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ABSTRACT Smart mobile devices are being widely used to identify and track human behaviors in simple
and complex daily activities. The evolution of wearable sensing technologies pertaining to wellness, living
surveillance, and fitness tracking is based on the accurate analysis of people’s behavior from the data acquired
through different sensors embedded in smart devices, especially wrist-worn wearable technologies such as
smartwatches. Many deep learning techniques have been developed to realize human activity recognition
(HAR), with simple daily activities being focused on. However, several challenges remain to be addressed
in complex HAR research involving specific human behaviors in different contexts. To address the problems
pertaining to complex HAR, a deep neural network composed of convolutional layers and residual networks
was developed in this work. Additional attention was incorporated in the system by using a squeeze-and-
excite mechanism. The model effectiveness was investigated considering three publicly available datasets,
(WISDM-HARB, UT-Smoke, and UT-Complex). The proposed network achieved overall accuracies of
94.91%, 98.75%, and 97.73% over WISDM-HARB, UT-Smoke, and UT-Complex, respectively. The results
showed that deep residual networks are more durable and superior at activity recognition than the existing
models.

INDEX TERMS Wrist-worn wearable sensor, deep learning, deep residual network, attention mechanism,
complex activity recognition.

I. INTRODUCTION
Wearable technologies refer to a general-purpose computing
frameworks with multiple sensors that enable real-timemoni-
toring of human activities in various domains, such as health-
care, sport and exercise monitoring, and inappropriate behav-
ior prevention [1], [2]. For instance, in healthcare systems,
identification of physical activity based on wrist-worn wear-
able sensor information can help avoid adverse consequences
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associated with poor lifestyle choices. For example, moni-
toring the amount of time a person spends in eating-related
behaviors can facilitate the treatment of conditions such as
obesity, diabetes, cancer, and cardiovascular diseases [3].
Another example is smoking detection, through which an
individual or a healthcare professional can help people limit
their smoking by gaining a better understanding of their
everyday smoking habits [4].

Smartwatches, which are widely available and affordable
in the present markets, and being increasingly used by peo-
ple in their everyday lives. Most smartwatches have inertial
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measurement unit (IMU) sensors, such as accelerometers,
gyroscopes, and magnetometers [5]. Consequently, smart-
watches are highly personalized because they can be worn
or carried at all times and used for various reasons, such as
for tracking eating or typing habits [6]. The computational
capacity and versatility of these devices is increasing, and the
cost, scale, and energy consumption is decreasing. Wearing
a smartwatch is a safe approach for movement detection
since it eliminates the need to wear several sensors in various
locations, which may be inconvenient for the elderly and
patients [7], [8]. Additionally, a smartwatch is a superior alter-
native than a smartphone because people wear smartwatches
in the daytime and smartphones are often not as easy to reach
as smartwatches, particularly when sleeping or in the event of
a fall. Notably, wristbands and other components have lower
energy capacities than smartwatches. Therefore, we used a
smartwatch instead of other wearables as the primary solution
for activity recognition in this study.

Human activity recognition (HAR) is a challenging
research field focused on identifying the activity that
an individual is engaging in, based on relevant activity
data [9], [10]. Sensor-based HAR involves using data from
a wearable sensor mounted on various locations of the body
or placed in an individual’s pocket. Such sensors may be
embedded in smartphones, smart bands, and other wrist-worn
devices such as smartwatches. Papers published in the last
five years reflect the growing interest in HAR [11]–[14].
In the recent decade, most studies pertaining to HAR used
traditional machine learning (ML) methods, including sup-
port vector machines, naïve Bayes, decision trees, k-nearest
neighbor, and hidden Markov models, with ML algorithms.
However, such machine learning techniques depend signif-
icantly on handcrafted shallow feature extraction, restricted
by individual domain expertise [15]. Furthermore, traditional
ML approaches segment and phase time-series data using
different statistical formulas. Consequently, the temporal and
spatial relationships are ignored during model training. Many
recently published HAR techniques involved deep learn-
ing (DL) methods to address more complex HAR tasks.
In addition, the availability of high-end graphics processing
units (GPUs) enables the formulation of DLmethods that can
extract a larger number of upper-level characteristics from
raw sensor data. Deep learning models have been used to
realize automated feature extraction without using feature
handcrafting to address the limitations of handcrafted feature
extraction.

With their increasing use in recent years, deep learning
techniques have been applied for HAR. In particular, convo-
lutional neural networks (CNNs) and long short-term mem-
ory networks (LSTMs) have demonstrated impressive data
capture and fitting abilities in a variety of applications [16].
Convolutional operations allow CNNs to distinguish spatial
features. Furthermore, CNNs are domain-independent and
capable of generalization [17]. However, CNNs are com-
putationally complex and require many training examples.
Although CNNs collect the spatial characteristics of sensor

data and provide the appropriate output for everyday human
activities such aswalking, jogging, seating, and standing [18],
wearable sensor data must be considered to properly record
actions that are too complicated to be captured by these
devices. Temporal features are characteristics that are related
to or vary with time. To recognize behavior from wear-
able sensors, time-series data are fed into recurrent neural
networks (RNNs), which can detect temporal features [19].
LSTMs canmine long time-series dependencies, while CNNs
excel at extracting local features [20]. Researchers have
attempted to use LSTMs or CNNs to describe various forms
of human behavior and achieved satisfactory results [21].
Although CNN and LSTM networks efficiently manage spa-
tial and temporal information, their comprehension efficiency
is restricted because their embeddings focus on specific data.
CNNs with and without LSTMs yield comparable results,
demonstrating that LSTMs do not effectively record temporal
characteristics for HAR, owing to the lack of convolutional
procedures [22].

In this work, ResNets [28] were used to facilitate learning
processes in smartwatch-based HAR. In ResNets, a shortcut
connection was introduced to effectively address the degra-
dation problem of deep neural networks [29]. Specifically,
a ResNet-based architecture for complexHARwas developed
to classify complex physical activities such as eating, drink-
ing, or smoking, based on a smartwatch sensor. Moreover,
the squeeze-and-excitation mechanism [30] was incorporated
in the proposed architecture to enhance the obtained infor-
mation by feature recalibration. The proposed architecture
represents the first ResNet-based framework for smartwatch-
based activity identification.

WISDM-HARB, UT-Complex, and UT-Smoke datasets
were used as benchmark datasets to validate themodel perfor-
mance. The proposed scheme achieved a high accuracy with
increased durability under all datasets and experimentation
settings. The key contributions of this study can be summa-
rized as follows:
• Enhancement of a smartwatch HAR framework by using
ResNets. This study represents the first attempt at estab-
lishing a ResNet-based structure as a generic framework
for complex action recognition.

• A deep residual network, known as ResNet-SE,
is designed for managing smartwatch sensor data and
classifying complex human activities and tested on three
publicly available datasets.

• Experiments are conducted to examine the influence of
the window size on the model effectiveness in simple
and complex tasks.

The remaining paper is organized as follows. The context
theory for sensor-based HAR and DLmethods is described in
Section II. Section III describes the proposed methodology
for complex HAR and deep learning method with an atten-
tion function. Section IV describes the experimental setup
and presents the findings in terms of measurement metrics,
which demonstrate the superior performance of the proposed
approach due to the attention process. Section V discusses the
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TABLE 1. Summary of HAR research related to SHAs and CHAs issues.

implications of the proposed system. Section VI presents the
concluding remarks and highlights directions for future work.

II. THEORY BACKGROUND AND RELATED WORK
To perform classification and human action recogni-
tion, researchers have developed several learning-based
approaches and conducted extensive HAR research [31].
Sensor-based activity recognition has been realized using
deep learning to overcome the limitations of conventional
machine learning methods in such applications [32]. Accord-
ing to existing studies [23]–[27], [33], human activities
can be classified into two categories: simple human activi-
ties (SHAs) and complex human activities (CHAs).

Basic human activities, such as running, standing, or sit-
ting, can be tracked using an accelerometer and identi-
fied [23]. Smoking, eating, and drinking are examples of
complex human tasks that involve the use of the hands.
Gyroscopes can distinguish between CHAs. This study labels
stair climbing as a CHA [33] since it is impossible to distin-
guish the two actions with a single accelerometer. Strolling,
running, sitting and standing are common human activi-
ties, as indicated by Alo et al. [24]. In contrast, shorter-
duration actions such as smoking, chewing, taking ingesting
medicine, dining, and writing correspond to complex behav-
ioral patterns. Although this categorization does not fully
represent the tasks performed in actual life, Peng et al. [25]
adopted this scheme to categorize human interactions as
simple or complex depending on whether they included
repeated motions or single body postures. Tasks that need
both simple and complex movements are more difficult to
accomplish. Commonly, complex behaviors such as eating,
working or shopping occur over a long period and include
higher-level meanings. Consequently, these behaviors can
provide a realistic depiction of a person’s day-to-day activi-
ties. Liu et al. [26] found it challenging to simplify individual
interactions. Two kinds of activities exist: activities that are
temporally and theoretically connected, and activities that
cannot be differentiated under software semantics. Moreover,
a person can perform many tasks simultaneously instead of
performing a single task at a time. Chen et al. [27] classi-
fied human endeavors as simple or complex. The accuracy
of a single accelerometer is adequate to define the most
basic human motions. Complex human actions are seldom as
repeatable as simple activities, and they often involve many
contemporaneous or overlapping motions that can only be
detected by multimodal sensor data.

In this paper, we redefined these notions and established
that simple human activities consist of repetitive motions
devoid of hand gestures, whereas complex human activi-
ties consist of repetitive or nonrepetitive movements accom-
panied by hand gestures. SHA activities include walking,
running, stair climbing, sitting, standing, and eating-related
activities, whereas CHA activities include typing, clapping,
and drinking. Table 1 summarizes the existing HAR research
on SHAs and CHAs.

A. COMBINATION MODELS
According to recent experimental investigations, several
deep learning architectures can be combined into a single
model to achieve excellent HAR effectiveness. Xu et al.
recommended the use of CNNs and gated recurrent units
(GRUs) [34] to extract sequential temporal dependencies in
complex action recognition [35]. Chen et al. [36] employed a
1D-CNN-LSTM network to extract deep features from
lengthy acceleration sequences and an attention mechanism
to integrate the handcrafted characteristics of heart rate vari-
ability data in a sleep-wake edge detector. Due to the unbal-
anced nature of the labeled data, an attention structure known
as recurrent convolutional was presented as a semisupervised
architecture by Chen et al. [37]. For action recognition, [38]
applied a CNN over a small segment of window data and fed
the retrieved features into an LSTM layer. In contrast to other
models that apply the two-layer LSTM to the raw sensor data
before introducing the 2D convolutional layer, the proposed
framework did not utilize the features retrieved from CNN
and instead used the feature representations from the LSTM
over the HAR model [39].

In the recent year, a number of hybrid architectures,
including InceptionTime [40], temporal transformer sys-
tems [41], and LSTM-FCNs [42], were developed to address
specific time-series classification challenges. Actual data
were used to categorize transportation-related activities using
InceptionTime, which outperformed ResNet and CNNs in
HAR research [41]. To address the HAR challenging task,
Ronald et al. [43] used an Inception-ResNet model, which is
an enhanced variant of the original framework.

III. PROPOSED METHODOLOGY
This part describes the procedure adopted to train a DL
model and identify complex human activities through smart-
watch built-in and wearable sensors based on the physical

51144 VOLUME 10, 2022



S. Mekruksavanich et al.: ResNet-SE: Channel Attention-Based Deep Residual Network

movement patterns. The proposed methodology for the Com-
plexHAR framework is shown in Figure 1. The model
involves four phases: data acquisition, data preprocessing,
training model, and model evaluation.

A. OVERVIEW OF THE FRAMEWORK
The proposed complex HAR framework employs sensor
data from a wrist-worn wearable sensor to characterize the
complex human behavior exhibited by smartwatch users.
Figure 1 depicts the study design adopted to attain the study
objectives. The framework operates through data acquisition,
data preprocessing, feature representation, and model train-
ing/testing. Smartwatch sensor data from theWISDM-HARB
dataset are collected, including SHAs and CHAs, for data
acquisition. Sensor data are segregated with five sliding win-
dows in the preprocessing data stage to produce data samples
for the following step. A high-dimensional integrating space
is used to generate feature representations for CNN/LSTM.
Finally, attention-based HAR is used to enhance the recog-
nition performance. The system is described in the following
subsections.

B. DATASETS
The information of the three benchmark datasets is sum-
marized in Table 2. Certain variations can be detected in
the datasets in terms of complex human activities. In the
case of the WISDM-HARB dataset, 51 people who wear
smartwatches and engage in 18 activities provide the most
accurate data. The UT-Smoke dataset consists of smartwatch
sensor data recorded from 11 participants performing six
activities. The UT-Complex consists of 13 activity sensor
data of 10 subjects. In the UT-Complex dataset, wrist-worn
sensor data are emulated using smartphone sensors at the
wrist position of participants.

The WISDM-HARB dataset [44] contains smartphone
sensing data collected from 51 subjects who were asked to
perform 18 daily activities, including 5 simple activities and
13 complex activities. The sensor data were captured using
a triaxial accelerometer and gyroscope sensors at a constant
rate of 20 Hz while each subject performed the activities
for 3 min.

The UT-Smoke was previously reported [45]. A smart-
watch application was used to gather data from 11 individuals
(two female and nine male participants with ages ranging
from 20 to 45 y). In general, a wristwatch and a smartphone
can be used to record the timestamp and triaxial accelerome-
ter/gyroscope data. The sampling rate for all data was 50 Hz.
Smoking while standing (SmokeSD), smoking while sitting
(SmokeST), smokingwhile walking (SmokeW), smoking in a
group (SmokeG), drinking while standing (DrinkSD), drink-
ing while sitting (DrinkST), eating, standing, sitting, and
walking (Walk). This dataset focuses on smoking in various
forms and other actions that may be mistaken for smoking.
Except for SmokeG and SmokeW, which were performed by
8 and 3 individuals, respectively, all activities were completed
by all individuals.

The ‘‘Complex Human Activities using Smartphone and
Smartwatch Sensors’’ accessible benchmark dataset is the
third sensor dataset (UT-Complex dataset) [23]. Twente Uni-
versity, a pervasive system research center, made this data
collection available to the public at the end of 2016. Accord-
ing to Table 2, the researchers collected data from 10 healthy
volunteers who exhibited 13 human behaviors. To simulate
a smartwatch, all ten volunteers were instructed to place two
Samsung Galaxy S2 smartphones on their bodies, one phone
in the right pocket of the trousers, and the other phone on the
right wrist. To directly acquire sensor-based information, the
participants were instructed to perform seven everyday tasks
for three minutes. Seven of the ten individuals performed
alternative difficult tasks, such as dining, typing, drawing,
drinking, and conversing for 56 min. To examine the ability
detect cigarette smoking, six volunteers were instructed to
light up a cigarette. The researchers presented 30 min of
data from each subject for each action to ensure an even
distribution. Data from the accelerometer, gyroscope, and
linear acceleration sensor were acquired at a sampling rate
of 50 Hz.

C. DATA PREPROCESSING
Sensor-based HAR is initiated with the generation of data
samples from raw sensor data. The brief periods are known
as temporal windows, created by dividing the raw data into
equisized blocks. The raw time series data acquired from
wearable sensors are separated into temporal fragments prior
to training a deep learning technique. The sliding technique
is widely used and has been demonstrated to be effective with
streaming data [46]. X, Y, and Z denote the three segments of
a triaxial IMU sensor. The period is equal to the window size
specified by1t .Dt denotes the X, Y, and Z readings through-
out the time interval [t,1t]. The first sampling approach is
referred to as a nonoverlapping temporal window (NOW),
in which Dt and Dt+1 are composed of many periods.
Because the temporal frames no longer overlap, the NOW

approach allows only a small number of samples, i.e.,
Dt ∩ Dt+1 = ∅. The overlapping temporal window (OW)
approach uses a fixed-size window to generate detailed sam-
ples from the sensor data series. The OW scheme, which has
a 50% overlap proportion, is frequently used in sensor-based
HAR research. Nevertheless, because Dt and Dt+1 sections
of the sensor readings are involved with an overlap fraction,
this sampling is biased.

D. ResNet-SE NETWORK
The proposed ResNet-SE architecture is depicted in Figure 2.
The fundamental architecture of the proposed deep learning
model, aimed at to addressing the complex HAR problem,
is composed of a convolutional block and five residual-SE
blocks. One layer applies convolution to the sensor data,
which are passed to another layer for batch normalization,
a layer involving rectified linear units (ReLUs), and a layer
for max-pooling in the convolutional component. The con-
volutional layer uses a variety of kernels, each of which
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FIGURE 1. Proposed ComplexHAR framework.

TABLE 2. Characteristics of the selected HAR datasets.

produces a feature map to collect a variety of distinct char-
acteristics. The kernels, such as the input spectrum, are one
dimensional. The primary goals of implementing the batch
normalization layer are to stabilize and accelerate the training
process. To enhance the model expressiveness, the ReLU
layer is employed. To minimize the size of the feature map,
a max-pooling layer is used to retain the most important
features.

The result of the convolutional block is sent to the residual-
SE block. By introducing a bypass connection within the
residual-SE block, the deterioration issue can be efficiently
addressed [47]. Layers of convolution, batch normalization,

ReLU, and squeeze-and-excitation and a bypass connection
are included in the residual-SE. The function of each com-
ponent in the residual block is identical to that of the con-
volutional block, except for the bypass connectivity. The
GAP is used to average each feature map, and the averaged
entities are converted to a one-dimensional vector through a
flattened layer in the proposed design. The outcome of the
fully connected layer is processed using a softmax algorithm
to assign a conditional probability to each group.

Figure 3 depicts the SE block, which is composed of
two operations: a squeeze function, which aggregates the
summarized information regarding each feature map, and an
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FIGURE 2. Proposed ResNet-SE architecture.

FIGURE 3. Residual-SE block.

excitation function, which modulates the relevance of each
feature map according to its size. Utilizing global average
pooling, the squeeze operation extracts only the most vital
information from each channel, and the excitation operation
calculates the interchannel dependencies by employing two
fully connected layers and two nonlinear functions, namely,
the ReLU and sigmoid functions, in a manner similar to the
previous operation.

The values of hyperparameters in deep learning are
employed to regulate the learning experience during model
training. The proposed model made use of the following
hyperparameters: (i) epochs; (ii) batch size; (iii) learning
rate; (iv) optimization, and (v) loss function. To establish
these hyperparameters, we specified the number of epochs
to 200 and the batch size to 128. After 30 epochs, if no
progress in the validation loss was seen, we implemented a
call back of early stopping to bring the training process to an
end. We began by setting the learning rate α = 0.001. After
six subsequent epochs, we adjusted this to 75% of its orig-
inal value if the validation accuracy of the proposed model
did not increase. To reduce error, the Adam optimizer [48]
was employed with β1 = 0.9, β2 = 0.999, and ε = 10.
The optimizer utilized the categorical cross-entropy function
to determine the error. The hyperparameter settings for the
proposed ResNet-SE model are listed in Table 3.

IV. EXPERIMENTAL RESULTS
This section explains the implementation of deep learning
models such as CNN, LSTM, and CNN-LSTM and proposed
ResNet-SE models for complex HAR. To evaluate the gener-
alizability and effectiveness of the DL models, three publicly

TABLE 3. The summary of hyperparameters for the ResNet-SE network
used in this work.

available datasets are employed. The sensor data for all the
datasets are segmented using a fixed-length sliding window,
which is a typical technique. The lengths of the sliding win-
dow are 5, 10, 20, 30, and 40 s, with an overlap proportion
of 50%. Human activities pertaining to each dataset are clas-
sified into three categories: simple human activities (SHAs),
complex human activities (CHAs), and all human activities
(ALL), as shown in Table 2.

A. MODEL IMPLEMENTATION
We use the Google Colab Pro+ platform. The Tesla V100-
SXM2-16GB graphics processor module is used to accel-
erate the training of the deep learning models. TensorFlow
and CUDA are used to create the 1D-ResNet-SE and other
fundamental deep learning techniques in the Python library.
The following Python libraries are adopted:
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TABLE 4. Performance of different DL models on UT-Smoke.

FIGURE 4. CNN architecture.

FIGURE 5. LSTM architecture.

• In analyzing the sensor data, Numpy and Pandas are
used as data manipulation tools to retrieve, modify, and
analyze the data.

• Matplotlib and Seaborn are used to plot and present the
results of knowledge discovery and model evaluation.

• Scikit-learn (Sklearn) is used for sampling and data
generation.

• To build and train deep neural networks, we use Keras,
TensorFlow, and TensorBoard.

B. BASELINE DEEP LEARNING MODELS
This research evaluated our proposed ResNet-SE model
against three benchmark deep learning models based on
the CNN and LSTM architectures. The CNN model used
in our study comprised two convolutional layers, a batch

FIGURE 6. CNN-LSTM architecture.

normalization layer, a ReLU activation layer, and two fully
connected layers. Figure 4 illustrates a detailed description
of the CNN architecture.

The LSTM network was the investigation’s second stan-
dard deep learning model. The structure of the LSTM
was composed of a 128-cell LSTM layer, a dropout layer,
an average pooling layer, and a fully connected layer. The
LSTM, as shown in Figure 5, is a technique for resolv-
ing the vanishing gradient issue in long-term dependency
learning. LSTM utilizes memory cells with three gates and
parameters to describe long-range interdependence in tem-
poral sequences. These gates determine when states are
updated and when previously hidden conditions are for-
gotten, and therefore govern the memory cells’ overall
functionality.

The third baseline deep learning model is a CNN-LSTM
hybrid model. The CNN-LSTM structure utilizes CNN layers
to extract characteristics from the input data, while the LSTM
segment handles sequence forecasting. The CNN-LSTM
model can read subsequences acquired from the main
sequence in the form of blocks by first extracting the key fea-
tures from each block and then interpreting those character-
istics using LSTM. The CNN-LSTM architecture employed
in this study is shown in Figure 6.
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TABLE 5. Performance of different DL models on UT-Complex.

TABLE 6. Performance of different DL models on WISDM-HARB.

C. ASSESSMENT ON PUBLIC DATASETS
The proposed framework is validated on three
publicly available datasets to assess its performance.
Tables 4, 5, and 6 show the classification results obtained
when the model is evaluated over the UT-Smoke, UT-
Complex, and WISDM-HARB datasets, respectively. The
recognition performance is assessed separately for each
category (SHA, CHA, and ALL) by using a five-fold
cross-validation protocol with accuracy and F1-score
metrics.

1) EXPERIMENTAL RESULTS ON THE UT-SMOKE DATASET
Various DL models, such as CNN, LSTM, and the proposed
ResNet-SE model, are evaluated in the first experiment. Vari-
ous segmentation sizes of 5, 10, 20, 30, and 40 s are set to train
the deep learning models over the UT-Smoke dataset. The
dataset consists of 3 simple activities (sitting, standing, walk-
ing) and 3 complex activities (smoking, drinking, eating).
As indicated in Table 4, the proposed ResNet-SE outperforms
the other DL models in terms of the accuracy (100.00% at
window sizes of 30 and 40 s).
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FIGURE 7. Effect of window sizes on (a) UT-Smoke, (b) UT-Complex and
(c) WISDM-HARB.

2) EXPERIMENTAL RESULTS ON THE UT-COMPLEX DATASET
This experiment is based on the UT-Complex dataset, which
consists of five simple actions (standing, sitting, strolling,
running, and riding) and six complex activities (typing, writ-
ing, drinking, talking, smoking, and eating). The segmen-
tation sizes are the same as those in the first experiment
to evaluate the identification effectiveness of DL models.
As indicated in Table 5, the proposed ResNet-SE achieves
the highest accuracies for all segmentation sizes of sensor
data. The highest accuracy of 99.68% corresponds to the SHA
category with a sliding window of 20 s. For the CHA cate-
gory, the highest accuracy is 99.35% with a sliding window
of 20 s.

FIGURE 8. Comparison of results associated with different activities.

3) EXPERIMENTAL RESULTS ON THE WISDM-HARB DATASET
We use smartwatch sensor data from the WISDM-HARB
dataset consisting of 5 simple activities and 13 complex activ-
ities, as shown in Table 6. Compared with SHA recognition,
in CHA recognition, all baseline DL models (CNN, LSTM,
and CNN-LSTM) and the proposed ResNet-SE model need
sensor data segmented with larger window sizes. The highest
accuracy of 97.79% corresponds to the ResNet-SE model
with a window size of 5 s. In terms of CHA recognition,
the proposedmodel outperforms other benchmarkDLmodels
with an accuracy of 95.98% for a size of 30 s.

V. DISCUSSION
This part discusses the findings presented in Section IV based
on the experimental data.

A. EFFECTS OF WINDOWS SIZES
Several approaches, such as machine learning and DL
windowing, are frequently employed to divide data in
sensor-based HAR systems. A smaller window size corre-
sponds to more efficient computing and smaller resource
and energy consumption. Larger data windows are neces-
sary for detecting more complex actions [49]. A window
of 5 s is adequate to recognize simple tasks [23] such as
running, standing, sitting, ascending and descending stairs,
and strolling. Notably, an extremely small window size can-
not discern the characteristics of complex activities such as
typing or writing or sipping coffee or conversing. Changes
in window size (5, 10, 20, 30, and 40 s) alter the training
of DL models in a variety of contexts. Furthermore, as the
size of the window increases, especially for more complex
activities, an enhanced classification performance can likely
be achieved, as shown in Figure 7.

B. EFFECTS OF ACTIVITY TYPES
In the experiments, we examine the influence of various types
of tasks on the identification effectiveness.We select the three
datasets because they feature two types of activities: basic

51150 VOLUME 10, 2022



S. Mekruksavanich et al.: ResNet-SE: Channel Attention-Based Deep Residual Network

FIGURE 9. Memory consumption in megabytes of deep learning models used in this work, (a) UT-Smoke, (b) UT-Complex, and (c) WISDM-HARB.

FIGURE 10. Mean prediction time in milliseconds of deep learning models used in this work, (a) UT-Smoke, (b) UT-Complex, and
(c) WISDM-HARB.

activities and complex activities. Tables 4, 5, and 6 indicate
that when trained on data of complex activities obtained from
smartwatch sensors, all the evaluated deep neural networks
attain the highest average accuracy, as shown in Figure 8. The
proposed ResNet-SE model exhibits a high performance over
the UT-Smoke, UT-Complex, and WISDM-HARB datasets,
with average accuracies of 99.85%, 97.73%, and 94.9%,
respectively.

C. COMPLEXITY ANALYSIS
We conducted a complexity study of the proposed deep learn-
ing model, including the baseline models, using the analysis
technique for HAR stated in [50]. We defined model com-
plexity in terms of memory consumption, mean prediction
time, and the number of trainable parameters. This study
validated all models against the same benchmark datasets
(WISDM-HARB, UT-Smoke, and UT-Complex).

1) MEMORY CONSUMPTION
With today’s smartwatches, memory consumption is less of
a concern. For instance, the Apple Watch Series 7 and later
models have 1 GB of RAM, whereas the Samsung Galaxy
Watch 3 has 1.5GB of RAM.As a result, establishing a smart-
phone application or a smartwatch application to implement
HAR machine learning should be straightforward. After all,
if we want to construct our wearable gadget, memory usage
may be more vital if we reduce the size of the hardware
or extend the power consumption. To track and compare
memory use in this study, the deep learning models are
deployed on an iPhone XR using the Tensorflow Lite frame-
work, as recommended in [50]. The memory usage of each

model could be calculated through an Xcode debug session.
We tracked memory consumption and obtained the results
indicated in Figure 9.

According to the comparative findings in Figure 9, the
CNNs used the most memory while working with the three
datasets. The LSTMs used the least memory, with values
less than 1 MB. Using the proposed ResNet-SE model, each
dataset requires approximately 1.55 MB.

2) PREDICTION TIME
We will continue to compare complexity to mean prediction
time for efficiency consideration. To obtain themean forecast,
a series of samples from the testing data are input into the
Tensorflow Lite networks, and the mean prediction time is
then averaged.

Figure 10 demonstrates the experiment results with the
mean prediction time in milliseconds to process one window
of the deep learning models conducted on the three datasets
(UT-Smoke, UT-Complex, andWISDM-HARB). The LSTM
took the longest to arrive at a prediction with 0.98-1.74 ms.
and 0.45-0.83 ms. for UT-Smoke andWISDM-HARB.When
training LSTMs, it was seen that they take much more time
for training than CNN-based models, including the proposed
ResNet-SE. Convolutions can be accomplished in parallel.
For computing the result of one kernel, only a few neigh-
boring values are required. However, for an LSTM, much of
the work needs to occur sequentially, as outcomes rely on
the previous result. When considering the proposed ResNet-
SE model, the mean prediction times were 0.54-0.90 ms.,
0.98-1.69 ms., and 0.23-0.58 ms., for UT-Smoke,
UT-Complex, and WISDM-HARB, respectively.
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FIGURE 11. Number of trainable parameters of deep learning models used in this work, (a) UT-Smoke, (b) UT-Complex, and (c) WISDM-HARB.

3) TRAINABLE PARAMETERS
Considering memory consumption andmean prediction time,
we can consider our third model complexity statistic, the
number of trainable parameters. This technique is a statistic
frequently employed with deep neural networks, where each
weight learned during model training defines one such train-
able parameter.

Figure 11 demonstrates the results of the trainable param-
eters of the deep learning models (CNN, LSTM, CNN-
LSTM, and the proposed ResNet-SE) used in this work.
The values can be obtained from the model summary of
varied experimental scenarios (SHA, CHA, and ALL) on
different standard HAR datasets (UT-Smoke, UT-Complex,
and WISDM-HARB). The outcomes aligned with what we
would intuitively anticipate when thinking of the complexity
difference of these models. For the baseline deep learning
models, the least complicated model according to the per-
formed experiments is the LSTM with 9,565 parameters,
28,173 parameters, and 28,818 parameters for UT-Smoke,
UT-Complex, and WISDM-HARB, respectively. In contrast
to LSTM, CNN is the most complicated model with the
most significant numbers of trainable parameters on the three
datasets. Considering the proposed ResNet-SE model, the
trainable parameters of this model are 89,861 parameters,
89,165 parameters, and 89,330 parameters for UT-Smoke,
UT-Complex, and WISDM-HARB, respectively. However,
the number of parameters of the ResNet-SE is lower than for
the CNN and CNN-LSTM.

VI. CONCLUSION AND FUTURE WORKS
This study presents a sensor-based HAR model to recog-
nize complex human activities by using smartwatch sensor
data. The recognition performance of various DL models
and the proposed ResNet-SE model is evaluated consider-
ing three benchmark datasets (UT-Smoke, UT-Complex, and
WISDM-HARB) involving data of complex human activities
recorded from smartwatch sensors. According to the findings,
ResNet-SE outperforms the other DL models (CNN, LSTM,
and CNN-LSTM) in all trials, independent of the number of
layers in the network. The proposed ResNet-SE adopts chan-
nel attention through squeeze-and-excitation modules and
shortcut connections to enhance the recognition performance
in complex HAR tasks.

Future work will be aimed at extending and enhancing
the model by optimizing the hyperparameters to decrease the
model size and computation time. Furthermore, we plan to
add spatial attention and channel attention mechanisms to the
CNN networks to increase the identification accuracy.

REFERENCES
[1] O. D. Lara and M. A. Labrador, ‘‘A survey on human activity recognition

using wearable sensors,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 3,
pp. 1192–1209, 3rd Quart., 2013.

[2] B. Fu, N. Damer, F. Kirchbuchner, and A. Kuijper, ‘‘Sensing technology
for human activity recognition: A comprehensive survey,’’ IEEE Access,
vol. 8, pp. 83791–83820, 2020.

[3] N. Rashid, M. Dautta, P. Tseng, and M. A. Al Faruque, ‘‘HEAR: Fog-
enabled energy-aware online human eating activity recognition,’’ IEEE
Internet Things J., vol. 8, no. 2, pp. 860–868, Jan. 2021.

[4] V. Senyurek, M. Imtiaz, P. Belsare, S. Tiffany, and E. Sazonov, ‘‘Elec-
tromyogram in cigarette smoking activity recognition,’’ Signals, vol. 2,
no. 1, pp. 87–97, Feb. 2021.

[5] S. Balli, E. A. Sağbaş, and M. Peker, ‘‘Human activity recognition from
smart watch sensor data using a hybrid of principal component analysis
and random forest algorithm,’’Meas. Control, vol. 52, nos. 1–2, pp. 37–45,
Jan. 2019.

[6] P. Tarafdar and I. Bose, ‘‘Recognition of human activities for wellness
management using a smartphone and a smartwatch: A boosting approach,’’
Decis. Support Syst., vol. 140, Jan. 2021, Art. no. 113426.

[7] Z. Wang, Z. Yang, and T. Dong, ‘‘A review of wearable technologies for
elderly care that can accurately track indoor position, recognize physical
activities and monitor vital signs in real time,’’ Sensors, vol. 17, no. 2,
p. 341, Feb. 2017.

[8] T. G. Stavropoulos, A. Papastergiou, L. Mpaltadoros, S. Nikolopoulos,
and I. Kompatsiaris, ‘‘IoT wearable sensors and devices in elderly care:
A literature review,’’ Sensors, vol. 20, no. 10, p. 2826, May 2020.

[9] S. O. Slim, A. Atia, M. Elfattah, andM.-S. M.Mostafa, ‘‘Survey on human
activity recognition based on acceleration data,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 10, no. 3, pp. 84–98, 2019.

[10] S. Mekruksavanich and A. Jitpattanakul, ‘‘LSTM networks using smart-
phone data for sensor-based human activity recognition in smart homes,’’
Sensors, vol. 21, no. 5, p. 1636, Feb. 2021.

[11] F. Rustam, A. A. Reshi, I. Ashraf, A. Mehmood, S. Ullah, D. M. Khan, and
G. S. Choi, ‘‘Sensor-based human activity recognition using deep stacked
multilayered perceptronmodel,’’ IEEEAccess, vol. 8, pp. 218898–218910,
2020.

[12] L. M. Dang, K. Min, H. Wang, M. J. Piran, C. H. Lee, and H. Moon,
‘‘Sensor-based and vision-based human activity recognition: A compre-
hensive survey,’’ Pattern Recognit., vol. 108, Dec. 2020, Art. no. 107561.

[13] O. Nafea, W. Abdul, G. Muhammad, and M. Alsulaiman, ‘‘Sensor-based
human activity recognition with spatio-temporal deep learning,’’ Sensors,
vol. 21, no. 6, p. 2141, Mar. 2021.

[14] M. A. R. Ahad, A. D. Antar, andM. Ahmed, ‘‘Sensor-based human activity
recognition: Challenges ahead,’’ in IoT Sensor-Based Activity Recognition.
Cham, Switzerland: Springer, 2021, pp. 175–189.

[15] A. Sargano, P. Angelov, and Z. Habib, ‘‘A comprehensive review on hand-
crafted and learning-based action representation approaches for human
activity recognition,’’ Appl. Sci., vol. 7, no. 1, p. 110, Jan. 2017.

51152 VOLUME 10, 2022



S. Mekruksavanich et al.: ResNet-SE: Channel Attention-Based Deep Residual Network

[16] S. Mekruksavanich and A. Jitpattanakul, ‘‘Biometric user identification
based on human activity recognition using wearable sensors: An exper-
iment using deep learning models,’’ Electronics, vol. 10, no. 3, p. 308,
Jan. 2021.

[17] G. Zhang, G. Liang, F. Su, F. Qu, and J.-Y. Wang, ‘‘Cross-domain attribute
representation based on convolutional neural network,’’ May 2018,
arXiv:1805.07295.

[18] F. Li, K. Shirahama, M. A. Nisar, L. Köping, and M. Grzegorzek, ‘‘Com-
parison of feature learning methods for human activity recognition using
wearable sensors,’’ Sensors, vol. 18, no. 2, p. 679, 2018.

[19] D. Singh, E. Merdivan, I. Psychoula, J. Kropf, S. Hanke, M. Geist,
and A. Holzinger, ‘‘Human activity recognition using recurrent neu-
ral networks,’’ in Machine Learning and Knowledge Extraction. Cham,
Switzerland: Springer, 2017, pp. 267–274.

[20] S. Hochreiter and J. J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[21] S. Mekruksavanich, A. Jitpattanakul, P. Youplao, and P. Yupapin,
‘‘Enhanced hand-oriented activity recognition based on smartwatch sensor
data using LSTMs,’’ Symmetry, vol. 12, no. 9, p. 1570, Sep. 2020.

[22] I. Klein, ‘‘Smartphone location recognition: A deep learning-based
approach,’’ Sensors, vol. 20, no. 1, p. 214, Dec. 2019.

[23] M. Shoaib, S. Bosch, O. Incel, H. Scholten, and P. Havinga, ‘‘Complex
human activity recognition using smartphone and wrist-worn motion sen-
sors,’’ Sensors, vol. 16, no. 4, p. 426, Mar. 2016.

[24] U. R. Alo, H. F. Nweke, Y. W. Teh, and G. Murtaza, ‘‘Smartphone motion
sensor-based complex human activity identification using deep stacked
autoencoder algorithm for enhanced smart healthcare system,’’ Sensors,
vol. 20, no. 21, p. 6300, Nov. 2020.

[25] L. Peng, L. Chen, Z. Ye, and Y. Zhang, ‘‘AROMA: A deep multi-task
learning based simple and complex human activity recognition method
using wearable sensors,’’ Proc. ACM Interact., Mobile, Wearable Ubiq-
uitous Technol., vol. 2, no. 2, pp. 1–16, Jul. 2018.

[26] L. Liu, Y. Peng, M. Liu, and Z. Huang, ‘‘Sensor-based human activity
recognition systemwith a multilayered model using time series shapelets,’’
Knowl.-Based Syst., vol. 90, pp. 138–152, Dec. 2015.

[27] L. Chen, X. Liu, L. Peng, and M. Wu, ‘‘Deep learning based multimodal
complex human activity recognition using wearable devices,’’ Appl. Intell.,
vol. 51, pp. 4029–4042, Jun. 2021.

[28] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[29] R. Monti, S. Tootoonian, and R. Cao, ‘‘Avoiding degradation in deep feed-
forward networks by phasing out skip-connections,’’ in Proc. 27th Int.
Conf. Artif. Neural Netw., Rhodes, Greece, Oct. 2018, pp. 447–456.

[30] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[31] H. F. Nweke, Y. W. Teh, M. A. Al-Garadi, and U. R. Alo, ‘‘Deep learning
algorithms for human activity recognition using mobile and wearable
sensor networks: State of the art and research challenges,’’ Expert Syst.
Appl., vol. 105, pp. 233–261, Sep. 2018.

[32] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, ‘‘Deep
learning onmobile and embedded devices: State-of-the-art, challenges, and
future directions,’’ ACM Comput. Surv., vol. 53, no. 4, pp. 1–37, Jul. 2021.

[33] S. Dernbach, B. Das, N. C. Krishnan, B. L. Thomas, and D. J. Cook,
‘‘Simple and complex activity recognition through smart phones,’’ in Proc.
8th Int. Conf. Intell. Environ., 2012, pp. 214–221.

[34] K. Cho, B. V. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using RNN
encoder–decoder for statistical machine translation,’’ inProc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1724–1734.

[35] C. Xu, D. Chai, J. He, X. Zhang, and S. Duan, ‘‘InnoHAR: A deep neural
network for complex human activity recognition,’’ IEEE Access, vol. 7,
pp. 9893–9902, 2019.

[36] Z. Chen, M. Wu, W. Cui, C. Liu, and X. Li, ‘‘An attention based
CNN-LSTM approach for sleep-wake detection with heterogeneous sen-
sors,’’ IEEE J. Biomed. Health Informat., vol. 25, no. 9, pp. 3270–3277,
Sep. 2021.

[37] K. Chen, L. Yao, D. Zhang, X. Wang, X. Chang, and F. Nie, ‘‘A semisu-
pervised recurrent convolutional attention model for human activity
recognition,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5,
pp. 1747–1756, May 2020.

[38] R. Mutegeki and D. S. Han, ‘‘A CNN-LSTM approach to human activity
recognition,’’ in Proc. Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC),
Feb. 2020, pp. 362–366.

[39] K. Xia, J. Huang, and H. Wang, ‘‘LSTM-CNN architecture for human
activity recognition,’’ IEEE Access, vol. 8, pp. 56855–56866, 2020.

[40] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. Schmidt, J. Weber,
G. Webb, L. Idoumghar, P.-A. Müller, and F. Petitjean, ‘‘Inceptiontime:
Finding AlexNet for time series classification,’’ Data Mining Knowl. Dis-
covery, vol. 34, no. 6, pp. 1936–1962, 2020.

[41] C. Naseeb and B. A. Saeedi, ‘‘Activity recognition for locomotion and
transportation dataset using deep learning,’’ in Proc. Adjunct Proc. ACM
Int. Joint Conf. Pervasive Ubiquitous Comput., ACM Int. Symp. Wearable
Comput. New York, NY, USA: Association for Computing Machinery,
Sep. 2020, pp. 329–334.

[42] F. Karim, S. Majumdar, H. Darabi, and S. Harford, ‘‘Multivariate LSTM-
FCNs for time series classification,’’ Neural Netw., vol. 116, pp. 237–245,
Aug. 2019.

[43] M. Ronald, A. Poulose, and D. S. Han, ‘‘ISPLInception: An inception-
ResNet deep learning architecture for human activity recognition,’’ IEEE
Access, vol. 9, pp. 68985–69001, 2021.

[44] G. M. Weiss, K. Yoneda, and T. Hayajneh, ‘‘Smartphone and smartwatch-
based biometrics using activities of daily living,’’ IEEE Access, vol. 7,
pp. 133190–133202, 2019.

[45] M. Shoaib, H. Scholten, P. J. M. Havinga, and O. D. Incel, ‘‘A hierar-
chical lazy smoking detection algorithm using smartwatch sensors,’’ in
Proc. IEEE 18th Int. Conf. e-Health Netw., Appl. Services (Healthcom),
Sep. 2016, pp. 1–6.

[46] C. J. Chu, ‘‘Time series segmentation: A sliding window approach,’’ Inf.
Sci., vol. 85, nos. 1-3, pp. 147–173, 1995.

[47] A. Hernández and J. M. Amigó, ‘‘Attention mechanisms and their applica-
tions to complex systems,’’ Entropy, vol. 23, no. 3, p. 283, Feb. 2021.

[48] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
May 2015, pp. 1–15.

[49] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, ‘‘Win-
dow size impact in human activity recognition,’’ Sensors, vol. 14, no. 4,
pp. 6474–6499, Apr. 2014.

[50] S. Angerbauer, A. Palmanshofer, S. Selinger, and M. Kurz, ‘‘Comparing
human activity recognition models based on complexity and resource
usage,’’ Appl. Sci., vol. 11, no. 18, p. 8473, Sep. 2021.

SAKORN MEKRUKSAVANICH (Member, IEEE)
received the B.Eng. degree in computer engi-
neering from Chiang Mai University, in 1999,
the M.S. degree in computer science from
the King Mongkut’s Institute of Technology
Ladkrabang, in 2004, and the Ph.D. degree in com-
puter engineering from Chulalongkorn University,
in 2012.

He is currently a Faculty Member with the
Department of Computer Engineering, School of

Information and Communication Technology, University of Phayao, Phayao,
Thailand. His current research interests include deep learning, human activity
recognition, neural network modeling, wearable sensors, and applying deep
learning techniques in software engineering.

ANUCHIT JITPATTANAKUL received the B.Sc.
degree in applied mathematics from the King
Mongkut’sInstituteof Technology NorthBangkok,
Bangkok, Thailand, and the M.Sc. degree in com-
putational science and the Ph.D. degree in com-
puter engineering fromChulalongkorn University.

He joined the Intelligent and Nonlinear
Dynamic Innovations (INDI) Research Center,
KMUTNB. He is currently a FacultyMember with
the Department of Mathematics, King Mongkut’s

University of Technology North Bangkok. His current research interests
include deep learning approaches applied to human activity recognition,
wearable sensors, and healthcare applications.

VOLUME 10, 2022 51153



S. Mekruksavanich et al.: ResNet-SE: Channel Attention-Based Deep Residual Network

KANOKWAN SITTHITHAKERNGKIET received
the Ph.D. degree in mathematics from Naresuan
University, Thailand.

She is currently a Lecturer with the Depart-
ment of Mathematics, King Mongkut’s Univer-
sity of Technology North Bangkok (KMUTNB).
Her research interests include fuzzy optimiza-
tion, fuzzy regression, fuzzy nonlinear mappings,
least squares method, optimization problems, and
image processing.

PHICHAI YOUPLAO received the B.Eng. degree
in electrical engineering from North Eastern Uni-
versity, Khon Kaen, in 1998, the M.Eng. degree
in electrical engineering from the Mahanakorn
University of Technology, Bangkok, Thailand,
in 2005, and the D.Eng. degree in electri-
cal engineering from the King Mongkut’s Insti-
tute of Technology Ladkrabang, Bangkok, in
2013.

He is currently an Assistant Professor with the
Department of Electrical Engineering, Faculty of Industry and Technol-
ogy, Rajamangala University of Technology Isan Sakon Nakhon Cam-
pus, Sakon Nakhon, Thailand. His current research interests include
nano-devices and circuits, microring resonator, optical interferometry,
quantum cryptography, sensors, and machine learning.

PREECHA YUPAPIN received the Ph.D. degree
in electrical engineering from the City, University
of London, U.K., in 1993.

He is currently a Full Professor with the Depart-
ment of Electrical Technology, Faculty of Indus-
trial Technology, Institute of Vocational Education
Northeastern Region 2, Sakon Nakhon, Thailand.
His current research interests include nano-devices
and circuits, microring resonator, soliton com-
munication, optical motor, quantum technologies,

quantum meditation, and deep and machine learning.

51154 VOLUME 10, 2022


