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ABSTRACT Object detection on satellite and aerial images has gained the attraction of the scientific
community of computer vision due to its immense value, high difficulty, and the development of large-scale
datasets enough to train deep learning models. The progress is tremendous with the increase in the precision
of the fast single-stage object detection models which used to sacrifice precision for speed. Aerial and
satellite images are of large sizes which makes slow models infeasible for production. Single-shot Alignment
Network (S2A-Net) is a fast and competitive single-stage model in terms of precision. However, there
is a potential to increase its precision in detecting small and cluttered objects in a complex background.
In this paper, a new hybrid approach by incorporating Instance Level Denoising (ILD) module from Small,
Cluttered, and Rotated Object Detector +-+ (SCRDet++-) into S2A-Net is proposed. The model was trained
and tested on Dota V1.0. The proposed model achieves a higher mean average precision (mAP) than S2A-Net
to be 79.73% and when it was trained using the Kullback—Leibler divergence as a regression loss function,

the proposed model can reach as high as 80.39% mAP.

INDEX TERMS Convolutional neural network (CNN), deep learning, object detection, remote sensing.

I. INTRODUCTION

Modern aerial and satellite imaging provides an abundance of
images that present a great opportunity for many applications
such as urban planning, geographic information systems,
and intelligent transportation systems. Object detection on
aerial and satellite images can be used in those applications
by extracting crucial information. For example, capturing
urban hotspots, which is done using GPS data [1], can use
information extracted by object detection. Object detection
on aerial and satellite images is a challenging task because
those images are characterized by low resolution, large size,
and bird-eye view. With the recent breakthroughs in object
detection using deep learning, it became a logical step to
apply deep learning to remote sensing imagery. However,
it is not straightforward to adapt object detection models,
designed for natural images, to remote sensing images.
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In computer vision, object detection extracts a set of either
axis-aligned or oriented bounding boxes that locate objects
of interest in an image. Oriented bounding boxes (OBB) are
often the target for detection in satellite and aerial images
because of the huge intersection over union (IoU) between
axis-aligned boxes due to object rotation. This makes assign-
ing boxes to objects and post-processing harder for axis-
aligned bounding boxes.

This paper is focused on deep learning approaches in an
attempt to utilize the capability of deep learning to generalize
on many different object detection situations compared to
handcrafted features and template matching methods. For
a more comprehensive analysis and a discussion on other
approaches, this paper [2] presents an extensive survey on
classical methods.

Due to the characteristics of remote sensing images, the
objects are often small, cluttered, and in arbitrary orienta-
tions. Basic CNN with standard convolutional layers aggre-
gates the features using filters on regular grids to form
deep features which causes inter-class feature coupling and

VOLUME 10, 2022


https://orcid.org/0000-0003-1770-7312
https://orcid.org/0000-0002-9560-5525
https://orcid.org/0000-0002-2215-5594
https://orcid.org/0000-0002-3513-0329

Y. Zakaria et al.: Improving Small and Cluttered Object Detection by Incorporating Instance Level Denoising Into S2A-Net

IEEE Access

blurred noisy features. For a fast single-stage object detector
to be accurate, a feature alignment module and a feature
decoupling module for denoising are needed. Single-shot
Alignment Network (S2A-Net) [3] is a fast and accurate
single-stage object detector that uses an Alignment Con-
volution Layer (AlignConv) for feature alignment. Small,
Cluttered, and Rotated Object Detector ++ (SCRDet++-) [4]
uses Instance Level Denoising (ILD) for feature decoupling
and denoising.
This paper’s contributions are as follows:

o Proposing a hybrid model for object detection by
incorporating Instance Level Denoising into Single-shot
Alignment Network to improve the detection of small
and cluttered objects. This model will be referred to as
S2A-Net-ILD.

o Improving the training of the hybrid model by using
the Kullback-Leibler divergence (KLD) [5] regression
loss function to achieve a more competitive result
of 80.39% mAP. This model will be referred to as
S2A-Net-ILD-KLD.

The rest of the paper is organized as follows: Section 2
reviews the related works in a brief manner and the mod-
els used to create the proposed hybrid model in more
detail. Section 3 details the proposed model and the
reasons for its inception alongside the implementation details.
Section 4 describes the used dataset, details the experimental
setup, and presents the results including a comparison with
recent works and a discussion of the results. Finally, conclu-
sions and future work are given in Section 5.

Il. RELATED WORK

Object detection in deep learning is often a supervised
machine learning task where the model is trained on images
with bounding boxes’ labels. In machine learning techniques,
a two-stage object detection model consists of (1) region pro-
posal and feature extraction; (2) object classification, local-
ization, and refinement for each region. The most influential
two-stage deep learning object detection model is Faster
R-CNN [6]. Deep learning facilitated the development of
single-stage methods but they might sacrifice precision for
speed. YOLO [7], SSD [8], and Retinanet [9] are examples
of single-stage models.

Object detection usually exhibits performance degradation
when faced with object occlusion, varying illumination, small
objects, object closeness, object rotation, and varying objects’
aspect ratio. These issues are significant in aerial and satellite
images where most objects are extremely small, rotated, close
to each other, and placed within a complex background.
In addition, aerial and satellite images are large so slow
models are not a viable option for many applications. A basic
deep convolutional neural network will not generalize well
on this task because it is only translation equivariant.

The aforementioned challenges have instigated the devel-
opment of several techniques. To address the small object
issue, Feature Pyramid Network (FPN) [10] has been used
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extensively in the field with [3]-[5], [11]-[28] using it. FPN
integrates features from multiple layers including deep and
shallow features to create rich hierarchical features for object
detection. Thus, the models have sufficient features to train
for small object detection. Li ef al. [12] created an enhanced
FPN (eFPN) which incorporates a sub-inception block while
integrating between different levels of features. Small, clut-
tered, and rotated objects detector (SCRDet) [29] created
its own feature fusion network called sampling and feature
fusion network (SF-Net) which incorporates its own incep-
tion block for fusing features from multiple layers. AProNet
model enhances the multi-scale features from FPN by fus-
ing it with the output from AProNet’s feature enhancement
module. AProNet’s feature enhancement module is based
on Atrous Spatial Pyramid Pooling (ASPP) [30] to extract
geometric features from the input image using Atrous/Dilated
separable convolutions. Multi-scale data augmentation in
training and testing is also used alongside FPN to facilitate
generalization. Another approach was to employ contextual
features such as holistic image features [15], [31], features
pooled from a zoomed-out region [14], [20] or features
pooled by neighborhood aggregation [32]. Those approaches
try to enhance the features of the object by incorporating
contextual features.

