 4.25000

SYM 044 0.38 1.43 1.29 0.88 LSTM 4.00000 4.50000 4.50000

LSTM 11460  76.59 630.13 61684  359.54

ANFIS 0.80 1.26 0.37 4.26 1.67
CANFIS 0.76 2.92 0.53 1.68 1.47

For the Wikipedia workload, SVM has the lowest training

time (0.44 s), followed by the proposed model (0.76 s), the

ANFIS model (0.80 s) and the ARIMA model (3.07 s). For the
4) TRAINING TIME NASA workload, the SVM again has the lowest training time
A comparison of the training time of the proposed method and (0.38 s), followed by the ANFIS model (1.26 s), the ARIMA
some baseline methods with both web and cluster workloads model (2.09 s) and the proposed method (2.92 s). Regarding
is shown in Table 15. The LSTM model has the highest Google CPU usage, the ANFIS model has the lowest training
training time with all workloads. The results for the proposed time (0.37 s), followed by the proposed method (0.53 s),
and the other baselines vary depending on the workloads. the SVM model (1.43s)and the ARIMA model (2.47 s).
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TABLE 18. Post-hoc analysis using finner test.

. RMSE MAE MAPE
Comparison
Statistic = p-value Result Statistic  p-value Result Statistic  p-value Result
CANFIS vs LSTM 268328  0.02884  Ho,, rejected  3.13050  0.00696  Ho,, rejected ~ 3.13050  0.00696  Ho,, rejected
CANFIS vs ARIMA 245967  0.02884 Hofi rejected 2.57148  0.02015 Hofi rejected 2.90689 0.00729 Hoﬁ rejected
CANFIS vs SVM 2.23607  0.03365 Hofq, rejected 1.90066  0.07572 Hof,i accepted  1.56525  0.15355 Hofi accepted
CANFIS vs ANFIS 1.56525  0.11752 HOfi accepted 1.34164  0.17971 Hof,i accepted 1.34164  0.17971 Hofi accepted

For Google memory usage, SVM has the lowest training
time (1.29 s), followed by the proposed method (1.68 s),
the ARIMA model (3.10 s) and the ANFIS model (4.26 s).
On average, the SVM model has the lowest training time
among all the methods, followed by the proposed method,
the ANFIS model, the ARIMA model and the LSTM model.
Although the SVM model has less training time on aver-
age than the proposed model, it has less accuracy than the
proposed CANFIS model for all workloads and less accu-
racy than the ANFIS model for the majority of the work-
loads. In addition, the average training time (1.47 s) of the
proposed CANFIS model is still not important compared
to the prediction interval and VM reconfiguration interval
(e.g., VM stratup time is more than 30 s), meaning that it
will not have an impact on the resource provisioning process.
Finally, there is always a possibility to reduce the training
time of the proposed method by implementing it in parallel
on high computing infrastructure.

F. STATISTICAL ANALYSIS

In this section, we validate the prediction accuracy of the pro-
posed prediction model and some baselines using statistical
analysis. The statistical analysis can determine whether the
observed differences in experimental results are significant or
simply occur due to random chance. In this context, we use
the Friedman test along with Finner post hoc analysis [60],
[61]. This test is widely used in many studies [28], [62]
and is considered powerful when the performance of five or
more models is compared [63]. The Friedman test assumes
a null hypothesis (Ho, ) that states that the primary results of
the different algorithms are equal. The alternative hypothesis
(Hlﬂ) advocates that the mean of at least one algorithm’s
results is different from others. The Friedman test also ranks
the algorithms according to their performance.

The statistics of the Friedman test (statistics and p-values)
for RMSE-, MAE-, and MAPE-based prediction accuracy
evaluation are shown in Table 16. All p-values indicate a
rejection of Ho,, with a significance level of 0.05.

The Friedman ranks of the algorithms are shown in
Table 17. The proposed method has the best rank among all
five algorithms, meaning that the proposed method’s behav-
ior has a significant difference.

Finner post hoc analysis is used to compare the five algo-
rithms in pairs, considers the proposed method as a con-
trol method, and works around a null hypothesis (Ho;) that
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assumes that the mean of the proposed method is equal to
each other member of the group under test. Table 18 shows
the results of the pairwise comparison obtained using the
Finner post hoc analysis. The Ho, is rejected for the pro-
posed method against the SVM, LSTM, and ARIMA mod-
els for RMSE-based prediction accuracy evaluation and
against LSTM and ARIMA for MAE- and MAPE-based
prediction accuracy evaluation. Conversely, Ho, is accepted
for the proposal against ANFIS for RMSE-based accuracy
evaluation and against ANFIS and SVM for MAE- and
MAPE-based accuracy evaluation. However, this hypothesis
will be rejected against these methods at a significance level
of 0.2 or even 0.1 against SVM for MAE-based accuracy
evaluation. Based on the encouraging results of the proposed
model and their statistical analysis, the superior performance
of the proposed model can be confirmed.

V. CONCLUSION

In this study, we investigated the presence of chaos in cloud
workloads. We used chaotic time series analysis to iden-
tify the chaotic behavior of the workloads and proposed an
improved ANFIS model called the CANFIS model to pre-
dict future workloads. The inputs of the proposed model are
selected using the phase space reconstruction method and
embedding theory.

Using real-world web and cluster workloads, we per-
formed experiments to evaluate the performance of the pro-
posed model. Every workload used in these experiments went
through several preprocessing operations before being fed
to the proposed model. These operations include extraction,
aggregation, cleaning, and normalization. Cleaning was per-
formed using the SG filter, which can effectively eliminate
noise and outliers without changing the width and the peak
of the original signal.

The results of the experiments showed that the proposed
CANFIS model achieved higher prediction accuracy than the
ANFIS, LSTM, SVM and ARIMA models and some other
new neural network-based methods. In addition, the proposed
model has a low training time, meaning that it will not have
any effect on the provisioning process.
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