
Received March 21, 2022, accepted April 30, 2022, date of publication May 10, 2022, date of current version May 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3174125

A Survey of the RISC-V Architecture
Software Support
BENJAMIN W. MEZGER 1, (Student Member, IEEE),
DOUGLAS A. SANTOS 1,2, (Student Member, IEEE), LUIGI DILILLO 2, (Member, IEEE),
CESAR A. ZEFERINO 1, (Member, IEEE), AND DOUGLAS R. MELO 1, (Member, IEEE)
1Laboratory of Embedded and Distributed Systems, University of Vale do Itajaí, Itajaí 88302-901, Brazil
2Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier, University of Montpellier, 34095 Montpellier, France

Corresponding authors: Benjamin W. Mezger (ben@edu.univali.br) and Douglas R. Melo (drm@univali.br)

This work was supported in part by the Foundation for Support of Research and Innovation, Santa Catarina, under Grant
FAPESC-2021TR001907; in part by the Brazilian National Council for Scientific and Technological Development under Contract
313.513/2021-0; and in part by the University of Montpellier and La Région Occitanie under Contract 20007368/ALDOCT-000932.

ABSTRACT RISC-V is a novel open instruction set architecture that supports multiple platforms while
maintaining simplicity and reliability. Despite its novelty, the software support for RISC-V has been
increasing in the last years, given that popular toolchains and operating systems already have support for
RISC-V. However, although many works have been exploring the RISC-V software ecosystem, no work that
raised the current state of software support for RISC-V is available. In this context, this survey reviews the
contributions introduced in the last years to understand the RISC-V’s software ecosystem and its usage in
both academic and industrial environments. We classified and evaluated the works into four main categories:
application fields, RISC-V implementations, software architecture, and deployment features. The primary
goal of this research is to provide the community with a comprehensive overview of the current state of
RISC-V software support and identify and highlight the main contributions from recent work.

INDEX TERMS RISC-V, software support, operating systems.

I. INTRODUCTION
With the increasing number of instructions of popular
Instruction Set Architectures (Instruction Set Architecture
(ISA)s) and the requirements of backward compatibility of
older extensions, researchers from the University of Califor-
nia at Berkeley developed an open ISA based on Reduced
Instruction Set Computer (RISC) principles. This architecture
was named RISC-V [1] and seeks to provide a base ISA and
optional application-specific extensions to support software
engineers with a small and robust ISA [2]. In other words,
it offers a stable ISA for compiler and operating system
designers, enabling them to work with hardware architects to
provide additional resources tomeet application requirements
and participate in the decisions and implementations of the
RISC-V ISA specifications [2]. Nowadays, RISC-V is main-
tained by RISC-V International, a nonprofit organization [3].

RISC-V aims at becoming a universal ISA by support-
ing numerous processor sizes, from embedded controllers

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

to high-performance computers, and a wide variety of soft-
ware stacks and programming languages [2].Moreover, given
the future computing landscape, multiple platforms such as
Internet-of-Things (IoT) devices and personal mobiles will
likely dominate the market, requiring ISAs to support these
systems [4].

Over the last decade, several studies have focused on the
different issues related to the RISC-V architecture, and part
of these contributions is summarized and analyzed in survey
papers focused on security [5]–[8] and open-sourcing [9],
[10] aspects. Although many studies have addressed the soft-
ware stack for RISC-V, there is no report on the literature
analyzing these studies from a unified perspective. Driven
by the growth of the RISC-V ecosystem and the lack of
studies concerning the current state of software for this ISA,
this work seeks to fill this gap and explore the state-of-the-
art software support for RISC-V architectures. This survey
analyzes works carried out in the last five years to under-
stand the RISC-V’s software ecosystem and its usage in aca-
demic and industrial environments. The main contributions
of this research are: (i) providing the community with a

51394 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-7663-7193
https://orcid.org/0000-0002-6502-4682
https://orcid.org/0000-0002-1295-2688
https://orcid.org/0000-0003-3039-4410
https://orcid.org/0000-0001-5791-6958
https://orcid.org/0000-0003-3181-4480

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

comprehensive overview of the current state of the RISC-V
software ecosystem, and (ii) identifying and highlighting the
main contributions of recent work.

The remainder of this work is organized as follows.
Section II summarizes the RISC-V ISA and Section III
describes the methods applied to conduct this review. Next,
Sections IV and V cover application fields and the RISC-V
implementations, respectively. Finally, Sections VI and VII
cover a set of software support characteristics and deploy-
ment features. Concluding, Section VIII presents the final
remarks.

II. RISC-V
Unlike prior ISAs, RISC-V relies on amodular design by pro-
viding a frozen base ISA core (RV32I), along with extensions
that provide additional functionalities. Moreover, it supports
a full software stack, providing a stable target to compiler
writers, operating system developers, and assembly language
programmers [2]. A modular design enables optional stan-
dard extensions that the hardware can include if specified
by the system’s requirements, facilitating the development of
small or large-scale applications and compilers to generate
more reliable code. Besides, when RISC-V needs to include
new instructions to the ISA, they are kept optional and non-
required for all future RISC-V implementations, contrary to
incremental ISAs [2].

A. THE BASE ISA
The RISC-V ISA provides four primary base integer (I) vari-
ants: RV32I (for 32-bit), RV32E (for 32-bit with 16 reg-
isters), RV64I (for 64-bit), and RV128I (for 128-bit). The
base instruction sets provide the minimum requirements for
running a processor and can run an operating system. It uses
a two’s-complement representation for signed integer values,
and data is stored in memory using the little-endian system
but allows non-standard alternatives to provide a big-endian
memory system [1].

Besides the base ISAs, the RISC-V specification pro-
vides further functionalities through extension modules, such
as M, for multiplication and division instructions; A, for
atomic instructions; F, for floating-point instructions; D, for
double-precision floating-point instructions; G, comprising
the group of previously mentioned extensions; Q, for quad-
precision floating-point instructions; L, for decimal floating-
point instructions; C, for compressed instructions; B, for
bit manipulation instructions; J, for dynamically translated
languages support; T, for transactional memory support; P,
for packed-Single Instruction Multiple Data (SIMD) (Single
Instruction/Multiple Data) instructions; V, for vector oper-
ation instructions; N, for user-level interrupt support; H,
for hypervisor support; and S, for supervisor-level instruc-
tions [3].

B. INSTRUCTION FORMAT
The RV32I base ISA has four instruction formats (R/I/S/U)
and two variants (B/J) based on the handling of immediate

operands. All of them have a fixed length of 32 bits and must
be aligned on a four-byte boundary in memory [1]. Thus, the
six instruction formats are:

• R-type, for register-register instructions.
• I-type, for register-immediate and load instructions.
• S-type, for store instructions.
• U-type, for instructions with a large upper immediate.
• B-type, for conditional branch instructions.
• J-type, for unconditional jump instructions.

Given that the six instruction formats have regular encod-
ing, the decoding of instructions is much more straightfor-
ward than ARM or x86 architectures. For example, RISC-V
provides three register operands at the same position in all
formats, simplifying the decoding process. In addition, the
specified registers to be read or written are always in the same
position in all instructions, enabling register access to start
before the instruction decoding phase [1], [2].

C. PRIVILEGE LEVEL
The hardware must provide the Operating System (OS)
mechanisms that enable the processor to change its execu-
tion privilege status, such as going from the user mode to
the supervisor mode, and provide protection across differ-
ent software components [11]. RISC-V supports three priv-
ilege levels of execution to protect different software stacks,
enabling multiple software stacks to run with different priv-
ileges levels. Attempts to perform operations not permitted
by the current privilege level will result in exceptions and
require handling by an underlying execution environment.
The highest and mandatory privilege level of the RISC-V
hardware platform is the Machine-Mode (M-Mode), which
is inherently trusted and has all low-level access to the sys-
tem. Besides M-Mode, RISC-V supports Supervisor-Mode
(S-Mode) intended for OS usage, and User-Mode (U-Mode)
for conventional applications. In addition, each privilege
level has a set of privileged ISA extensions with support
for optional extensions. This extension enables, for instance,
having the S-Mode extended to support a hypervisor execu-
tion environment [12].

D. REGISTERS
RISC-V has 32 registers (x0-x31), whose names are deter-
mined by the RISC-V’s Application Binary Interface (ABI).
Register zero is hardwired and always holds the value zero,
mainly to simplify the ISA. The ra and sp registers hold
the return address and stack pointer, respectively. Registers
t0-t6 hold temporary values that are not guaranteed to per-
sist after a function call, and s0-s11 hold persistent values
across function calls. Finally, registers a0-a1 hold the first
two arguments of a function and return value, anda2-a7 hold
any remaining arguments [2].

E. CONTROL AND STATUS REGISTER
The Control and Status Registers (CSRs) are system reg-
isters to control and monitor the machine’s current state.

VOLUME 10, 2022 51395

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

CSRs can be read or written through specific Control and
Status Register (CSR) instructions, and have restrictions for
low-privilege levels. A RISC-V implementation may contain
additional CSRs, accessible to a subset of the privilege levels.
Any attempt to either access a CSR without the appropriate
privilege level or to write into a read-only CSR raises an
illegal instruction exception [12].

F. EXCEPTIONS AND INTERRUPTS
Both exceptions and interrupts on RISC-V processors
are considered traps. As exceptions and interrupts hap-
pen during runtime, the processor provides mechanisms
to make an unscheduled procedure call to an arbitrary
address [11]. RISC-V classifies traps into two main cate-
gories: synchronous and asynchronous. Synchronous traps
are exceptions resulting from an instruction execution, such
as accessing an invalid memory address or executing an
invalid instruction. Asynchronous traps are interrupts and are
external events that occur asynchronously to the instruction
stream. RISC-V sets the most significant bit of the mcause
control status registers to identify whether the trap is syn-
chronous or asynchronous, and the least significant bits for
identifying which interrupt or exception occurred [2].

RISC-V has three sources of interrupt: software, timer, and
external interrupts. Software interrupts enable programmers
to interrupt a given Central Process Unit (CPU), allowing effi-
cient Inter-Process Communication, while timer interrupt is
triggered when a hart (i.e., hardware thread) time comparator
exceeds or equals the global timebase register. External
interrupts, in turn, are asserted by a platform-level interrupt
controller [12]. The mechanisms for raising and clearing
interrupts can vary according to the hardware platform, given
that they can use different memory maps and demand diver-
gent features from their interrupt controller [2]. However, all
RISC-V systems handle exceptions andmask interrupts in the
same way.

G. ADOPTION AND MOTIVATION
RISC-V International is a nonprofit organization and counts
with more than 40 sponsoring companies [3]. For the past
decade, NVIDIA has been shipping their Graphics Process-
ing Units (GPUs) with proprietary microcontrollers called
Falcon, but since 2016, NVIDIA is evaluating RISC-V for
their GPUs [14]. Western Digital open-sourced the SweRV
Core, an industry-qualified processor featuring a 32-bit in-
order, 2-way superscalar design with a 9-stage pipeline
core [15]. In 2019, Alibaba revealed its first embedded
high-performance 64-bit RV64GCV RISC-V-based proces-
sor, which includes a set of custom extensions [16], [17].

Due to the recent US restrictions on its ARM design,
Huawei HiSilicon released their first RISC-V-based board
together with the HarmonyOS inMay 2021 [18].With LEON
SPARCv8 being the dominant architecture in European
avionics and facing difficulties in leveraging software from
the commercial domain, the Dependable Real-time Infras-
tructure for Safety-critical Computer (De-RISC) project

introduces the RISC-V architecture for aviation and space
environments by using fault-tolerant techniques and sup-
porting compute-intensive applications [19]. Further, apart
from Apple’s recent switch to ARM-based System-On-Chip
(SoC), it has recently demonstrated an interest in exploring
the RISC-V architecture [20].

Apart from industrial motivation and adoption, academic
development is also in progress. For example, the PULPino
processor from the Swiss Federal Institute of Technology
(ETH Zurich) is ready for industrial standards. PULPino
is optimized for low-power consumption, concentrating on
providing IoT solutions [21], [22]. Given this background,
the institution of technology Semico Research Corp. esti-
mates that, in 2025, the market will have around 62.4 billion
RISC-V cores worldwide [13], [23], represented in Figure 1.

III. MATERIALS AND METHODS
In order to carry out this survey and identify the current
state of the RISC-V software support, we conducted a bib-
liographic survey using the following materials and methods.
First, we performed a search on the IEEE, ACM, Springer,
and Usenix digital libraries using the query: (“RISC-V”
AND (“Software” OR “Operating System” OR
“OS”)).We limited the search to retrieveworks published in
the last five years. Furthermore, we applied the impact of the
publication channel and the normalized number of citations
received by each work to select the ones to be analyzed.

After the search and selection phase, we categorized the
RISC-V software ecosystem as shown in Figure 2. From
top to bottom, we first explore the variety of environments
RISC-V is applied and then continue to explore available
implementations that have been proposed. We then further
explore the different software architectures that have been
ported or implemented on RISC-V and the deployment char-
acteristics, such as security, reliability, and power features.

This work will further explore these categories in the
following sections: application fields (Section IV); RISC-V
implementations (Section V); and software support, includ-
ing software architecture, OS support, file systems, network
stack, and uncategorized features (Section VI). In addition,
we analyzed the additional features, including the support for
security, reliability, and low-power operation (Section VII).

IV. APPLICATION FIELDS
The space industry has had difficulties leveraging software
from the commercial domain and is now considering alterna-
tive architectures in a larger commercial market [19]. Further-
more, with the introduction of SoC andmulti-core processors,
this industry now seeks to migrate components to a higher
level of integration, introducing a new set of issues that needs
to be solved. Amodular architecture, such as RISC-V, enables
designers to extend the processor and implement function-
alities tailored to their application requirements, making
RISC-V highly adaptable to various environments.

The De-RISC project introduces a novel RISC-V hard-
ware/software platform meeting the requirements and

51396 VOLUME 10, 2022

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 1. Market forecasting for RISC-V [13].

FIGURE 2. RISC-V ecosystem overview.

functionalities imposed by the space environment. De-RISC
meets reliability by designing its Multiprocessor System-on-
Chip (MPSoC) with fault-tolerance techniques to provide a
correct operation in the presence of faults [24].

The SELENE project, depicted in Figure 3, proposes a reli-
able platform for safety-critical computing. It is built on open-
source technology and enables designers to adapt the system
to a specific requirement domain, integrating applications of
different criticalities and demands, achieving a diverse set of
redundancy and performance [25]. Furthermore, the openness
of RISC-V improves component reuse and prevents the need
for developing projects from scratch, increasing productivity
and reducing cost [26].

With the increase of embedded device deployments and the
expected growth of the Industrial Internet-of-Things (IIoT)
market to reach 1.11 trillion US dollars by 2028 [27], [28],
IoT devices have become a fundamental part of the lives of
billions of people around the world. Securing these devices
without loss of performance or increasing power usage has
become a matter of discussion with the accelerating growth
of connected devices. In this regard, the RISC-V commu-
nity has investigated several security issues for constrained
devices. Solutions addressing high-level goals identified by
NIST IR 8228 [29], authenticated secure-boot images while
verifying updates during runtime [30], hardware enforcement
and memory isolation mechanisms [31], and post-quantum
solutions [32] are all available for the RISC-V architecture.

Apart from security and reliable applications, RISC-V has
a set of research fields concerning AI-based applications. In
[33], the authors seek to provide a heterogeneous proces-
sor design for Convolutional Neural Network (CNN)-based
applications by proposing a domain-specific architecture
design and an accelerator for the inference of CNNs, adher-
ing to low-power characteristics. The SiFive Intelligence

VOLUME 10, 2022 51397

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 3. Architecture of the SELENE project [25].

X280 is a multi-core RISC-V compliant processor that opti-
mizes Artificial Intelligence and Machine Learning (AI/ML)
inferencing computing. X280 uses the vector extension and
SiFive Intelligence extensions, making the core suitable
for high-throughput single-threaded and power-constrained
applications [34]. Finally, the work [35] uses a RISC-V-based
architecture to provide a platform for Robot Operating Sys-
tem (ROS)-based applications.

The RISC-V architecture is also being applied in
approximate computing solutions. The work [37] proposes a
methodology to help designers to select the most optimized
Floating-Point Unit (FPU) configuration that meets a given
threshold for an specific application. Similarly, the work [38]
presents an automated quality-driven methodology that com-
bines different approximate computing techniques to explore
and apply error-tolerant sections to applications.

RISC-V is highly adaptable for various contexts, given the
open specification, modularity, and the community. It enables
designers to deploy from small, low-cost embedded devices
to a large-scale system with custom extension support meet-
ing the requirements imposed by the system.

V. RISC-V IMPLEMENTATIONS
Despite the requirements of a general-purpose processor,
RISC-V enables domain-specific implementations to exist,
either by implementing the RISC-V base ISA with custom
characteristics or implementing a new extension.

A. PROCESSOR CORES
The PULPino project provides three RISC-V core implemen-
tations: (i) a 32-bit 2-stage pipeline named Ibex (formerly
named Zero-riscy), (ii) a 4-stage pipeline core named
CV32E40P (formerly named RI5CY), and (iii) a 64-bit
6-stage core named CVA6 (formerly named Ariane). Ibex,
maintained by lowRISC and illustrated in Figure 4, is well
suited for embedded control applications and supports the
Integer (I) or Embedded (E), Integer Multiplication and Divi-
sion (M), Compressed (C), and Bit Manipulation (B) exten-
sions, and is available as a SystemVerilog project [36],
[40]. The CV32E40P core, depicted in Figure 5, implements
the RV32IMFC ISA and the Xpulp extension for higher
code density, performance, and energy efficiency characteris-
tics [36], [41]. Finally, the CVA6 core, illustrated in Figure 6,

implements the RV64IMAC ISA, focuses on reducing the
critical path, and supports a configurable size and separate
Translation Lookaside Buffer (TLB) [39].

SonicBOOM (Figure 7) is a Register-Transfer Level (RTL)
implementation of an RV64GC superscalar out-of-order core
written in Chisel3. SonicBOOM improves the architectural
characteristics of BOOMv2 and seeks to provide a state-
of-the-art platform for high-performance research. The Son-
icBOOM core optimizes the execution path and redesigns
the instruction fetch unit with a hardware Tagged Geometric
(TAGE) branch predictor algorithm. Further, SonicBOOM’s
load-store unit provides multiple loads per clock cycle and
achieves 6.2 CoreMark/MHz [42], [43].

NOEL-V is a synthesizable VHSIC Hardware Descrip-
tion Language (VHDL) processor with support to the
32- and 64-bit RV{IM,IMAC,GCH} ISA, with single- or
dual-issue features. The core is available as part of a sub-
system that includes system peripherals and is configurable
to use RISC-V extensions. The NOEL-V dual-issue proces-
sor allows two instructions per clock cycle and implements
advanced branch prediction capabilities [19], [44].

In [33], the authors proposed a CPU based on the low-
power 2-stage pipeline Hummingbird E200 RISC-V core,
which implements the RV32IMAC ISA.

The authors of [46] presented the HARV processor, with
support to the RV32I ISA and focus on reliability. This pro-
cessor core employs fault tolerance techniques in its internal
structures, i.e., error-correcting code in all registers and
Triple Modular Redundancy (TMR) in the controller and the
Arithmetic Logic Unit (ALU), to provide reliability.

In June 2021, SiFive announced the P270 and the
P550 cores to their Performance family. P270 is an
8-stage, dual-issue, efficient in-order pipeline core compat-
ible with RV64GCV ISA. P550 features 13-stage, triple-
issue, out-of-order pipeline core implementing the RV64GC
ISA and delivering a SPECInt 2006 score of 8.65/GHz,
the highest performance RISC-V processor available to
date [47]–[49].

B. SOC PLATFORMS
The PULPino project provides a set of complete system plat-
forms: (i) PULPino (Figure 8) and PULPissimo (Figure 9),

51398 VOLUME 10, 2022

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 4. Block diagram of the Ibex core [36].

FIGURE 5. Block diagram of the CV32E40P core [36].

FIGURE 6. Block diagram of the CVA6 core [39].

two platforms based on a single-core microcontroller,
(ii) OpenPULP (Figure 10), a multi-core IoT processor,

and (iii) Hero (Figure 11), a multi-cluster heterogenous
accelerator, which combines a parallel many-core accelerator

VOLUME 10, 2022 51399

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 7. Block diagram of the SonicBOOM core [42].

FIGURE 8. Block diagram of the PULPino SoC [36].

on an Field-Programmable Gate Array (FPGA) with a hard
ARM Cortex-A multi-core host processor.

The FE310-G000 SoC by SiFive, illustrated in Figure 12,
has an E31 core with a single-issue in-order pipeline and
implements the RV32IMAC ISA. The E31 core peaks a

FIGURE 9. Block diagram of the PULPissimo SoC [45].

sustainable execution rate of one instruction per clock cycle.
The FE-3100-G000 features two Universal Asynchronous
Receiver-Transmitter (UART) devices for serial communica-
tion, three Quad Serial Peripheral Interfaces (QSPIs), three
Pulse-Width Modulation (PWM) ports, and support to low-
power operations [50]. The HiFive1 is one of the first
commercial available RISC-V boards, which features the
FE310-G000 SoC. The work [51] proposes a set of novel
approaches that enhance Virtual Prototype (VP) design flow
using the HiFive1. Similarly, the work [38] proposes an
automated quality-driven methodology which supports the
HiFive1.

The PolarFire SoC FPGA by Microchip is a low-power,
thermal efficient, and defense-grade security device for intel-
ligent, connected systems. The SoC has a 5-stage single-
issue in-order pipeline RISC-V and does not suffer from
Meltdown and Spectre exploits of common architectures.
PolarFire cores are deterministic and coherent with the mem-
ory subsystem, enabling Linux and real-time capable appli-
cations to execute. The SoC implements the RV64GC and
RV64IMAC ISAs [54].

The work [30] uses a Universal Sensor Platform (USeP)
SoC to meet IoT requirements, which features a RISC-V pro-
cessor and integrates peripherals with a scalable subsystem as
a Three Dimensional System-in-Package (3D-SiP).

The Sipeed MAix-GO development board, employed
by [55], features a Kendryte K210 SoC, with a dual-core
RV64GC processor, including support to a single and double-
precision FPU.

C. EMULATORS AND SIMULATORS
The open-source QEMU project is a generic machine
emulator and virtualizer, providing a virtual model of
an entire machine to run a guest OS. QEMU supports
32- and 64-bit RISC-V implementation and several different

51400 VOLUME 10, 2022

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 10. Block diagram of the OpenPULP SoC [52].

FIGURE 11. Block diagram of the Hero SoC [53].

machines, including Microchip’s PolarFire SoC, SiFive’s
HiFive Unleashed, and Shakti C platform [56].

Gem5 is an open-source modular simulator for computer
architecture research, including system-level architecture and
processor microarchitecture. Gem5 support to RISC-V privi-
leged ISA specification is still in development [57].

Spike is a RISC-V ISA simulator with a functional model
of one or more RISC-V hardware threads. It supports a large
set of RISC-V extensions and eases simulating new instruc-
tions by letting the user describe the functional behavior and
add the opcode and opcode masks [58].

RISC-V Assembler and Runtime Simulator (RARS) is
built on top of MIPS Assembler and Runtime Simulator
(MARS) and extends the software to enable features such as
instructions hot-load of RISC-V extensions [59]. Similarly,
WebRISC-V [60] provides a web-based server-side simu-
lation of a 5-stage pipeline RISC-V implementation. The
application enables writing simple assembly programs and
visualizing data in registers, memory, and the internal state
of the pipeline. Ripes is an open-source visual computer
architecture simulator built around the RISC-V ISA [61], pro-
vidingmultiplemicroarchitecturalmodels to explore a typical

VOLUME 10, 2022 51401

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 12. Block diagram of the FE3100-G00 SoC [50].

pipeline processor. Similar simulators include Jupiter [62]
with support to RV32IMF ISA, Vulcan [63] with support to
RV32IMAF ISA, and the emulsiV simulator [64], intended
for teaching basics of computer architecture.

D. DISCUSSION
This section reviewed different RISC-V implementations
to comprehend the RISC-V ecosystem and the available
research towards the open ISA. Given RISC-V’s open spec-
ification, multiple implementations tackle specific problems
for a given application field, making RISC-V highly adapt-
able. Besides the presented RISC-V cores and SoCs, there
are others not mentioned in this work that has shown to be
production-ready, supporting low to high-performance com-
puting requirements.

VI. SOFTWARE SUPPORT
The ISA interface encompasses the machine language
instructions that a computer can run, acting as a boundary
between the hardware and software layer [65], represented
in Figure 13. In RISC-V’s privilege layer, both the user
application and theOS can access the ISA directly, as RISC-V
provides a subset of instruction repertoire per layer.

The ABI defines a standard for binary portability across
programs by defining the system call interfaces to the OS,

and hardware resources available in the system through the
ISA [65]. This allows binaries compiled to a specific ABI to
run without modifications in a different system with the same
ISA and OS.

The following subsections seek to evaluate and review
works that address different types of software architecture to
understand the scope of end-user application and OS support.

A. SOFTWARE ARCHITECTURE
The software architecture relates to its structure, how these
components are separated, and their interrelationships. Soft-
ware engineers seek to structure software to meet current
and future demands, making the system reliable, manageable,
adaptable, cost-effective, and scalable [67].

1) BARE-METAL APPLICATIONS
Applications running on bare-metal systems have direct
access to the processor and peripherals. These applications
are not managed by an OS layer, enabling applications that
require runtime guarantees along with constraint hardware to
function as expected.

Thework [66] extends their previouswork onCOAST [68],
which explores Commercial Off-the-Shelf (COTS) systems
to provide an automated compiler modification, bring-
ing support to several new processing platforms, such as

51402 VOLUME 10, 2022

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 13. Computer system abstraction.

FIGURE 14. COAST architecture [66].

RISC-V andXilinx SoC-based products. The compiler inserts
dual- or triple-modular redundancy during the compila-
tion phase, enabling the software to correct errors during
runtime. The proposal is attractive for applications requir-
ing tolerance against Single Event Effect (SEE) and is
well-suited for processing in a high radiation environment.
Although the tool provides both Duplicate With Compare
(DWC) and TMR mechanisms, the default configuration
uses Variables 3 (VAR3) protection mechanism. Figure 14
illustrates the COAST architecture.

Stahl et al. [69] propose a driver development flow to ease
the definition of hardware/software interfaces without a fixed
register layout and reduce the development effort and mem-
ory usage of an Microcontroller Unit (MCU). The proposal
uses a Domain-Specific Language (DSL) to describe the
behavior using features such as bit field arrays and hierar-
chy. In addition, the work proposes a heuristic, code anal-
ysis, and generation technique to find an optimized register
layout that exploits its performance and memory footprint.
The proposal uses PULPino General-Purpose Input/Output
(GPIO) and Serial Peripheral Interface (SPI) drivers and
has reduced the estimated run time by 52%, 32% reduction

of memory accesses, while the driver code size is reduced
by 22%.

2) OPERATING SYSTEMS
Zhang et al. [70] propose an automatic kernel code synthesis
and verification technique framework, which seeks to build a
verifiable OS kernel with a high degree of proof automation.
The proposed framework enables a software developer to
write the required specification of the kernel and translates
the corresponding specification into C code. The authors
provided a kernel named iv6, which combines exokernel
architectural aspects with characteristics of a mathematically
proven and trustworthy microkernel. The kernel initializes in
RISC-V’s M-Mode, runs in a separate address space from
userspace, and uses identity mapping techniques for the ker-
nel along with additional characteristics.

In addition to the OS architecture, the work [71] explores
the building blocks of the development cycle of an open-
source OS for the 64-bit little-endian RISC-V architecture,
proposing a custom Linux distribution from Linux From
Scratch (LFS) with independent userspace and a package

VOLUME 10, 2022 51403

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

manager written in Lua programming language. The proposal
seeks to provide a Linux-based distribution for open-source
hardware and is the first OS targetting RISC-V.

Implementations of a RISC-V architecture with hard-
ware/software co-design are also available, such as the work
proposed by [72], which captures possible application-
kernel interaction as a Finite-State Machine (FSM) and inte-
grates the Real-Time Operating System (RTOS) semantics
directly into the processor pipeline. The proposal signifi-
cantly improves event latencies, interrupt lock times, and
memory footprint at a moderate cost of FPGA resources.

Malenko and Baunach [73] employ a microkernel-based
operating system named SmartOS, which seeks to provide
basic functionality in privilege-mode while other functional-
ities run in user-mode. Further, to evaluate the reliability of a
RISC-V-based SoC, the work [74] compares five algorithms
against a Linux-based OS and a bare-metal implementation
by using a lowRISC implementation on a Xilinx FPGA.

The work [75] aims at providing a basic microkernel for
the RV32I ISA. The microkernel has support to trap handling
and multiple RISC-V privilege modes. The work is focused
on enabling students and lecturers to enrich further their com-
prehension of computer architecture and OS development.

3) DEVELOPMENT TOOLS
The work [76], illustrated in Figure 15, proposes a design
method to generate domain-specific many-core architectures
with provided frameworks and automated steps using soft-
ware tools. The solution facilitates engineering and cre-
ates many-core architectures with different configurations,
including core augmentation through instruction extensions
and custom accelerators.

Torres-Sanchez et al. [55] evaluate the development envi-
ronment toolchains and debugging process concerning the
Sipeed MAix-GO development board and Tiny YOLO v2
support by deploying a low-power IoT edge application,
achieving reasonable cost and performance characteristics.

Herdt and Drechsler’s proposal [51] provides an automated
formal verification tailored for SystemC-based virtual pro-
totype on top of a RISC-V ISA and significantly improves
verification quality, reducing overall verification effort.

Furthermore, the work [77] provides a library to run
lightweight and energy-efficient neural networks. The frame-
work automates deployments on MCUs with and without an
FPU. Finally, the work [78] proposal enables ISA designers
to iteratively refine and evaluate ISA specifications, allowing
the improvement upon each result.

B. OPERATING SYSTEM ARCHITECTURE
With the growing complexity of computer hardware, the oper-
ating system provides an abstraction layer to the user, acting
as an interface between applications and computer hardware,
enabling programmers to develop software without knowing
much of the underlying details and executing software effi-
ciently. The ISA defines the OS capabilities, as it defines
the available instructions to the application. RISC-V has a

FIGURE 15. System generator framework overview of [76].

defined subset of OS support as well as user and machine
instructions [65], [79].

1) MEMORY MODEL
The work [76] uses scratchpad memory to avoid having to
deal with cache coherence issues. Further, all cores and com-
ponents in the architecture share the same address space. The
memory module routes memory accesses to the data cache or
another component through a crossbar network.

The SmartOS employed by [73] organizes the memory
with the linker script to structure the Task Control Blocks
(TCB), Resource Control Blocks (RCB), and Event Control
Blocks (ECB) arrangements and the regions for task stack,
data, and entry function.

The cache controller of NOEL-V supports a store buffer
First In, First Out (FIFO) with one cycle per store and a wide
Advanced High-performance Bus (AHB) data width support
to enable start stores and fast cache refill [19].

Trippel et al. [78] propose a memory verification model to
check for bugs on hardware and software memory models by
providing a tool capable of verifying High-Level Language
(HLL), compilers, and ISAs. Further, the authors present
potential inefficiencies of the RISC-V ISA specification and
identify possible solutions to mitigate these inefficiencies.

51404 VOLUME 10, 2022

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 16. XPC architecture [80].

2) SCHEDULER SUPPORT
A processor scheduler assigns processes to be executed by
the processor at a given time, meeting system response time,
throughput, and processor efficiency objectives and allowing
multiple processes to exist concurrently in a multiprogram-
ming system. Furthermore, schedulers can also have real-time
features, which guarantee that high-priority tasks execute
within a specific time constraint.

The work [81] implements an improved version of a deter-
ministic coprocessor task scheduler based on the Earliest-
Deadline First (EDF) algorithm. In addition, the work adds
support for CPUs to run two or four real-time tasks in par-
allel, improving real-time system performance and reducing
resource costs using the Heap Queue sorting architecture for
the Ready Queue implementation. The improved coprocessor
and the task scheduler were described in SystemVerilog and
verified by simulations and a simpler version of the Universal
Verification Methodology (UVM).

Naylor et al. [82] explore the potential of a distributed
soft-processor overlay to deliver appropriate perfor-
mance for FPGA clusters. In addition, the work uses
an FPGA-optimized hyperthreadedRISC-V soft-core, named
Tinsel, and implements a barrel-scheduled multithreaded
core that uses a large subset of the RV32IMF ISA. Tinsel
tolerates inherent latencies of a floating-point operation and
off-chip memory access. Further, it provides a program-
ming environment through an interface on top of the Tin-
sel Application Programming Interface (API), abstracting
architectural details and handling graph mapping onto the
overlay.

Tasks in SmartOS, employed by [73], are preemptive with
unique static priorities defined at compile-time, and active
priorities dynamically modified by the resource manager and
used by the scheduler. Further, SmartOS’s kernel uses a TCB
structure for managing tasks.

3) INTER-PROCESS COMMUNICATION
Processes may need to communicate with one another,
requiring the OS to provide a communication mecha-
nism, preventing race conditions and ensuring the proper
sequence of communications. The communication should be
well-structured and preferably without using interrupts. The
communication the OS provides is known as inter-process
communication [65], [79].

Du et al. [80] use the SiFive U500 SoC with the
RV64IMAFD ISA to add support for a secure and effi-
cient cross-process call architecture. The proposed archi-
tecture is illustrated in Figure 16. The work proposes a
hardware-assisted OS primitive named XPC, which uses
an asynchronous Inter-Process Communication (IPC) across
different address spaces and enables a direct switch between
IPC caller and callee without trapping into the kernel. XPC
improves throughput using a new address-space mapping
mechanism and provides a multithreading API with the
migration thread model. The work supports split thread state,
per-invocation C-Stack, and Android’s Ashmem subsystem.
The authors assessed performance, achieving a 0.3ms latency
for 4KB data, with a 1.6x improvement, mainly from the
secure zero-copying message transfer. XPC is compatible
with traditional address-space isolation and can easily inte-
grate with existing OS kernels.

The work [83] proposes in-process isolation based on
dynamic memory protection domains. Software components
can rely on enforced security by using a set of provided pro-
tection keys and associate memory, supporting usage rights
and entry points.

4) ADDITIONAL FEATURES
The Sipeed MAix-I development board employed by [55]
features a highly integrated Espressif ESP8285 SoC with
complete self-contained Wi-Fi networking capabilities.

VOLUME 10, 2022 51405

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 17. SeRot architecture [84].

Du et al. [80] use lwIP, a small independent implementation
of the TCP/IP protocol suite, as a network stack server for the
microkernel and a loopback device driver to pack and send to
the network device server.

Liu et al. [84] propose a secure runtime system named
SeRot, illustrated in Figure 17, which addresses primitives
to support unmodified applications. SeRot uses the Linux
Kernel Library (LKL) network stack to provide network
functionalities to the application. It also enables applications
to access a file system by using LKL for accessing and
managing file system calls.

C. DISCUSSION
Even with little time in the market, RISC-V’s software
ecosystem includes compilers, state-of-the-art OSs, and sys-
tem generation tools to ease hardware/software interfacing.
In addition, the open specification of RISC-V has made it
possible for one to support and implement robust software
architectures to meet a range of requirements.

With the increasing demand for computing power, the sim-
plicity of the RISC-V ISA enables OS engineers to support
the architecture and contribute to its specification. On the
other hand, the growing complexity of architectures such as
x86makes it difficult for developers to keep up and contribute
to the development of the ISA.

RISC-V’s openness has led to a wide range of RISC-V
applications, including academic and industrial usage, help-
ing researchers to explore the benefits of an open ISA for soft-
ware development. Overall, the works presented have shown
how RISC-V can support software and operating systems
with sophisticated memory models, inter-process communi-
cation, compiler techniques, and toolchains.

VII. DEPLOYMENT FEATURES
To further investigate the RISC-V software ecosystem, this
section reviews the works that tackle security, reliability, and
power management characteristics of RISC-V in order to
improve the executing software.

A. SECURITY
Hunt et al. [86] argue that hardware enforcement isolation
mechanisms have historically been the basis for a secure
system. However, providing redundant protection for isola-
tion by combining software and hardware techniques can
improve system security. Zhang et al. [70] implement a Ker-
nel Page-Table Isolation (KPTI) with a channel for accessing
userspace from the kernel space by a block of a shared
memory region. Further, the framework reduces the impact
of human error during the development phase. Similarly, the
work [73] explore memory isolation techniques and imple-
ment a hardware/software co-design approach for memory
isolation by providing two hardware components: Device
Driver Isolation Module (DDIM) and System Call Tracing
Module (SCTM).

Hwang et al. [87] provide a kernel hardware-based mon-
itoring platform and a hardware interface architecture to
overcome the semantic gap problem in a RISC-V core. The
work introduces a platform called RiskiM to ensure ker-
nel integrity, and an interface architecture named Program
Execution Monitor Interface (PEMI). In order to overcome
the semantic gap issue, PEMI provides all internal states
of the host system to RiskiM to fulfill its monitoring task
and protect the kernel in the presence of attacks. Further-
more, Sisejkovic et al. [88] implement a hardware/software
solution using the 64-bit 6-stage in-order, single-issue Ari-
ane core. The work proposes a hardware design protection
against hardware Trojans inserted during the produc-
tion phase through netlist obfuscation provided by logic
locking.

In [89], Fischer et al. exploit hardware misconfigured
access control of the Read-Only Memory (ROM) as well
as incorrect implementations of SoC firmware. The work
explores memory overwrites of peripheral regions and has
found no code that implements the Counter (CTR) block
cipher mode.

Auer et al. [30] address three high-level goals, identified
by the NISTIR 8228 report, to provide a secure architecture
on IoT devices. The work uses a secure-boot mechanism with
a certificate chain to authenticate boot images, and the update
verification happens during runtime. