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ABSTRACT Artificial Intelligence (AI) has become a core feature of today’s real-world applications,
making it a trending topic within the software engineering (SE) community. The rise in the availability
of Al techniques encompasses the capability to make rapid, automated, impactful decisions and predictions,
leading to the adoption of Al techniques in SE. With industry revolution 4.0, the role of software engineering
has become critical for developing productive, efficient, and quality software. Thus, there is a major need
for Al techniques to be applied to enhance and improve the critical activities within the software engineering
phases. Software is developed through intelligent software engineering phases. This paper concerns a
systematic mapping study that aimed to characterize the publication landscape of Al techniques in software
engineering. Gaps are identified and discussed by mapping these Al techniques against the SE phases to
which they contributed. Many systematic mapping review papers have been produced only for a specific
Al technique or a specific SE phase or activity. Hence, to our best of knowledge within the last decade,
there is no systematic mapping review that has fully explored the overall trends in Al techniques and their
application to all SE phases.

INDEX TERMS Artificial intelligence, machine learning, deep learning, data mining, software engineering,
requirements engineering, analysis and design, software development, software testing, software mainte-

nance, software deployment.

I. INTRODUCTION
As software products become pervasive in all areas of soci-

ety, the productive building of high-quality software has
become crucial to the software industry. The rise of artificial
intelligence (AI) applications is potentially a game-changer
in improving Software Engineering (SE) phases to ensure
higher-quality software, accelerate productivity, and increase
project success rates. Al has the capability to assist software
teams in many aspects, from automating certain activities in
an SE phase to providing project analytics and actionable rec-
ommendations, and even making decisions [1]. Al techniques
can support software engineers by detecting parts of the SE
phases that are more likely to contain vulnerabilities and rais-
ing alerts about these issues. Such techniques can help to pri-
oritize efforts and optimize inspection and testing costs. They
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aim to increase the likelihood of finding vulnerabilities and
reduce the time required for software engineers to discover
these vulnerabilities. SE phases involve various activities that
range across all the stages of the Software Development Life-
cycle (SDLC) phases. Al techniques like machine learning
(ML), heuristic algorithms (HA), deep learning (DL), data
mining (DM), data analytics (DA), and natural language pro-
cessing (NLP) have been widely explored in the SE phases.
As software grows in size, its complexity increases, along
with the time and cost required for its overall construction.
Extensive data is generated from all the SDLC stages. This
data varies between the planning, requirements engineering,
design, system development, testing, deployment, training,
and maintenance phases [2].

Considering the growing interest in Al techniques in the
SE domain, this systematic mapping study attempts to bridge
a gap by extensively analyzing the relevant studies published
between 2015 and 2021. The choice of the duration is because
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we saw an escalation of the use of Al techniques within this
period of time. The aim is to understand and analyze the
Al techniques, SE phases, evaluation metrics, contribution
of Al techniques, trends, and demographics of the primary
studies. The remainder of this paper is organized as follows:
Section II provides works related to reviews of Al in SE.
Section III describes the research method used in the current
research. Section IV discusses the results and their implica-
tions. Finally, Section V presents the concluding remarks.

Il. RELATED WORKS

This section aims to highlight review papers published in the
Al research domain, emphasizing the need to assess their
contributions to the research domain.

Machine Learning (ML) has been widely investigated for
building prediction models, estimating software development
efforts, and improving the accuracy of other estimation tech-
niques. Ahmad et al. [3] reported comprehensively on the
planning, conducting, and execution phases of work using
ML techniques to recognize diverse software requirements.
This study calls for effective collaboration ventures between
requirements engineering (RE) and ML researchers or practi-
tioners to tackle the open challenges confronted when devel-
oping real-world applications in the broad field of RE. Alsolai
and Roper [4] provided a review of software maintainability
prediction. This paper analyzes the measurements, metrics,
datasets, evaluation measures, ML problems, individual pre-
diction models, and ensemble prediction models employed in
the field of software maintainability prediction. Meanwhile,
Li et al., [5] reviewed unsupervised software defect predic-
tion primary studies, providing researchers with an indication
of the diversity of unsupervised learning techniques used in
software defect prediction. Malhotra [6] and Pandey et al.
[7] performed a systematic literature review to investigate
the performance of ML techniques in terms of software fault
prediction. The authors summarized the datasets, reduction/
selection techniques, ML techniques, software features, and
performance measures before investigating them. The perfor-
mances of these predicted models using ML techniques were
compared with other ML techniques. The analysis showed
that the ML-based models outperformed the classical sta-
tistical methods. Azeem er al. [8] reported a review of the
use of ML techniques for code smell detection. This paper
highlighted a number of limitations in the existing studies,
as well as the open issues that had to be addressed in future
research.

Binkhonain and Zhao [9] reported a systematic review
of selected ML approaches used for identifying and clas-
sifying non-functional requirements in requirements docu-
ments. This paper presents the results of recent advances in
RE research. More significantly, using ML for RE provides
exciting opportunities to develop novel expert and intelligent
systems to support RE tasks and processes.

The systematic mapping by Durelli et al. [10] focused on
surveying research efforts that were based on using ML algo-
rithms to support software testing. Most solutions proposed in
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the selected studies scale well and show that some problems
currently faced by the software-testing industry could be
addressed using ML-based solutions. Nevertheless, few pri-
mary studies evaluated their ML-based solutions in industrial
settings or using industry-grade software.

Data mining is the process of uncovering patterns and
other valuable information from large datasets. With the
evolution of data warehousing technology and the growth
of big data, the adoption of data mining techniques has
rapidly accelerated over the last two decades, assisting com-
panies by transforming their raw data into useful knowledge.
El- Masri et al. [11] reported a systematic review of the lit-
erature on Automated Log Abstraction Techniques (ALATS).
The authors proposed a quality model with seven industry-
relevant quality aspects for evaluating ALATSs. Researchers
can use this model and the recommendations to learn
about the state-of-the-art ALATS, understand research gaps,
enhance existing ALATSs, and/or develop new ones. Soft-
ware engineers can use the model and recommendations to
understand the advantages and limitations of existing ALATs
and identify which ones best fit their needs. Nayebi and
Abran [12] concluded that spam or fake review detection is
one of the major problems in the mobile application domain.
In addition to spam reviews, there are various kinds of user
reviews, some of which include no useful data for information
extraction. Hence, it is necessary to merge multiple criteria
to not only identify suspicious reviews but also differenti-
ate useful reviews from others so that reviews complying
with the usefulness criteria can be processed for information
extraction.

Villamizar et al, [13] conducted a study that aimed to
characterize the publication landscape of RE for ML-based
systems, outlining the research contributions and contempo-
rary gaps for future research. These contributions comprise
analyses, approaches, checklists and guidelines, quality mod-
els, and taxonomies. Hence, two main contributions were
made to this research: (i) mapping relevant knowledge about
the current state of RE for ML and (ii) helping to identify
points that still require further investigation.