To address the high variance in object rotation, which
causes multiple issues in prediction formulation, both
single-stage and two-stage models handle it differently.
In two-stage models, Rotational Region Convolutional
Neural Network (R2CNN) [32] used axis-aligned anchor
boxes. The features are then pooled from the enclosing axis-
aligned box. The generated region of interest (Rol) features
are forwarded to the second stage in which the oriented
bounding boxes are predicted. The prediction strategy of
R2CNN was used in [4], [12], [27], [29]. In contrast, the
Rotational Region Proposal Network (RRPN) [33] uses more
anchors with different angles and the features are pooled from
the oriented box. Rotation Rol pooling layer (RRol) [33]
and rotated Rol Align [34] are examples of pooling lay-
ers to extract features from OBB proposals. Some recent
models [11], [13], [16], [35] use rotated anchor boxes. Rol
(Region of Interest) transformer model [14] created two new
layers: Rotational Rol learner and Rotated Position Sen-
sitive Rol Align (RPS-Rol-Align). Rotational Rol learner
uses axis-aligned anchors to produce horizontal proposals
which are refined into OBB proposals, then RPS-Rol-Align
pools the features from the OBB produced by the Rol
learner. Thus, the Rol transformer reduced the required num-
ber of anchor boxes by refining the horizontal bounding
boxes proposal into oriented ones. ReDet [19] extended
the work of the Rol transformer. ReDet uses rotation-
equivariant ResNet (ReResNet) with rotation-equivariant fea-
ture pyramid network (ReFPN) as a backbone based on e2cnn
model [36] to generate rotation-equivariant features. Thus,
Rotated Rol (RRol) pooling methods alone is not sufficient,
as orientation alignment is needed for rotation-equivariant
features to transform into rotation-invariant features for the
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final prediction phase. ReDet introduced a Rotation-invariant
Rol Align layer to pool from rotation-equivariant features to
generate rotation-invariant features for the prediction. While
Rol-transformer-based models decrease the potential of over-
fitting by decreasing the number of needed anchors, they are
slow and increase the number of parameters in the model due
to the need to predict horizontal proposals and then trans-
form them into oriented ones. Both Oriented R-CNN [26]
and DODet [28] directly predict oriented proposals using
horizontal anchor boxes. Thus, they alleviate the downsides
of the Rol transformer. Region proposal network in Oriented
R-CNN uses midpoint offset representation [26] to generate
its OBB proposals. DODet opted to predict the aspect ratio
and area of the OBB instead of the width and the height
directly. The DODet model uses the OBB prediction from the
second stage for Rol pooling for the classification. While this
potentially slows down the model, the features are aligned
better for the classifier.

For single-stage models, features are not pooled out of
the feature map but the feature refinement stage has been
applied in [3], [17] to align features and reconstruct them
for the final prediction stage using the initial prediction. This
enables the single-stage models to refine features before the
final prediction without sacrificing speed by pooling features
out for a second stage like in the two-stage methods. Refined
single-stage rotation detector (R3Det) [17] uses the initial
OBB predictions to determine the corners and the center
of an object in the feature map. Then it concatenates those
points with the initial feature map to generate enhanced
features. Single-shot Alignment Network (S2A-Net) [3] uses
Alignment Convolution Layer to align features using a
deformable convolution operation rather than standard 2D
convolution.

Other works explored changing the loss function to incor-
porate rotation in the prediction. The default regression loss
function from object detection is smooth L1-loss which suf-
fers from boundary discontinuity and a square-like prob-
lem [18] when rotation regression is introduced. The common
objective metric used to evaluate object detectors is mean
average precision (mAP). Thus, the goal of the model is to
have high recall and precision. The OBB output from the
model should have the correct class label and have a high
intersection over union (IoU) with the ground truth box.
Thus, IoU-smooth L1-loss was first used by the Small, Clut-
tered, and Rotated Object Detector (SCRDet) model [29].
IoU-smooth L1-loss weights the smooth L1-loss by the skew
IoU between the predicted output and the ground truth box.
Therefore, the loss function and objective function are more
aligned. The AProNet model predicts the angle by regress-
ing two values (aproy, aproy) such that the angle equals
atan(aproy /aproy) and (aproy, apro,) = (sin(0) xw, cos(0) x
w)). This representation is free of the angular periodicity
issue. AProNet uses a weighted smooth L1-loss between the
predicted angle and the ground truth where the weight is
a function of the angular difference. Xue Yang et al. [18]
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proposed the Gaussian Wasserstein Distance regression loss
function (GWD). The GWD loss formulates the oriented
bounding boxes as Gaussian distributions. Thus, the Gaus-
sian Wasserstein Distance between the two oriented bound-
ing boxes can be measured. Xue Yang et al. [5] proposed
using Kullback—Leibler divergence (KLD) instead of GWD
as a loss function due to being scale-invariant for objects
of different sizes. Yang Xue and Yan Junchi [23] proposed
using Circular Smooth Labels (CSL) to transform the rotation
prediction task from regression to classification to prevent
the discontinuous boundaries problem from emerging. Then
Yang Xue et al. [24] proposed Densely Coded Labels (DCL)
to shorten the code length to lighten the weight of the angular
rotation prediction layer while using Angle Distance and
Aspect Ratio Sensitive Weighting (ADARSW) to improve
the performance of DCL-based models by increasing their
sensitivity to the angular distance and the object’s aspect
ratio.

To address the issue of small objects in a complex
background, some approaches seek to differentiate between
objects and backgrounds on a pixel level. The problem
can be transformed into instance segmentation as in [25],
[37]. A post-processing step is then applied to the generated
instance segmentation to produce OBB. Another approach
is to learn an attention module to score feature importance
either in a completely unsupervised manner [22], [28], [31]
or guided by a supervised semantic segmentation task [4],
[12], [25], [29], [37]. Finally, semantic segmentation can be
learned as a complementary task to enhance the performance
and its features can be used as inputs for the other object
detection modules as in [12], [25], [37]. Those approaches
are not mutually exclusive.

Attention modules can be categorized into spatial, channel-
wise, and self-attention. Spatial attention reweights features
based on their spatial location. Channel-wise attention
reweights channels’ importance based on the input fea-
tures. Self-attention is an attention mechanism that enables
long-range dependencies between features. CAD-Net [31]
and Li er al. [12] use spatial attention. CenterMap [25] and
SCRDet [29] use both spatial and channel-wise attention.
CG-Net [22] uses multi-head self-attention where each fea-
ture vector is a whole channel slice to decrease the compu-
tational overhead of multi-head self-attention. DODet [28]
uses rotated discriminative pooling (RDP) which is inspired
by discriminative Rol pooling [38] to extract Rol for classi-
fication. RDP uses adaptive weighted pooling [38] to weight
different features within the extracted Rol in an unsupervised
manner.

In this paper, a hybrid model is proposed that modifies
S2A-Net [3] by adding Instance Level Denoising (ILD) [4]
to overcome the problem of detecting small and cluttered
objects within a noisy background. Therefore, the next
2 subsections will give more details on SCRDet++ and
S2A-Net. Both models start with a backbone model with FPN
for feature extraction.
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A. SMALL, CLUTTERED, AND ROTATED OBJECT

DETECTOR ++ (SCRDet++)

SCRDet++ [4] is a two-stage object detector. The model
architecture extracts the features from FPN, then an Instance
Level Denoising (ILD) module is applied on each feature
level to enhance them before the detection phases. ILD is an
attention module to score feature importance which is trained
in a supervised manner by learning semantic segmentation
on top of the attention feature map. The goal of ILD is to
decouple the features of the objects of different categories
into their respective channels and suppress noisy features.
The rest of the model is similar to R2ZCNN [32] which uses
horizontal anchor boxes but with Rol warping layer [39] and
the new IoU-smooth L1 loss function. The whole model can
be seen in Fig.1.

ILD module takes the input feature map and applies a
sequence of dilated convolutions [40] to increase the respec-
tive field for the coarse semantic segmentation task. Those
dilated convolutions are considered feature enrichment con-
volutional layers. The gradient from learning the coarse
semantic segmentation task guides the attention module. This
happens because the attention map is generated from the same
input features used for the coarse semantic segmentation task.
ILD is shown in Fig.2. ILD applies an element-wise product
between the attention map and the original coupled feature
map. The equation for ILD operation in inference is shown in
equation (1) such that X is the input feature map. CNNyp is
the ILD’s convolutional layers. © is the Hadamard product.

ILD(X) = CNN; p(X) 0 X ()

B. SINGLE-SHOT ALIGNMENT NETWORK (S2A-Net)
S2A-Net [3] is a fast single-stage model with a refine-
ment stage using feature alignment while also being
computationally efficient. Single-shot in S2A-Net does not
refer to one-shot learning. S2A-Net introduced two modules
for refinement called Feature Alignment Module (FAM) and
Oriented Detection Module (ODM).

Feature Alignment Module (FAM) is used to refine the
input features. FAM does the initial oriented bounding
boxes (OBB) prediction which is used to refine the input
features. Horizontal anchor boxes are used for the initial
OBB prediction. A single horizontal anchor design is used for
computational efficiency. Alongside regression predictions,
FAM generates a probability score for an object of a certain
class being contained within the anchor box. The regression
output is used to calculate the offset field for the new convolu-
tional layer called Alignment Convolution Layer. This can be
seen in Fig.3. Alignment Convolution Layer (AlignConv) is a
new type of deformable convolutional layer [41] that samples
features for the convolutional operation using the offset field
rather than using the standard grid-based sliding window on
the feature map as shown in Fig.4. The classification output
is discarded during inference but it exists in training to guide
the training process. FAM refines features to be an input for
the ODM.
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The following equations represent the operations of Align-
Conv on the 2-D plane. Equation (2) shows an example where
REG is the standard regular grid for 3 x 3 (k = 3) standard
convolution with dilation rate 1. Equation (3) is the standard
convolution operation, while equation (4) is the AlignConv
operation. W, P, and X are the convolution filter weights,
the center location of the convolution operation, and the
input feature map respectively. O is the offset field which
is calculated in equation (5). An anchored bounding box is
represented by (x, y, w, h, 6). R(0) is the rotation matrix. S is
the stride between adjacent locations on the feature map X
when mapped back to the input image.

REG = {(—1,-1),(—=1,0),...,(0, 1), (1, 1)} (2)

Y(P)= »  Wireg) X(P+ reg) (3)
regeREG
Y(P) = Z W(reg) - X(P +reg+0) (4

regcREG;0c0O
1 1
Lp* = S((e.3) + L (v 1) -reg - RO)T)

O = {Lp® — P — reghregeric ®)

Oriented Detection Module (ODM) applies active rotating
filters (ARF) [42] on the feature map produced by FAM. ARF
is a convolutional filter which encodes orientation informa-
tion in its output by rotating its filter N times to produce N+1
features. Those features encode N+-1 different orientations to
help the bounding box regression task as both the features
and the task are orientation-sensitive. The equation for ARF
operation for i-th orientation output is shown in equation (6).
Y is the output of ARF in which its channels consist of Y’
for all values of i. ng is the n-th orientation channel for
the rotated filter at 6; while X" is the input feature map at
orientation channel n.

N-1
Y =) W, X" 9,-:1'%”, i=0,...,.N—1 (6)
n=0
For the classification task, a rotation-invariant feature is
preferred. Thus, the feature map, which is produced from
ARE, is forwarded to an oriented response pooling layer. This
layer extracts the features corresponding to the orientation
with the highest response value as shown in equation (7)
where X is the output after the pooling operation. The out-
put feature map from the oriented response pooling layer is
forwarded to the classification branch.

X=max X", O0<n<N—1. 7

The rest of the model is the normal OBB prediction using
two branches one for classification and the other for regres-
sion. The notable difference in training is the new addition to
the loss function for training FAM as a refinement module for
a single-stage detector. The whole network is shown in Fig.5.

lIl. PROPOSED MIODEL
Both SCRDet++ and S2A-Net follow different design deci-
sions to solve object detection on aerial and satellite images.
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FIGURE 2. Instance level denoising module from SCRDet++ [4].

Those design decisions help the model tackle different diffi-
culties faced in applying deep learning to object detection on
aerial and satellite images. The goal of the proposed method
is to create a hybrid model which combines the strength
of the two models without compromising model efficiency.
SCRDet++ deals with background noise and object clutter-
ing with its attention module called Instance Level Denoising
(ILD). SCRDet++ augments the object detection task by
learning an approximate semantic segmentation task on top of
the task. S2A-Net handles feature misalignment due to rota-
tion by FAM module for single-stage detectors and improves
prediction on rotated objects by ODM module. Both models
handle different yet major problems with object detection on
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aerial and satellite images. The proposed method creates a
hybrid approach between the two models by incorporating an
ILD module into S2A-Net before the FAM module to enhance
features by feature denoising. Thus, the new model can han-
dle the clutter of objects and suppress noisy features from the
background before feature alignment. ILD is applied before
FAM to enhance the initial regression prediction and prevent
cascading of noisy background features to later modules.
Our model is shown in Fig.6. Table.1 shows the theoretical
justification for incorporating ILD into S2A-Net. ILD has
been selected as the attention module over the self-attention
used in CG-Net [22], as long-range dependencies are not
desirable for detecting small and cluttered objects. This can
be shown in the low result of 73.23% AP for small vehicles
for CG-Net.

A. IMPLEMENTATION DETAILS

Implementation details will be divided into 4 subsections.
The first subsection gives details about the neural network
structure module-wise. The second subsection formulates
how the prediction is done. The third subsection specifies
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FIGURE 4. Convolution operations.

TABLE 1. Theoretical advantages of the proposed model.

Method Model Handles noise 'Handles .
type feature Object rotation

SCRDet++ Two-stage Yes No

S2A-Net Single-stage | No Yes

Our method | Single-stage | Yes Yes

the loss function used. The last subsection describes the post-
processing procedure.

1) MODULES

The proposed neural network consists of a backbone model
for feature extracting, Instance Level Denoising (ILD),
Feature Alignment Module (FAM), and Oriented Detection
Module (ODM).

a: BACKBONE MODEL FOR FEATURE EXTRACTING

We use Retinanet [9] architecture with pre-trained ResNet-50
[43] as the backbone for feature extraction. Retinanet uses
FPN to produce deep hierarchical features suitable for object
detection on satellite and aerial images. FPN produces 5 lev-
els of hierarchical features. Those features are then used in the
prediction modules of FAM and ODM after getting operated
on by the ILD module. Backbone model ResNet-50 is a mid-
dle ground deep learning model which can be fine-tuned on
a consumer-grade machine while not compromising much on
the model performance. ResNet models use skip connections
and batch normalization [44] which helps in training very
deep neural networks. In our work, we freeze the weights of
the first two blocks to prevent the training in editing those
weights, as early convolutional layers of Resnet produce
useful low-level features. All batch normalization layers in
the pre-trained backbone are frozen as well.
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b: INSTANCE LEVEL DENOISING (ILD)

After extracting features from the feature pyramid network,
each feature map is input to ILD to enhance it by attention.
ILD operation starts with applying feature enrichment convo-
lutional layers to the input feature map. The feature enrich-
ment convolutional layers consist of a sequence of dilated
convolutions: four 3x3 dilated convolutions with a dilation
rate of 2 then followed by one 3 x 3 dilated convolutions with
a dilation rate of 4. Those dilated convolutions increase the
respective field on the feature. After the dilated convolutions,
a 1x1 convolution is applied to combine channel features.
Thus, the features are enhanced for the segmentation task.
The ReLLU [45] activation function is used. The enhanced
features are input to two branches. The first branch is to pre-
dict the segmentation mask by a 1x1 convolution followed
by softmax and the second branch is to produce an attention
map by a 1 x 1 convolution. For the second branch, no activate
function is used. Sigmoid can be used but it hinders the gradi-
ent flow in the training process. The attention map produced
is also of the size of the input feature and the attention process
is an element-wise multiplication between the two feature
maps. This module is based on the official GitHub repository
implementation for SCRDet++ (FPN-based) [46] retrieved
in December 2020.

c: FEATURE ALIGNMENT MODULE (FAM)

FAM takes the output of ILD to refine those features by an
Alignment Convolution Layer which takes dense regression
boxes prediction to calculate offset fields. Then the convolu-
tion operation uses the offset fields rather than the standard
grid. Regression box predictions are created by applying a
sequence of two 3x3 convolution layers followed by a one
1x1 convolution layer on the input of FAM. Alongside the
regression box prediction, there is a classification branch with
a similar architecture to regression box prediction to compute
the class probability of the boxes. The ReLLU activation func-
tion is used except at the regression and classification output
of the FAM.

d: ORIENTED DETECTION MODULE (ODM)

The feature map generated from the FAM is the input to
the Oriented Detection Module (ODM).An Active Rotating
Filter layer (ARF) is applied to the input feature with the
configuration of 1 orientation, 8 different rotations, and a 3 x3
kernel. The 8 rotations cover angles from 0 to 360 degrees.
The feature map produced from ARF is forwarded to the
regression branch in the prediction phase. The output of ARF
is forwarded to an oriented response pooling layer, then it is
forwarded to the classification branch in the prediction phase.
The architecture of the prediction phase is similar to the one
used in the FAM but its output is the final prediction of the
model. The ReLU activation function is used except at the
outputs.
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2) PREDICTIONS

a: ANCHOR PREDICTION

The regression output formulation can be expressed in
equation (8). The regression output of FAM predicts the dif-
ference (A) between the ground truth box and the anchor box.
The ground truth box is represented by the box center CP, =
(xg, ¥g), the width wy, the height h,, and the angle 6,, where
the anchor box is denoted by its center point CP, = (x4, y,),
width w,, height h,, and angle 6,. As all anchor boxes are
horizontal then 6, = 0 and the rotation matrix R(6,) is the
identity matrix. K is an integer.

ACP, = (CP, — CP)R(,)(1/wa, 1/ha)
(Awg, Ahg) = (In (wg/Wy), In (hg/hy))

1
—(6g — 04 + K1)
T

A6, ®)
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For the ODM regression output, it is similar to FAM but
instead of using the default square anchor boxes as a refer-
ence, it uses the decoded output from FAM.

Along with each regression output from the neural
network, there is a classification output which classifies
the type of object including the background to represent
non-objects.

b: ANCHOR MATCHING CRITERIA

Skew IoU is used to assign ground truth boxes with an anchor
box. If the IoU between the object and the anchor box is
greater than the foreground threshold then the ground truth
box is assigned to the anchor as long as it has the maximum
IoU value than the rest of the ground truth boxes. Thus, the
anchor box is given a positive label. The anchor box can also
be assigned to a negative label if the IoU between any ground
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truth box with it is below the background threshold. If the
anchor box is not assigned with either a negative or a positive
label, it is ignored in the training process. Last but not least,
there is a corner case of assigning a ground truth box to an
anchor with maximum IoU value between them when ground
truth boxes could not be assigned to any anchor box. This is
needed due to the huge diversity in aspect ratios of certain
categories to realistically design anchor boxes that cover them
(e.g. Bridges).

3) LOSS FUNCTIONS

The ILD module generates coarse semantic segmentation
which needs to be trained in a supervised manner. Thus, the
segmentation output loss (mask loss) function is the average
of the pixel-wise softmax cross-entropy loss function as in
equation (9). Ly p in equation (10) is the pixel-wise softmax
cross-entropy where c¢ is the number of classes including
the background. Aj;p is the weight of the segmentation loss
function. & and w are the height and width of the segmentation
mask. Ol’;’ is the output from the ILD and O‘f} is the ground
truth.

h w
AILD m
mask Loss = (w < h) (; ]ZLILD(OU . Oi)) (9)
Lip(0™, 0%) = — Y " (Oflog(O) (10)

For the ODM and the FAM regression loss, the smooth-
L1 loss is used and for the ODM and the FAM classification
losses, the focal loss is used. The whole loss function can be
seen in equation (11) where equation (12) is for smooth-L1
and equation (13) is for focal loss. Apapy and Aopys are the
weights of the regression and classification loss functions for
FAM and ODM respectively. Npr and Npo are the numbers
of positive samples in the FAM and ODM respectively. L. is
the focal loss with @ and y as weighting hyperparameters,
which control the importance of misclassified examples in
the overall loss. L, is the smooth-L1 loss. P} is a flag that
is equal to 1 if the sample is positive and O otherwise. This
ensures that the regression is only trained when there is an
object within the anchor. Cf and CIO are the classification
output from FAM and ODM. leg is the classification ground-
truth label. rf and rlo are the regression output from FAM and
ODM. rlfg is the regression ground truth. C and r are general
terms for classification and regression outputs in this context.

h w
AILD Mg
Loss = m( Ei E/ Lip(0j, 0))

)
;ﬁf (Y LACL, CH+ ) PEL(xf 1)
J J

+

A0
fo O LA(€P.CH+ > PLa?, 1))
: .

J

+

(1)
Le(r,x%) =Y Smoothy(rf —r;)

1
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Smoothy 1(r)
_ |7 . if |r| >.1 (12)
0.5(r) otherwise
Lo(C.C%) = Y " —a(l — P(C, C%))” In(P(C,, C¥))
if C8 =1
P, ey =1 M= (13)
1 — C otherwise

Kullback-Leibler divergence (KLD) loss function [5] can
be used as a regression loss instead of the smooth-L1 loss.
According to [5], the KLD loss function has some desired
properties over the smooth-L1 loss such as the KLD loss
is more correlated to the IoU between the predicted OBB
and the ground truth OBB than the smooth-L1 loss. For
objects with high aspect ratios, a small angle regression error
in object detection translates into a large localization error.
The KLD loss function weights those errors higher than the
smooth-L1 loss. Also, the KLD loss does not suffer from
the square-like problem, unlike the smooth-L1 loss where
the smooth-L1 loss will be significantly higher for correctly
localized square-like objects due to the periodicity of the
angle. The KLD loss is scale-invariant with the OBB size,
so the gradients from the loss function for errors in localizing
small objects are not dominated by the gradients for errors in
larger objects. This enables the KLD loss to train models for
high-precision OBB detection.

The KLD loss considers both the ground truth boxes and
the predicted boxes as Gaussian distributions. Therefore, the
KLD distance can be calculated between the predicted OBB
and the ground truth OBB. The formulation of an OBB as
Gaussian distribution is shown in equation (14) and Fig.7
where the distribution N (i, £) has the mean p and the
covariance X. Mean u is the box’s center point CP. R(6) is
the rotation matrix.

u=CPT =(x,yT7
(w2 0
A= ( 0 h/2>

=12 = RO)AR©O)T (14)

While the KLD loss function operates on the Gaussian
distribution representation of an OBB, the regression outputs
of the CNN are still encoded as the difference between the
ground truth OBBs and the anchor boxes. This encoding helps
in training neural networks as it is translation invariant and
normalizes the expected output of the CNN around a mean of
zero. The regression outputs of the CNN are transformed first
into Gaussian distribution representation before applying the
KLD loss function. The KLD distance is shown in equation
(15). Tr is the trace function.

1
Dgrp(Npl|Ng) = 5((#,7 — )T Eg_l(up )
P

-1
+Tr(Z; ') +1n ﬁ) -1 (15)
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(b) 2-D Gaussian distribution representation.

FIGURE 7. Oriented bounding boxs represented as 2-D Gaussian
distributions for the KLD loss function.

The KLD loss function is shown in equation (16). If the
KLD distance Dgzp(N,||N,) is equal to zero then the loss
function will be equal to zero as well, while if the KLD
distance is large, the loss function will be equal to 1. The In
function is used on the KLD distance to smooth out the loss
function.

1

_ 16
1+ In(1 + Dgrp(N, [ ING)) (10

Lo, Np) =1

4) POST-PROCESSING

For post-processing, the prediction output of the model is for-
warded to non-maximum suppression (NMS) to filter dupli-
cate boxes. The non-maximum suppression threshold is set
to be 0.1 IoU between boxes for filtering and the maximum
number of output boxes is 2000.

IV. EXPERIMENTAL RESULTS

This section has 3 subsections. The first subsection describes
Dota V1.0 [47] dataset used to evaluate the proposed model.
The second subsection details the experimental setup includ-
ing the used machine and software, the dataset preparation
and the data augmentation, and the hyperparameters. The
third part is for the results. This includes an ablation study
comparing the baseline model with the proposed model,
followed by a comparison between the proposed model
with a selection of state-of-the-art methods on the Dota
V1.0 dataset.

A. DATASET

There are different datasets for the task of object detection in
remote sensing images. Different benchmarks have been used
in different researches to evaluate different models. In this
paper, Dota V1.0 [47] will be used due to the following
factors:

o It is a public dataset of aerial images from different
elevations and different resolutions.
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« The dataset contains 2,806 images. The images in the
dataset are divided into 1/2 for training, 1/6 for valida-
tion, and 1/3 for testing.

« Ithas 188,282 annotated objects which can be enough to
train a deep learning model.

« It has a public leaderboard.

« It has oriented bounding box annotations for the objects.

« It has images from different resolutions ranging from
800x 800 to 4000x4000.

o It covers 15 different categories which are Plane (PL),
Baseball diamond (BD), Bridge (BR), Ground track
field (GTF), Small vehicle (SV), Large vehicle (LV),
Ship (SH), Tennis court (TC), Basketball court (BC),
Storage tank (ST), Soccer-ball field (SBF), Round-
about (RA), Harbor (HA), Swimming pool (SP), and
Helicopter (HC).

While there are more recent versions for the Dota dataset,
Dota V1.0 has been used the most for evaluation even by
the most recent works in the literature. Evaluating existing
models, using the most recent version of the Dota dataset,
is left for future work.

The evaluation metric used is mean average preci-
sion (mAP) and average precision (AP) for each category.

B. EXPERIMENTAL SETUP

1) THE USED MACHINE AND SOFTWARE

All models are trained and tested on a machine equipped
with a 24 GB VRAM NVIDIA GeForce RTX 3090 GPU
and with Ubuntu 20.04 as the operating system. The deep
learning framework used to code the models is Pytorch [48]
with MMDetection [49].

2) DATASET PREPARATION AND DATA AUGMENTATION

The dataset is prepared in two different ways depending on
the experiment type: a setup for the ablation study for the
hyperparameters and a setup for the comparison with the
State-of-the-Art.

During the ablation study for the hyperparameters: the
model is trained on the training dataset only and the validation
dataset is used to test the model. Single-scale images are used
during training and testing. The images are then cropped by
a sliding window of 1024x 1024 with a stride of 824. The
images with sizes less than 1024 x 1024 are zero-padded. This
setup is used to decrease the required training time to search
for the hyperparameters.

During comparison with the state-of-the-art: the model is
trained on both the training and the validation dataset. The
test dataset is used for the test. Multi-scale images are used in
training and testing the model where the images in the dataset
are resized by 0.5, 1, and 1.5 times the original scale while
maintaining the aspect ratio. The images are then cropped by
a sliding window of 1024 x 1024 with a stride of 512. The
images with sizes less than 1024 x 1024 are zero-padded.

During training for both setups, we augment the dataset
by flipping and rotating the images where the images are
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TABLE 2. Results on the DOTA V1.0 test dataset task 1 (on oriented bounding boxes) and comparison between baseline S2A-Net with our model.

S2A-Net-ILD-KLD is our model trained using the KLD loss function.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP FPS
sBza./:e-llI\Leet 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42 16.0
SZA(E;\LC:S—)ILD 89.23 82.88 55.33 80.30 80.76 83.51 89.30 90.69 87.34 87.72 72.92 67.38 78.45 78.95 71.27 79.73 12.5
szA'N(%'L'uLS]))'KLD 8825 | 85.12 | 58.24 | 8021 | 80.82 | 83.80 | 89.06 | 90.78 | 85.86 | 88.15 | 69.39 | 69.70 | 78.85 | 80.00 | 77.69 | 8039 | 12.5

randomly flipped horizontally and vertically and randomly
rotated by one of the following angles: 30, 60, 90, 120, and
150 degrees.

3) HYPERPARAMETERS
The following are the optimizer hyperparameters and the
training scheme:

o Stochastic gradient descent (SGD) with momentum
optimizer is used with an initial learning rate of 0.01 with
momentum 0.9 and weight decay 0.0001.

o Linear learning rate warm-up is used for the first
500 iterations.

o Gradient clipping is used.

« Batch size of 8 is used.

« Model is trained for 12 epochs.

The selected optimizer hyperparameters are adopted from
the S2A-Net paper. The model suffers from overfitting when
trained for more epochs. This might be a result of using a high
initial learning rate of 0.01 with a batch size of just 8. Increas-
ing both the batch size and the number of epochs might
improve the model training. Also, decreasing the learning rate
while increasing the number of epochs can improve the model
training. Thus, exploring those possibilities is left for future
work. We initially tested ADAM [50] and RMSProp [51].
The exploding gradient problem emerged while using any
of them unless a very low learning rate is used. Potential
approaches to prevent exploding gradients are to set up dif-
ferent update rates for early layers which involves more trial
and error or to apply gradient clipping while tuning the weight
decay hyperparameter to prevent steep updates to the model
weights. Therefore, it is left for future work. A learning
rate warm-up with gradient clipping was only needed for
SGD with momentum to prevent exploding gradients from
emerging.

The following are the loss function hyperparameters used
to train the model:

« The weight of the classification and the regression losses
for ODM and FAM are 1.0 while the weight of the
segmentation loss is 0.1.

e o =0.25and y = 2.0 for the focal losses.

The model uses a single squared anchor per location for
each feature level with a scale of 4 times the stride size of
the level. The stride sizes are 8, 16, 32, 64, and 128. Thus,
the scales of the anchors are 32, 64, 128, 256, and 512,
respectively. Therefore, higher levels of the FPN are used to
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ROI Operation Region on Predicted Bounding Box on Feature Map
Ground Truth OBB on Feature Map = = = =

(a) SCRDet++ (FPN-based) Rol box for Rol Warping

Feature Sample Location @
Ground Truth OBB on Feature Map = = = =
Predicted OBB on Feature Map

(b) Feature Alignment Module (FAM) Operation

FIGURE 8. ROl warping in SCRDet++ based on [46] and alignment
convolution operation from FAM in S2A-Net. If both regression box
predictions are correct, Rol warping can propagate more noisy features
around the object of interest for the final prediction phase.

TABLE 3. Results on the DOTA v1.0 validation dataset including usage of
different segmentation loss function weights (1, p) for our model
S2A-Net with ILD. The models are trained on the training dataset only.

Model )\ILD )\FAMs)\OD]\/I mAP

S2A-Net 0 1,1 71.86
S2A-Net-ILD 0 1,1 69.64
S2A-Net-ILD 0.1 1,1 72.48
S2A-Net-ILD 0.2 1,1 71.96
S2A-Net-ILD 0.5 1,1 | 70.797
S2A-Net-ILD 1 1,1 68.66

detect larger objects. The anchor matching IoU thresholds are
0.5 or higher for positive matching and 0.4 or less for negative

matching.

C. RESULTS

1) ABLATION STUDY

The ablation study consists of 3 parts:

1) Part 1 is a comparison between the proposed model
(S2A-Net-ILD) against the baseline S2A-Net while
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(b) Prediction samples of our new hybrid model S2A-Net-ILD

FIGURE 9. Result samples on some of the improved categories from DOTA V1.0. The prediction samples of baseline model S2A-Net is
generated by using official implementation of S2A-Net [52].

TABLE 4. Results on the DOTA V1.0 test dataset task 1 (on oriented bounding boxes). The models are trained using data augmentation and multi-scale
training. The R3Det-GWD results are reported without the ensemble method for a fair comparison. * means best results overall.  means best results for a

single-stage model.

Methods Backbone | PL_| BD | BR | GIF 5V v SH TC BC ST SBF RA HA | SP_| HC | mAP
Two-stage Models
Rol-Transformer [14] R-101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CAD-NET [31] R-101-FPN 87.8 82.4 49.4 73.5 71.1 635 76.7 90.9 79.2 733 48.4 60.9 62.0 67.0 62.2 69.9
SCRDet [29] R-101-FPN 90.18 81.88 55.30 73.29 72.09 77.65 78.06 90.91 82.44 86.39 64.53 63.45 75.77 78.21 60.11 75.35
CenterMap [25] R-101-FPN 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03
CSL [23] R-152-FPN 90.25 85.53* 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
SCRDet++ [4] R-101-FPN 90.05 84.39 55.44 73.99 77.54 7111 86.05 90.67 87.32 87.08 69.62 68.90 73.74 71.29 65.08 76.81
Lietal [12] R-101-FPN | 90.41% | 85.21 55.00 78.27 76.19 72.19 82.14 90.70 87.22 86.87 66.62 68.43 75.43 72.70 57.99 76.36
CG-Net [22] R-101-FPN 88.75 85.18 57.41 71.88 73.23 82.68 88.14 90.90* 86.00 85.37 62.99 66.74 77.98 79.90 71.27 77.89
AProNet [27] R-101-FPN 88.77 84.95 55.27 78.40 76.65 78.54 88.45 90.83 86.56 87.01 65.62 70.29 75.43 78.17 67.28 78.16
Faster R-CNN OBB Rol-Transformer [24] R-50-FPN 87.89 85.01 57.83 78.55 75.22 84.37 88.04 90.88 87.28 85.79 71.04 69.67 79.00 83.27* 73.43 79.82
ReDet [19] IEZIE;(]: 88.81 82.48 60.83 80.82 78.34 86.06* 88.31 90.87 88.77* 87.03 68.65 66.90 79.26 79.71 74.67 80.10
DODet [28] R-50-FPN 89.96 85.52 58.01 81.22 78.71 85.46 88.59 90.89 87.12 87.80 70.50 71.54* 82.06 77.43 74.47 80.62
Oriented R-CNN [26] R-50-FPN 89.84 85.43 61.09* 79.82 79.71 85.35 88.82 90.88 86.68 87.73 72.21 70.80 82.42% 78.18 74.11 80.87*
Single-Stage Models

R3Det [17] R-152-FPN 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
R3Det-DCL [24] R-152-FPN | 89.26 83.60 53.54 7276 [ 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 71.37
R-50-FPN 88.43 84.33 56.91 82.19% 76.69 83.23 86.78 88.90 83.93 85.73 72.07 65.67 76.76 78.37 65.31 78.35
R3Det-GWD [18] R-152-FPN 89.28 83.70 59.26° 79.85 76.42 83.87 86.53 89.06 85.53 86.50 73.04% 67.56 76.92 77.09 71.58 79.08
R-50-FPN 89.90 84.91 59.21 78.74 78.82 83.95 87.41 89.89 86.63 86.69 70.47 70.87 76.96 79.40 78.62 80.17

R3Det-KLD [5] R-152-FPN | 89.92° | 8513 | 59.19 81.33 78.82 84.38° 87.50 89.80 87.33 87.00 72.57 71.35 77.12 79.34 78.68% | 80.63" |
R-101-FPN 89.28 84.11 56.95 79.21 80.18 82.93 89.21 90.86 84.66 87.61 71. 66 68.23 78.58 78.20 65.55 79.15
S2A-Net [3] R-50-FPN 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42
S2A-Net-ILD (Ours) R-50-FPN 89.23 82.88 55.33 80.30 80.76 83.51 89.30% 90.69 87.34 87.72 72.92 67.38 78.45 78.95 71.27 79.73
S2A-Net-ILD-KLD (Ours) R-50-FPN 88.25 85.12 58.24 80.21 80.82* 83.80 89.06 90.78 85.86 | 88.15*% 69.39 69.70° 78.85° 80.00” 77.69 80.39

using the same regression loss function (smooth
L1-loss).

Part 2 is an ablation study on the selection of the
segmentation loss ( Ay p ) weight.

Part 3 is a comparison between the proposed model
trained using the KLD loss function (S2A-Net-ILD-
KLD) against those trained using the smooth L1-loss
(S2A-Net-ILD)

Part 1: The addition of ILD only to S2A-Net improved
the mAP by 0.31% as shown in Table.2. The new model
(S2A-Net-ILD) offers advantages and disadvantages over
the baseline. The advantages include: a general trend in

2)

3)
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improving object detection for vehicles like planes, small
vehicles, large vehicles, and helicopters by 0.34%, 0.82%,
0.32%, 0.19% and 1.69% AP as those objects are often in
clusters or within a complex background and shading. The
model also improves the detection of small objects/areas
surrounded by a complex background like swimming pools
by 1.94%. The highest detection improvements are for both
Soccer-ball fields and Basketball courts by 2.62% and 2.47%
AP. We don’t have a theoretical hypothesis for the increase of
AP for Soccer-ball fields and Basketball courts. Detection of
harbors has slightly improved by 0.15% AP, as some harbors
are small objects and often accompanied by docking ships.
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(b) Prediction samples from S2A-Net-ILD-KLD

FIGURE 10. Result samples on some of the improved categories from DOTA V1.0 while using the KLD as a regression

loss function.

Fig.9 shows the improvement in the results of our method
against the baseline. The new model suffers from degradation
in the detection of larger objects that are more dominant and
not within clusters of other objects like bridges, roundabouts,
baseball diamonds, and ground track fields by —0.78%,
—2.41%, —1.65%, and —0.87% mAP. The results suggest
that ILD is unnecessary and hinders S2A-Net to perform
on larger objects especially when there are few observations
to train the model on. For example, the instance counts of
ground track fields and roundabouts in the dataset are 678 and
871 while there are 48,891 observations of small vehicles.
Instance level denoising (ILD) also adds computation cost on
top of S2A-Net and slows it down from 16 FPS to 12.5 FPS
on RTX 3090. S2A-Net using a backbone of ResNet 101 with
FPN runs at 12.7 FPS under the same conditions, so our
model is comparable in speed with it but with better overall
mAP as shown in Table 4.

The performance gain from ILD is not as significant in
the new model as in adding it to the baseline of SCRDet+4
(FPN-based). This can be explained by the feature sampling
and alignment methods in both models. SCRDet++ uses
Rol warping on the Rol generated by the region proposal
network (RPN) while S2A-Net uses the Alignment Convolu-
tion Layer on the predictions generated from FAM. The Rol
generated from RPN in SCRDet++ are horizontal bounding
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boxes around the object projected on the feature map, unlike
the Alignment Convolution Layer which applies deformable
convolution by sampling features from the oriented bounding
boxes. Thus, noisy features will cascade to the final predic-
tion phase even with correct RPN predictions in SCRDet++
while not as significantly in S2A-Net. This is shown in Fig.8.
Thus, the effect of using ILD to denoise and decouple features
in SCRDet++ is more significant than S2A-Net. Applying
ILD on S2A-Net still improves the prediction of small and
cluttered objects because:

o Applying ILD before the FAM can improve the ini-
tial regression prediction of the bounding boxes for
small and cluttered objects which is used for feature
alignment.

« FAM applies Alignment Convolution Layer operation
on feature areas where there is not an object as the clas-
sification branch is not used during testing to suppress
the results. Thus, applying ILD to decrease background
noise can decrease false positives.

Part 2: Table.3 shows the effect of changing the loss
function weights. When the weight of the segmentation loss
(A1Lp) is set to 0, the ILD module is trained alongside the
rest of the network without further supervision. When Ay p
has a non-zero value, gradients from coarse semantic seg-
mentation affect and guide the training of the ILD module.
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The results suggest that coarse semantic segmentation is
useful for training the ILD module. Without it, the model
performance degrades. The model performs worse with high
Arp values such as 0.5 and 1. The goal of the model is
object detection rather than coarse semantic segmentation,
so high Aj;p values cause the gradients from coarse semantic
segmentation to be dominant.

Part 3: As shown in Table. 2, using the KLD loss sig-
nificantly improves the performance of the proposed model
by 0.66% mAP to reach 80.39% mAP. Using the KLD loss
improves the detection of many object categories with large
aspect ratios such as bridges, and harbors by 2.91%, and
0.40% AP. It also improves the detection of small objects and
areas such as small vehicles, and swimming pools by 0.06%,
and 1.05% AP. Using the KLD loss improves detection
for square-like objects such as baseball diamonds, storage
tanks, and roundabouts by 2.24%, 0.43%, and 2.32% mAP.
Using KLD loss also improves the detection of other vehicles
such as large vehicles, and helicopters by 0.29% and 6.42%
AP. Fig.10 shows the improvement in results of training
S2A-Net-ILD with the KLD loss function instead of the
smooth L1-loss.

2) COMPARISONS WITH THE STATE-OF-THE-ART

Table.4 shows a comparison of our model S2A-Net-ILD-
KLD with state-of-the-art methods. S2A-Net-ILD-KLD
achieves a competitive result of 80.39% overall mAP and
It achieves 80.82% and 88.15% AP on small vehicles
and storage tanks respectively. DODet [17] and Oriented
R-CNN [26] are the two-stage models which outperform
S2A-Net-ILD-KLD on the mAP metric. RPN for both DODet
and Oriented R-CNN directly predicts oriented bounding
boxes using horizontal anchor boxes for rotated Rol Align to
extract features for the second stage. Therefore, they are less
prone to overfitting than Rol-transformer and RRPN-based
two-stage models, as they need a fewer number of train-
able parameters. DODet also aligns the input features to its
classifier using its regression output for Rol extraction. This
slows the DODet model but it yields a better classification
precision. Oriented R-CNN uses midpoint offset representa-
tion for its RPN output. This representation overcomes the
issues from rotation regression by predicting offsets for the
OBB vertices instead. R3Det with the KLD loss function
(R3Det-KLD) outperforms S2A-Net-ILD-KLD only when
using ResNet-152 as a backbone. When both R3Det-KLD
and S2A-Net-ILD-KLD use ResNet-50, S2A-Net-ILD-KLD
achieves a higher mAP. ResNet-152 is way slower and more
memory-intensive than ResNet-50, so it isn’t suitable for
many setups and applications. It isn’t feasible to train the
model using ResNet-152 backbone on a single GPU without
using a small batch size which isn’t ideal.

V. CONCLUSION AND FUTURE WORK

In this paper, a new model has been proposed by incor-
porating Instance Level Denoising (ILD) into S2A-Net to
improve predictions on small and cluttered objects such as

51188

small vehicles and ships. Our method improved the mAP
value of S2A-Net to be 79.73% using the smooth L1-loss
for regression on the Dota V1.0 dataset. S2A-Net with ILD
has the downside of performance degradation on certain
categories such as bridges. This stems from the ILD atten-
tion module adding more complexity to the model while
there are fewer observations to train on some categories
and not providing advantages over the baseline for larger
objects. When the proposed model is trained using the
Kullback-Leibler divergence (KLD) as a regression loss
function, the model achieves a competitive result of 80.39%
mAP, as the KLD loss function doesn’t suffer from boundary
discontinuity and a square-like problem, unlike the smooth
L1-loss. This paper also compared the new model with the
current state-of-the-art and specified reasons why the overall
mAP of those models might be higher than our model. For
future work to improve our model, a single anchor box is
computationally efficient but it also increases the training
difficulty as objects of different categories have different
aspect ratios. Thus, adaptive anchor boxes or using dif-
ferent anchor boxes can improve results. Oriented R-CNN
achieves very competitive results by using a midpoint offset
representation for its OBB proposal predictions. This repre-
sentation can be tested on single-stage models. Adding ILD
to S2A-Net decreased the model inference speed from 16 FPS
to 12.5 FPS which is around 21.875% slower. Thus, figuring
out a different more lightweight attention module is worth
investigating.
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