The existing systematic reviews have focused on examin-
ing one or several Al technique(s) that have been used in a
particular SE phase(s). Hence, there is a foremost need to
perform a systematic mapping review examining the major
Al techniques in all the main SE phases.

Ill. RESEARCH METHOD

Systematic mapping or scoping studies are conducted to pro-
vide an overview of a research domain through classification.
These studies mainly explore the existing literature to inves-
tigate the coverage of multiple topics, the frequency of publi-
cations, the research trends, and the publication venues where
relevant studies have been published [14]. The systematic
mapping in the current study mainly follows the guidelines
suggested by Petersen er al. [15]. According to the guide-
lines for systematic mapping studies in SE [15], the essential
process steps of the current systematic mapping study were
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defining the research questions, searching for relevant papers,
screening the papers, keywording the abstracts, extracting the
data, and mapping, as shown in Fig. 1. Each process step has
an outcome and the outcome of the complete process is the
systematic map, which is explained as follows [15]:

Definition of Research Questions (Research Scope) -
The primary goal of a systematic mapping study is to provide
an overview of a research area and identify the quantity and
type of research and results available within this area.

Conduct Search for Primary Studies (All Papers) - Pri-
mary studies were identified using search strings on scientific
databases or browsing manually through relevant conference
proceedings or journal publications.

Screening of Papers for Inclusion and Exclusion (Rel-
evant Papers) - Inclusion and exclusion criteria were used
to exclude studies that were not relevant for answering the
research questions.

Keywording of Abstracts (Classification Scheme) - Key-
wording is a way to reduce the time needed to develop the
classification scheme and ensure that the method considers
the existing studies.

Data Extraction and Mapping of Studies (Systematic
Map) - Once the classification scheme was in place, the
relevant articles were sorted into the scheme, i.e., the actual
data extraction took place.

A. RESEARCH QUESTIONS

The primary RQ of this systematic mapping study was: ‘What
Al techniques are used in SE?” This primary question was
divided into six RQs. Table 1 lists the formulated RQs along
with the rationale behind each RQ.

B. DATA SOURCES

Six electronic databases were considered as primary data
sources for potentially relevant studies. Google Scholar was
not included in the list due to its low-precision results and the
overlapping of results from other data sources. The electronic
databases used in the search process are listed in Table 2.

C. SEARCH TERMS
Identifying the relevant search terms is essential for an
adequate search of the relevant studies. Kitchenham et al.
[16] suggested population, intervention, comparison, and out-
come (PICO) viewpoints in this regard. These viewpoints
have been extensively used by several SLRs. Here, the rel-
evant PICO terms are listed:

Population: primary studies in software engineering?

Intervention: Al techniques?

Comparison: Techniques, Contribution, Dataset, Perfor-
mance metric, and SE phases

Outcome: Classification of the types and combination of
Al techniques applied in SE phases.

On the basis of the PICO structure, a generic search string
was constructed to maintain the consistency of the search
across multiple databases:
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(“Artificial intelligence” OR "Artificial intelligence tech-
niques” OR ”Machine Learning” OR ”Deep learning” OR
“Data mining” OR “Big data” OR “Swarm intelligence” OR
“Sentiment analysis” OR “Predictive models” OR “Analyt-
ics models” OR “Heuristic Algorithm” OR “Data Driven”
OR “Natural Language Processing”) AND (" Software engi-
neering” OR ”Requirements Engineering” OR “Software
Planning” OR “Software Analysis” OR “Software Design”
OR “Software Development” OR “Software Testing” OR
“Software defect prediction” OR “Software Deployment”
OR “Software Training” OR “Software Maintenance” ).

D. INCLUSION AND EXCLUSION CRITERIA

Inclusion and exclusion criteria were used to select and des-
elect studies from the data sources to answer the RQs in this
systematic mapping study. These criteria were applied to all
the studies retrieved during the different phases of the study
selection procedure (see Table 3.) Early cited articles were
also included, provided the full text was available.

E. SOFTWARE ENGINEERING PROCESS

The authors introduced several SE phases, as illustrated in
Fig. 2. These SE phases included features and observations
from existing studies and consisted of eight phases: (i) plan-
ning, (ii) requirements engineering, (iii) design, (iv) system
development, (v) testing, (vi) deployment, (vii) training, and
(viii) maintenance.

1) PLANNING

The planning phase is when the project plan is developed and
involves identifying, prioritizing, and assigning the tasks and
resources required to build the structure for a project.

2) REQUIREMENTS ENGINEERING
This is the second phase, in which each set of relevant
information is elicited, analyzed, prioritized, and negotiated.
The next phase of RE involves a detailed definition of the
requirements, documenting these requirements, and getting
verification from the stakeholders.

3) DESIGN

This is the third phase and is concerned with the whole
structure of the future project to be implemented. The soft-
ware requirement specification is used as the input to design
the architecture,database and user interface of the software
product being developed.

4) SYSTEM DEVELOPMENT

The fourth step consists of the coding that builds the soft-
ware. It incorporates all elements such as classes, files,
infrastructure, and executable task. In this phase, the actual
development of the product starts according to the designed
architecture.
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FIGURE 1. Systematic mapping process [15].

TABLE 1. Research questions.

RQ  Research questions Motivation

No.

RQ1 In which phases of SE have Al techniques been heavily applied? To identify the SE phases in which Al techniques have been
heavily applied.

RQ2 What types of Al techniques have been used in SE? (i.e., ML, DL, DM, To identify the most common Al techniques that have been

HA) used in SE.

RQ3 What is the contribution of each Al technique in SE? To distinguish the contributions made by applying the Al
approach and developing new techniques and hybrid Al
techniques, as proposed in the primary studies.

RQ4 What are the most frequently used evaluation metrics? To highlight the most frequently used evaluation metrics,
based on the Al techniques used in software engineering.

RQ5 What are the trends and directions of the application of Al techniques To highlight the current Al capabilities used in SE.

in SE?
To discuss the future direction of Al techniques in SE.

RQ6 What are the demographics of the primary studies? To highlight the distribution of primary studies based on the
type, year, and venue of publication.

5) TESTING fixed or corrected ahead of the next release, depending on

The testing involves the verification and correction of any
defective parts of the code. All are thoroughly tested and
retested if necessary until all the problems are resolved.

6) DEPLOYMENT

In the deployment phase, the software/subsystem/components
are placed and executed on the required physical hardware
nodes (e.g., mobile, server, or desktop). The project is then
made available to the end-users.

7) TRAINING

The training activities perform a detailed audience and task
analysis through interaction with the proposed users of the
system, the key client representatives, whereby the training
increases knowledge and usability.

8) MAINTENANCE
The maintenance phase follows the entire life cycle of the
software. If users or developers find a problem, it may be
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how serious it is.

IV. RESULTS AND DISCUSSION
In this section, all the RQs are answered by analyzing the
results extracted from the collection of primary studies.

A. RQ1:IN WHICH PHASES OF SE HAVE Al TECHNIQUES
BEEN HEAVILY APPLIED?

Based on the current analysis of the selected primary papers,
eight SE phases were identified. In total, 23 of the papers
implemented Al techniques in the requirements engineering
phases, 16 in the system development phases, 13 in the testing
phases, and 9 in the maintenance phases, as depicted in
Fig. 3. Meanwhile, the remaining 3, 3, 2 and 2 implemented
Al techniques in planning, deployment, design, and training
phases, respectively.

Recently, many RE methodologies have focused on deriv-
ing the requirements for resolving customer problems using
Al techniques [17]. Subsequently, some approaches have
explored how to integrate ML with the RE phase, as shown in

VOLUME 10, 2022



H. Sofian et al.: Systematic Mapping: Artificial Intelligence Techniques in Software Engineering

IEEE Access

TABLE 2. Electronic database.

Database name

Link

Taylor and Francis

https://taylorandfrancis.com

MDPI

https://www.mdpi.com

IEEE Xplore

https://ieeexplore.ieee.org/Xplore/home.jsp

Science Direct

https://www.sciencedirect.com

Springer Link

https://link.springer.com

Wiley

https://onlinelibrary.wiley.com

TABLE 3. Inclusion and exclusion criteria.

Inclusion criteria

IC1 Articles that are peer-reviewed
IC2 Articles providing the SE phases and integrating artificial intelligence techniques
IC3 Inclusion of the most recent article in the case of multiple studies on same theme

IC4 Articles published from 2015 to 2021

Exclusion criteria

EC1 Articles that do not meet the inclusion criteria

EC2 Articles that are only available in a form of an abstract or presentation

EC3 Studies in languages other than English

EC4 Studies with no validation of the proposed techniques or validation solely through expert opinion

EC5 Articles providing unclear results or findings

Table 4. The RE phase adopts ML the most, compared to the
other SE phases. Specifically, the analytics design view and
the data preparation view may be ideally suited to support
activities within the RE phase. From the analysis shown
in Table 4, the system development phase has also heavily
adopted Al techniques. Based on the current analysis of pre-
vious research, the authors found that ML is the Al technique
that is increasingly being adopted in the system development
phases. The testing phase involves probing into the behavior
of software systems to uncover faults. Most testing activities
are complex, resource-consuming, and costly. Hence, many
practical strategies have been adopted to circumvent these
issues. As Table 4 highlights, the authors found that ML has
also been widely used in the testing phase. This study shows
that ML is most commonly used to automate software testing
activities and help researchers to identify critical test plans
for assisting in saving resources.
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B. RQ2: WHAT TYPES OF Al TECHNIQUES HAVE BEEN
USED IN SE? (I.E., MACHINE LEARNING, DEEP LEARNING,
DATA MINING, HEURISTIC ALGORITHM)

Along with the flourishing of Al techniques in modern com-
puting, many researchers and studies are investing Al in
their domain. Referring to Table 4, eight Al techniques have
been used extensively to facilitate activities in SE: Machine
Learning (ML), Heuristic Algorithm (HA), Deep Learning
(DL), Data Driven (DD), Machine Learning (ML) + Natural
Language Processing (NLP), Machine Learning (ML) +
Data Driven ( DD), Machine Learning ( ML )+ Heuristic
Algorithm( HA), and Deep Learning (DL) 4 Data-Driven
(DD). Each AI technique has its own Al capabilities (refer
to section IV - E). The current analysis reveals that ML in
SE has recently received increased attention. There has been
a growing interest in applying ML to automate various SE
phases. These findings show that ML has been applied to
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FIGURE 2. Software engineering phases.
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FIGURE 3. Visualization of a systematic map for Al techniques in software engineering phases.
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TABLE 4. Paper distribution in software engineering phases.

Software Categories of
Engineering

Al Techniques Number of
papers

Phases
ML HA DL DD

ML+NLP (ML+DD  [ML+HA DL+DD

Planning PS1 PS25 PS36

Requirements PS3, PS45 PS11
engineering PS8, PS51,
PS9, PS56
PS10,
PS22,
PS29,
PS30,
PS31,
PS32,
PS33,
PS34,
PS41,
PS57,
PS59,
PS60

PS4, PS54 PS8 23
PS5

Design PS24 PS36

System PS2, PS13, PS7,

development PS18, PS14, PS19,
PS27, PS46 PS43,
PS42, PS47,
PS55 PS50,
PS53

PS54 PS49 16

Testing PS2, PS17 PS23
PS12,
PS15,
PS24,
PS27,
PS28,
PS37,
PS38,
PS39,
PS40,
PS52

13

Deployment PS20,
PS22,
PS26

Training PS1,
PS16

Maintenance PS1, PS23
PS21, PS48
PS37, PS50
PS52,
PS58

PS44 9

address a myriad of SE problems and it has attracted greater
interest among researchers and practitioners than other Al
techniques. The current results suggest that interest in apply-
ing ML in the SE phases has risen considerably in recent
years. Data-driven techniques were reported as the emerging
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Al techniques in SE. Data-driven techniques can identify
and evaluate which decision-modeling techniques would help
in making important decisions. Data-driven techniques usu-
ally explore the potential of predictive analytics offered by
Al techniques, which enables Al-based decision making.
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Number of studies for each category of Al techniques
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FIGURE 4. Number of studies for each category of Al techniques.

TABLE 5. Atrtificial intelligence techniques in the primary studies.

Artificial Intelligence Primary Studies Number of papers
Techniques
ML PS1, PS2, PS3, PS8, PS9, PS10,PS12,PS15, PS16, 35
PS18, PS20, PS21, PS22, PS26, PS27, PS28, PS29,
PS30, PS31, PS32, PS33,PS34, PS35, PS37, PS38,
PS39, PS40, PS41, PS42, PS52, PS55, PS57, PS58,
PS59, PS60
HA PS13, PS14, PS24, PS25, PS46 5
DL PS17, PS45, PS48, PS50 4
DD PS7, PS11, PS19, PS23, PS36, PS43, PS47, PS51, 10
PS53, PS56
ML & NLP PS4, PS5 2
ML & DD PS44, PS54 2
ML & HA PS6
DL & DD PS49 1

The heuristic algorithm is another important Al technique
that has been used in SE. This is designed to solve a prob-
lem faster and more efficiently than the traditional methods
by sacrificing optimality, accuracy, precision, or complete-
ness for speed. Heuristic algorithms (HA) are used to solve
SE problems, a class of decision problems. A HA can
produce a solution individually or be used to provide a
good baseline and then supplemented with optimization
algorithms.

51028

C. RQ3: WHAT IS THE CONTRIBUTION OF EACH Al
TECHNIQUE IN SE?

As shown in Table 6, ML is the main Al technique that is
often used in SE. ML can be used as a stand-alone technique
or be combined with other Al techniques to produce hybrid
techniques, which can be more efficient in solving SE prob-
lems. ML can also perform pattern recognition and statistical
inference for learning, in order to improve its performance
when carrying out a task. Most researchers in SE have applied
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TABLE 6. Application, improvement and development of artificial intelligence techniques in the primary studies.

Application / Al Techniques Primary Studies Number of
Improvement / papers
Development
1. Application of Single Al Apply ML PS2, PS3, PS8, PS9, PS10, PS12, PS16, PS18, PS20, PS21, 32
technique PS22, PS27,
PS28, PS29, PS30, PS31, PS32, PS33, PS34, PS35, PS37, PS38,
PS39,
PS40, PS41, PS42, PS52, PS55, PS57, PS58, PS59, PS60
Apply DL PS17, PS45 2
Apply DD PS7, PS11, PS19, PS23, PS36, PS43, PS47, PS48, PS50, PS51, 12
PS53,
PS56
Apply HA PS13, PS14, PS24, PS25, PS46 5
2. Application of hybrid of Apply ML & NLP PS4, PS5 2
Al techniques
Apply HA & ML PS6 1
Apply DD & ML PS44, PS54 2
Apply DD & DL PS49 1
Apply hybrid ML PS26 1
3. Improvement of Al Improve ML PS15 1

techniques and model

4. Development of new AlDevelop new ML PS1
technique or model

ML for predicting the coding intricacy [18], source code
mining [19], high level requests [20], the delay of issues [21],
software defection [22]-[24], and software request classifi-
cation [25]-[27]. On the other hand, ML can also classify
a textual conversation [28] and improve requirements trace-
ability recovery [29]-[31], software quality [32], bug fixing
[33], [34], security control [35], maintainability [36], and
vulnerability prediction [37]. A data-driven model is based on
the analysis of the data about a specific system. Data-driven
techniques have been applied for domain validation [38],
speed delivery [39], defect prediction [40], mining treatment
[41], application classification [42], decision making [43],
error correcting [44], security enhancement [45], delivery
prediction [46], and enhancing requirements reusability [47].

HAs are often used in Al to get a computer to find an
approximate solution instead of an exact one [48]. Previous
researchers have applied HA techniques in Al to reduce the
efforts of SE updates [49], as well as predict continuous fail-
ure [50] and software reliability [51]. HAs also help to solve
agile development problems with swarm intelligence algo-
rithms [52]. ML aims to provide increasing levels of automa-
tion in the knowledge-engineering process, replacing much
time-consuming human activity with automatic techniques
[53]. For this reason, ML has been successfully applied in
many areas, such as fraud detection, speech and image recog-
nition, and NLP [54]. Anh Do et al. and Khan et al. applied

VOLUME 10, 2022

ML and NLP to automatically classify and capture creative
requests [55] and provide resource knowledge acquisition
from online forums [38]. By learning from previous com-
putations and extracting regularities from massive databases,
ML can help to produce reliable and repeatable decisions.
Marcen et al. applied HA and ML in developing traceability
models [56].

The main concept behind the data-driven model is to
find relationships between system state variables without
explicit knowledge of the system’s physical behavior [53].
Papamichail et al. and Fabian et al. applied data-driven
approaches and ML to software sustainability [57] and min-
ing validity [58]. Malhotra and Khanna applied hybrid ML for
software change prediction [59]. Meanwhile, Siavvas et al.
and Ding et al. developed new forms of ML to increase
the accuracy when predicting software security risk [60] and
improve ML software defect prediction [49]. The evolution
of artificial neural networks (ANNS) involves increasingly
deep neural network architectures with improved learning
capabilities, summarized as DL [54]. Ranjan Bal ef al. and
Morakot et al. applied DL for imbalanced learning in soft-
ware fault prediction [61] and estimating story points [62].

Overall, Table 5 has shown the classified studies according
to the type of Al techniques that have been used. We also
observed that some of the Al techniques have been singly
applied and some are used in combination or hybrid with
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other techniques. Even more, some of the research work
improves on the existing Al techniques before using them and
some even develop new models. The classification has been
detailed in Table 6.

D. RQ4: WHAT ARE THE MOST FREQUENTLY USED
EVALUATION METRICS?

Evaluation metrics are used to measure the quality of statisti-
cal or ML models. Many different types of evaluation metrics
are available to test an ML model. It is highly important to
use multiple evaluation metrics because a model may perform
well using one measurement from one evaluation metric but
poorly using another measurement from another evaluation
metric. Using the appropriate evaluation metrics is critical
in ensuring that the ML model is operating correctly and
optimally. Quantitative evaluation is a method that yields
numerical indices gathered primarily from objective methods
of data collection, systematic and controlled observation, and
a prescribed research design. In particular, the evaluation
metric must be specified. In ML systems, the precision, recall,
F1-score, F-measure, accuracy, and area under curve (AUC)
were considered the highest forms of evaluation used by
researchers in this study, as shown in Table 7.

E. RQ5: WHAT ARE THE TRENDS AND DIRECTIONS OF
THE APPLICATION OF Al TECHNIQUES IN SE?

Based on the study analysis, we perceive the current trend
in SE is the exploitation of five Al capabilities: prediction,
assisting in decision making, automation of SE activities,
improving performance metric values and hybridization of
automation and improvement for performance metrics. Each
Al capability is enabled by the eight Al techniques men-
tioned in Section IV-B. The following sections explain the Al
capabilities, which were arranged based on which were most
frequently adopted during SE activities.

Al Capability 1 (Prediction): Predicting refers to antic-
ipating what will happen in the future [1]. For example,
the testing phase predicts the existence of vulnerability.
Most software vulnerabilities are caused by coding, design
errors [63], and software delivery speed [39]. Therefore,
several ML models have been built to evaluate the capacity
of the indicators to predict the existence of vulnerabilities
in software classes and the delivery speed [63], [39]. The
development of prediction models for predicting changes
in internal quality attributes using source-code metrics and
ML algorithms helps to improve the software quality and
reduce the cost of fixing these bugs [33]. Redundant pruning
considers the interaction between features, which improves
the prediction performance of the proposed algorithm. The
grid-search method is used to control true and false minimum
support [23]. Genetic programming (GP) adaptation and pre-
diction rules are represented as a combination of metrics
and threshold values that should correctly predict, as far as
possible, the failed builds extracted from a base of real-world
examples [64]. A new software defect prediction method,
Pruned Histogram-based Isolation Forest (PHIForest) [49],
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and the Weighted Regularization Extreme Learning Machine
(WR-ELM) model [61] can mitigate some of the side effects
caused by an imbalanced training dataset and enhance predic-
tion performance by changing the design or the simple logic
of the software. Moustafa et. al, on the other hand, proposed
ensemble classifiers to solve the problem of class-imbalanced
datasets by improving their classification accuracy [24].
Technology-oriented learning, a project-oriented educational
environment, can also benefit from ML classifiers to allow
the early prediction of low performers, leading to better
team—instructor synchronization [65]. Choetkiertikul et al.
developed an accurate model to predict whether an issue
would be at risk of being delayed and, if so, the extent of the
delay (risk impact) and the likelihood of the risk occurring
[21]. A cooperative learning environment with the aid of
technology may be a key revolution in the project-oriented
academic environment [66]. Project models can be effectively
exploited by practitioners to predict community smells, espe-
cially when trained using Random Forest as the classifier
[67]. Since many SE organizations do not yet have a large
codebase when they most want to be able to predict external
quality issues, this generalization may allow organizations to
train models on other projects and then use these models to
predict the quality issues that may affect their own [68]. Better
support for predicting when high-level requirements will be
completed can help project managers to make better planning
decisions [20]. A predictive model can be built which, after
proper validation, will be able to predict future defects in a
given project [40], [51], [59], [46]. The maintainability eval-
uation methodology targets multimedia projects that harness
information residing in code hosting facilities [69].

The poor performance of the SE process is due to the
different dataset characteristics of source project data and tar-
get project data. Effective multi-objective learning techniques
in cross-project environments help to address this problem
[22]. Requirements quality can be used as a predictive fac-
tor for end-system operational performance [70]. Combining
features from multiple models did not necessarily result in
increased accuracy and sometimes resulted in a degradation
in performance [37].

Al Capability 2 (Assisting in Decision Making): Decision
making plays an important role in the success of a business or
an organization. Based on multiple criteria, decision making
is difficult as several available criteria may be applied when
making a decision. It is crucial to provide clear guidance
for understanding and addressing the difficulties inherent in
high-quality Al systems. The current version was constructed
in a bottom-up, best-effort manner to identify what was
missing from the guidelines or the knowledge of research
communities [71]. The proposed Crowd-based Requirements
Engineering by Argumentation (CrowdRE-Arg) approach
can be utilized by future user forums and other social media
platforms to make them more intuitive and user-friendly [72].
An initial human subject evaluation was conducted of the
framework using feature descriptions from three application
domains and the results demonstrate the framework’s ability
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to generate creative requirements [55]. Interaction design pat-
terns help in complying with the usability and user experience
principles, thus promoting the usage of standards and best
practices [27].

Software practitioners face the problem of how to reli-
ably evaluate the performance of defect classifiers to select
the best-performing out of several classifiers. The Fuzzy
Analytical Hierarchy Process (FAHP) approach will increase
software developers’ confidence in research outcomes and
help them to avoid false conclusions and infer reason-
able boundaries [73]. The Decision Tree for small- and
medium-sized software and the ELM for large-sized soft-
ware can be a solution to deliver software in scheduled
time [69]. Pickerill ef al. developed a model that fosters
the sharing and reuse of knowledge, components, tools,
and concepts to accelerate the instantiation process [54].
Researchers often rely on quick and dirty techniques to
curate datasets. The Project History Analysis of Time-
Series Method (PHANTOM) improves the existing methods
with respect to time analysis and hardware requirements
but without sacrificing accuracy [74]. Applications without
well-rounded considerations of security problems are becom-
ing increasingly important for a successful product. Develop-
ers get useful information according to their demands from
two aspects: security requirements for the whole App and
those for the given functionality [45].

Al Capability 3 (Automation of SE Activities): Automa-
tion has been around for centuries, far longer than humans
have had computers. Automation means that machines repli-
cate human tasks. However, AI demands that machines
also replicate human thinking. Presently, there are limited
approaches for extracting requirement-related information
from the community forums. The automated approach auto-
matically identifies the rationale and requirements-related
information using ML algorithms from the Reddit forum
[38]. The Evolutionary Learning to Rank for Traceability
Link Recovery (TLR-EL to R) approach recovers traceabil-
ity links between the requirements of a software system
[75]. A set of useful ML algorithms have been adopted
to discover a wide spectrum of traceability links [31]. The
semi-automated approach can be classified as a form of Intel-
ligent Computer-Aided Software Engineering (I-CASE) that
utilizes standard NLP and ANN approaches, both types of
Al to extract actors and actions from descriptions of use case
models’ NL requirements [30].

When the data is very large and/or is expressed in
terms of a complex model of software projects, interpre-
tation is often complicated. In software analytics, it is
possible, useful, and recommended to combine data min-
ing and optimization using data miners that use/ are used
by optimizers (DUO) [76]. Watanabe et al. proposed an
approach to reducing the number of false negatives in the
classification process [77]. While based on deep learn-
ing, fully end-to-end prediction systems were proposed by
Choetkiertikul ef al. for estimating story points, removing
the users from manually designing features of the textual
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description of issues [62]. Classification models derived
from historical data largely align with expert reasoning
about the applicability of security controls [35]. A new
approach, Active Learning Fingerprint-based Anti-Aliasing
(ALFAA), was developed by Amreen et al. for correcting
identity errors in the SE context and applied in the OpenStack
ecosystem [44].

Al Capability 4 (Improving Performance Metric Value):

Supporting the improvement process means a project that
results in the ability of the region to enhance services in
particular areas. Certain threats are accounted for in almost
all the studies but some threats have been ignored by most
of them. Extracts of remedial actions from the literature,
which should be followed by future researchers to provide
an effective experimental setup, yield practical and reliable
results while developing software prediction models using
search-based approaches [78]. The framework proposed by
Haider et al. used the team foundation server repository for
communication and coordination purposes within global soft-
ware development, a case-based ranking to find their ranking
from the previous requirements, and then the J48 classifica-
tion [79]. Automatic software requirements classification can
help developers to document their projects more effectively,
minimize reworking, and make the software easier to use
and understand [80]. To date, the classification accuracy has
not been satisfactory. An ensemble model was produced that
enhanced the weighted voting ensemble by using the accu-
racy per class for each base ensemble to determine the best
classification of the functional requirements in six classes
to enhance accuracy and availability [26]. SmartSHARK,
developed by Trautsch et al., can execute different plug-ins
for an arbitrary git-using project [58].

The need for the proper identification of software require-
ments at an early stage is crucial since continuous changes
to initial requirements can lead to faults. Semantic infor-
mation that allows flexibility and traceability is effective
for providing useful recommendations to add to a sys-
tem or improve already identified requirements [81]. The
maintainability of legacy systems has always been a key
task for software companies, considering that the inverse
requirements were error-free and easily changeable according
to customer requirements [36]. Catal and Guldan proposed a
model combining the power of five high-performance indi-
vidual classifiers and using the majority voting aggregation
rule. Since this does not rely on a single classifier and evalu-
ates the result of each classifier, its generalization capability is
high [47]. The time invested in testing the software during the
software cycle can be reduced to datasets that incur changes
and errors. The process can be performed efficiently and
effectively [47].

Al Capability 5 (Hybrid of Automation of SE Activities
and Improvement of Performance Metric Value): More than
45% of the software development effort has been expended
on software maintenance for fixing software bugs. Crowd-
sourcing has been employed to facilitate attribute construc-
tion to improve the bug report summarization task [34].
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TABLE 7. Performance metrics in the primary studies.
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Performance Metric Primary Studies Number of
Papers
Precision PS1, PS2, PS3, PS5, PS6, PS9, PS10, PS13, PS16, PS19, PS27, 25
PS30, PS32, PS33, PS35, PS37, PS38, PS40, PS47, PS48, PS49,
PS50, PS51, PS59, PS60
Recall PS1, PS2, PS3, PS5, PS6, PS9, PS10, PS13, PS16, PS19, PS27, 24
PS30, PS32, PS33, PS35, PS37, PS39, PS47, PS48, PS49, PS50,
PS52, PS59, PS60
F-measure PS1, PS2, PS3, PS6, PS9, PS15, PS16, PS20, PS27, PS40, PS47 11
Accuracy PS12, PS20, PS30, PS31, PS40, PS41, PS48, PS49, PS55, PS57 10
F-value PS29, PS33 2
Clarity, novelty, usefulness PS4 1
F1-score PS5, PS10, PS13, PS30, PS32, PS33, PS35, PS37, PS38, PS48, 12
PS49, PS52
MCC PS6, PS16 2
Query Validation PS7 1
Satisfaction level PS8 1
Absolute residuals, mean absolute  PS11 1
residuals, standardize performance
AUC PS12, PS14, PS15, PS16, PS19, PS28, PS35, PS38, PS39 9
Average absolute error, average PS17 1
relative error
Complexity PS18, PS20, PS44 3
Inheritance PS18, PS44 2
Coupling PS18, PS44 2
Cohesion PS18, PS44 2
False alarm PS19, PS26, PS35 3
Sensitivity, specificity PS21 1
G-mean PS21, PS26, PS39 3
Balance PS21, PS26, PS39 3
Feature engineering, model features, PS22 1
general features
Has Defects, K-Fold validation PS23 1
Reusability, component interaction, PS24 1

component dependency
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TABLE 7. (Continued.) Performance metrics in the primary studies.

Conclusion validity threat, Internal PS25 1
validity threat, Construct validity

threat

Linguistic quality defect PS29 1
True positive PS29, PS40 2
False positive PS29, PS40 2
Validity PS34 1
Time performance PS36 1
Effort size relationship PS42 1
Data and knowledge, tools and PS43 1

methods, concept

Median absolute error, mean PS45 1
absolute error, standard accuracy

Next release problem, risk, software PS46 1
design, software cost estimation,
software effort estimation

Threshold PS47 1
Split, lump PS50 1
Feature aggregation PS53 1
Execution time PS54 1
Recommended requirement PS56 1
Correctly predicted error, software  PS58 1

maintainability

Number of publication per year
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FIGURE 5. Number of publications per year.
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TABLE 8. Top 10 represented publications.

Title

Number of papers

Empirical Software Engineering

IET Software

Information and Software Technology

IEEE Transactions on Software Engineering
IEEE Access

Sustainability

Applied Sciences

The Journal of Systems and Software
Enterprise Information Systems

IEEE Transactions on Reliability

8

N NW W w w o al o

Approaches that perform source code mining and analysis
on a massive scale can be expensive. A complementary tech-
nique has been used to reduce the amount of computation
performed by the ultra-large-scale source code mining tasks
without compromising the accuracy of the results [19]. These
discussions are a rich source of information that can be used
to build multiple kinds of support tools for developers. Inte-
grating convolution neural networks with the normalization
approach can serve as a support tool to help in rectifying
misclassified issue reports [82].

F. RQ6: WHAT ARE THE DEMOGRAPHICS OF THE
PRIMARY STUDIES?

To answer this RQ, three aspects of the primary studies were
examined: the publication year, the publication type, and
the publication that has published the most relevant studies
(journals and proceedings).

1) PUBLICATION YEAR

From the period (2016-2021), 60 publications were extracted
from the literature, following the study methodology
(Section IIT). Fig. 5 shows the evolution of the publication
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of Al techniques in the literature. Research activity involving
the Al techniques used in SE is progressive and active. From
2016 to 2017, the research activity was linear with few pub-
lications. However, in 2018, the research activity involving
Al techniques increased significantly, with 13 publications.
Interest increased considerably due to the growing demand
for Al techniques in SE. Therefore, in 2020, the research
activity notably increased, with 37 publications, more than
any other year in this analysis. In 2019, a slight decrease
in publications was evident, with three papers. Moreover,
in 2021, three journal articles were published. It is also impor-
tant to highlight that no firm and valid conclusion can be
made for 2021 because the current research covers only part
of that year. Generally, despite the number of publications
on Al techniques research changing from year to year, the
research activity continues to increase and the research area
shows stable growth, particularly during the last six years.

2) PUBLICATION TYPES
In this mapping study, the authors covered 28 differ-
ent journals, two conference proceedings, one symposium
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proceedings, and one book chapter. As Fig. 6 shows, most
primary studies were journal articles (56), followed by con-
ference proceedings (4), symposium proceedings (1), and,
lastly, book chapters (1).

3) PUBLICATION WITH RELEVANT STUDIES

With respect to the publication venues in which studies of
Al techniques in SE were published, Table 8 shows the ten
most active journals. Empirical Software Engineering was
the top contributor among all the journals, with eight pub-
lications. Meanwhile, the IET Software, Information, and
Software Technology journal and the IEEE Transactions on
Software Engineering journal each provided five articles. The
other selected studies published three articles in the following
journals: IEEE Access, Sustainability, Applied Sciences, and
the Journal of Systems and Software.

G. THREATS TO VALIDITY
We have to discuss the following threats to the validity of the
study for the future improvement of mapping studies.

1) CONSTRUCT VALIDITY

The findings that we discuss most likely are valid only for
our collection of papers. However, we have attempted for the
inclusion of as many relevant papers as possible. To achieve
this, we focus on the most relevant digital libraries that might
include the application of Al techniques in any of the SE
phases. Furthermore, we did not restrict our search to papers
mentioning “Artificial Intelligence techniques” explicitly but
also included terms closely related to artificial intelligence,
without narrowing it to the exact terms for main Al tech-
niques. This enabled us to capture many related Al techniques
publications without focusing on the very specific technique
of machine or deep learning only. Another threat avoided
with regards to the definition of the inclusion/exclusion cri-
teria in the screening activity. We decided to consider the
title, abstract, and keywords metadata. We also decided to
include most papers we were uncertain about in order to
avoid the exclusion of relevant publications due to the lack of
investigation. In the first step, all the papers were read and,
then, inclusion/exclusion was decided. Finally, to improve
construct validity in the future we should also consider papers
that might use more diversified terms of the Al techniques.

2) INTERNAL VALIDITY

To alleviate the threat related to the data extraction performed
for screening and classification, we decided to discuss some
of the papers that contribute to more than one phase of the SE
activities. The classification was performed in several settings
after analysing the main contributions of each paper. The
adopted classification scheme comprises main Al techniques
that correspond to the defined research questions.

3) CONCLUSION VALIDITY
Regarding the conclusions, we have discussed and identified
only several main Al capabilities that have been applied to
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support SE activities and phases. For the study’s replicability,
we provided the complete research method in section 3,
which enables replicating every phase of this mapping study.

4) EXTERNAL VALIDITY
The results cannot be generalized to other problems domains.

V. CONCLUSION

This systematic mapping study provides an overview of the
contributions and trends involving Al techniques in the SE
literature. This study shows that the literature on this topic
is heterogeneous, presenting several Al techniques used in
SE. A significant proportion of the literature focuses mainly
on SE phases, Al techniques, and performance measurement.
To conduct this study, the authors used the mostly identified
eight SE phases to assess the Al techniques environment.
This study found that ML is used the most for automating
the process in various SE phases by using a designation
algorithm. ML is seen continually evolving and enhancing its
efficiency and accuracy. Primarily, ML has been intensively
used for automation and improvement activities in the RE
phase. On the other hand, ML also enables the automation
of various decision-making tasks and significantly assists in
SE activities that require prediction. ML is a critical com-
ponent of predictive analysis. Furthermore, it was noticed
that hybrid techniques using ML with other AI techniques
further enhanced the value of the performance metrics in
their respective evaluation. This combination is effective at
handling multidimensional and multi-variety data, which can
be achieved in dynamic or uncertain environments. While
carrying out this systematic mapping, it became clear that
ML techniques have been heavily used compared to other Al
techniques. Additionally, it was observed that Al techniques
have great potential to be relevantly utilized in many more
activities of software development. Several SE phases were
identified in which very few Al techniques have been applied.
The next research step was to investigate further and then
refine the key findings to identify other potential activities
within SE phases, such as designing and testing, in which Al
techniques could be utilized more in the future.

APPENDIX
This section gives an overview of the research involving Al
techniques in SE by briefly summarizing each study.

PS1: Siavvas et al. proposed an ML model to evaluate the
capacity of technical debt indicators to predict the existence
of vulnerabilities in software classes [60].

PS2: Naseer et al. employed the cooperative learning envi-
ronment with the aid of technology to determining the best
revolution of the project-oriented academic environment. The
proposed approach offers a direct way to the triumph of
sustainable education [18].

PS3: Khan et al. proposed the CrowdRE-Arg approach to
utilize future user forums and other social media platforms to
make them more intuitive and user-friendly [28].
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PS4: Anh Do et al. aimed to evaluate the initial human sub-
ject using a feature descriptions framework from three appli-
cation domains. The results demonstrate the framework’s
ability to generate creative requirements [55].

PS5: Khan er al. set out an automated approach, which
automatically identifies the rationale and requirements-related
information using machine learning algorithms from the
Reddit forum [83].

PS6: Marcen et al. presented the TLR-ELtoR approach,
which recovers traceability links between the requirements
of a software system. This approach may be beneficial for
dealing with issues such as tacit knowledge and vocabulary
mismatch [75].

PS7: Garcia et al. aimed to support expertise location
through an ontology that can link information about pro-
grammers or any team member with the resources used in a
project [84].

PS8: Haider et al. proposed using a TFS repository frame-
work for communication and coordination purposes of the
GSD, CBR to find their ranking from previous requirements,
and then J48 as the classification [29].

PS9: Al-Hroob et al. described a semi-automated approach
to classifying an intelligent CASE (I-CASE)2. This utilizes
the standard NLP and ANN approaches, both Al, to extract
actors and actions from the descriptions of use case models’
NL requirements [85].

PS10: Li et al. proposed a set of useful ML algorithms to
discover a wide spectrum of traceability links [31].

PS11: Elias et al. showed that the delivery speed prediction
performance of software enhancement projects with a search
method based on feature construction was statistically better
than the performance obtained with multiple line regression
when the unadjusted function point and the number of prac-
titioners were used as the independent variables [39].

PS12: Kumar et al. introduced prediction models for
predicting changes in internal quality attributes using
source-code metrics and machine learning algorithms. This
would help to improve the software quality and reduce the
cost of fixing these bugs. It helps the tester to determine the
process of fixing bugs, i.e., changing the design or simple
logic of the software [33].

PS13: Watanabe et al. presented a detailed approach to
reducing the number of false negatives in the classification
process [86].

PS14: Saidani et al. investigated the GP adaptation predic-
tion rules as a combination of metrics and threshold values,
which should correctly predict, as far as possible, the failed
builds extracted from a base of real-world examples [50].

PS15: Ding and Xing proposed a new software defect
prediction method (PHIForest) based on the improved
histogram-based isolation forest, which can mitigate some of
the side effects caused by an imbalanced training dataset and
enhance prediction performance [49].

PS16: Palomba and Tamburri proposed a project model
that can be effectively exploited by practitioners to predict
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community smells, especially when trained using Random
Forest as the classifier [67].

PS17: Ranjan Bal and Kumar proposed a simple and effi-
cient WR-ELM model for predicting the number of software
faults [87].

PS18: Kumar et al. proposed a model to help the tester to
find the process of fixing bugs, i.e., changing the design or
the simple logic of the software [33].

PS19: Agrawal et al. proposed a DUO that can lead
to better (e.g., faster, more accurate, more reliable, more
interpretable, and multi-goal) analyses in empirical software
engineering studies, in particular those studies that require
automated tools to analyze (large quantities of) data [76].

PS20: Nasser et al. presented technology-oriented learn-
ing, a project-oriented educational environment that can
also benefit from ML classifiers for the early predic-
tion of poor performers and lead to better team—instructor
synchronization [65].

PS21: Malhotra and Lata introduced a Safe-Level-SMOTE
method to handle imbalanced data and improve the perfor-
mance of ML techniques when developing efficient main-
tainability prediction models to forecast high maintainability
effort classes at the early stages of software development,
which is crucial in any software project [42].

PS22: Blincoe et al. investigated better support for pre-
dicting when high-level requirements will be completed,
which would help project managers to make better planning
decisions [20].

PS23: Daniel and Slowik presented a predictive model
for proper validation to predict future defects in a given
project [40].

PS24: Diwaker et al. gave an overview stating that fuzzy
logic is more compatible for predicting reliability than
PSO [51].

PS25: Malhotra and Khanna et al. reported extracts of
remedial actions from the literature that should be followed
by future researchers to ensure an effective experimental
setup that would yield practical and reliable results while
developing SPMs using SBAs [78].

PS26: Malhotra and Khanna et al. provided insights to soft-
ware practitioners and researchers from an efficient selection
of the available techniques [59].

PS27: Choetkiertikul et al. developed an accurate model to
predict whether an issue would be at risk of being delayed
and, if so, the extent of the delay (risk impact), and the
likelihood of the risk occurring [21].

PS28: Ryu and Baik introduced effective multi-objective
learning techniques in cross-project environments [22].

PS29: Dargan et al. reported that requirement quality can
be used as a predictive factor for end-system operational
performance [70].

PS30: Canedo and Mendes proposed an Automatic Soft-
ware Requirements classification to help developers to doc-
ument their projects more effectively, minimize rework, and
make the software easier to use and understand [80].
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PS31: Rahimi et al. introduced an ensemble model that
enhances the weighted voting ensemble by using the accu-
racy per class for each base ensemble to determine the
best classification for FR, thus enhancing accuracy and
availability [26].

PS32: Li et al. proposed a set of useful ML algorithms that
can be adopted to discover a wide spectrum of traceability
links [31].

PS33: Rodriguez et al. reported that interaction design
patterns help in complying with the principles of usability
and user experience, thus promoting the usage of standards
and best practices [27].

PS34: Fujii et al. presented the current version QA4Al,
which was constructed in a bottom-up, best-effort manner
to identify what was missing from the guidelines or the
knowledge of research communities [71].

PS35: Agrawal et al. recommended combining data mining
and optimization using DUO for software analytics as this
was possible and useful [76].

PS36: Nayebi et al. investigated where abstraction and syn-
thesis are automated steps in the Gandhi Washington method,
which condenses the data and later aggregates sequences of
items based on their commonality in structure and their effect
on a software performance measure [41].

PS37: Theisen and Williams investigated how the Naive
Bayes consistently outperformed the other three classifiers
in the case study. Combining features from multiple models
did not necessarily result in increased accuracy and some-
times resulted in a degradation in performance. While it was
thought possible that the models could cover some of the
same vulnerabilities, it was unexpected that some features
could prove to be distractors or have a negative effect on
accuracy [37].

PS38: Ghunaim and Dichter presented the Fuzzy Analyti-
cal Hierarchy Process (FAHP) approach, which will increase
software developers’ confidence in research outcomes and
help them to avoid false conclusions and infer reasonable
boundaries [73].

PS39: A new defect prediction model framework based
on atomic class-association rule discovery was presented
by Shao ef al. It included data pre-processing, rule model
building, and performance evaluation. Redundant pruning
considers the interaction between features, which improves
the prediction performance of the proposed algorithm. The
grid-search method is used to control true and false minimum
support [23].

PS40: Moustafa et al. reported that ensemble classifiers
had solved the problem of class-imbalanced datasets by
improving their classification accuracy [24].

PS41: Upadhyaya and Rajan introduced a complementary
technique that reduces the amount of computation performed
by the ultra-large-scale source code mining tasks without
compromising the accuracy of the results [19].

PS42: Rahman and Islam proposed that a Decision Tree for
small- and medium-sized software and ELM for large-sized
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software can be a solution that enables software delivery
within the scheduled time [69].

PS43: Figalist et al. proposed a foster model that shared
and reused knowledge, components, tools, and concepts to
speed up the instantiation process [43].

PS44: Papamichail and Symeodis maintained that the eval-
uation methodology targeted multimedia projects that harness
information residing in code hosting facilities [57].

PS45: Choetkiertikul et al. employed a deep learning-
based, fully end-to-end prediction system for estimating story
points, removing the users from manually designing the fea-
tures of the textual description of issues [62].

PS46: Brezocnik et al. introduced swarm intelligence
methods that are beneficial for solving agile software devel-
opment tasks [52].

PS47: Pickerill et al. proposed PHANTOM, which
improves on existing methods with respect to analysis
time and hardware requirements but without sacrificing
accuracy [74].

PS48: Al-Hawari er al. employed an associative classifi-
cation review mining approach to enable the automatic clas-
sification of application reviews into software maintenance
tasks [88].

PS49: Xin Xia et al. presented integrating CNN with the
normalization approach to serve as a support tool that would
help in rectifying misclassified issue reports [82].

PS50: Amreen et al. proposed a new approach (ALFAA)
for correcting identity errors in the SE context and applied it
in the OpenStack ecosystem [44].

PS51: Liu et al. described how developers get useful infor-
mation according to their demands from two aspects: secu-
rity requirements for the whole app and those for the given
functionality [45].

PS52: Jiang et al. employed crowdsourcing to facilitate
attribute construction to improve the task of bug report
summarization [34].

PS53: Choetkiertikul et al. proposed a novel approach
to delivery-related risk prediction in iterative development
settings. This approach could predict how much work gets
done in the iteration [46].

PS54: Trautsch et al. presented SmartSHARK, which
can execute different plug-ins (e.g., their vesSHARK or
mecoSHARK) for an arbitrary git-using project [58].

PS55: Hilton and Gethner reported that since many SE
organizations do not yet have a large codebase when they
most want to be able to predict external quality issues, this
generalizability may allow organizations to train models on
other projects and then use those models to predict the quality
issues that may affect their own [68].

PS56: Diamantopoulos and Symeonidis proposed an effec-
tive model for providing useful recommendations to add
to a system or improve already identified requirements.
Semantic information allows flexibility and traceability when
it comes to maintaining and updating the original software
requirements [81].
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PS57: Catal and Guldan proposed a model that combines
the power of five high-performance individual classifiers and
uses the majority voting aggregation rule. Since it does not
rely on a single classifier and evaluates the result of each
classifier, its generalization capability is high [47].

PS58: Igbal et al. considered that inverse requirements
were error-free and easily changeable according to customer
requirements [36].

PS59: Bettaieb et al. described how classification models
derived from historical data largely align with expert reason-
ing about the applicability of security controls [35].

PS60: Chandra et al. investigated how the time invested in
testing software during the software cycle can be reduced to
datasets that incur changes and errors. This process can be
performed efficiently and effectively [32].
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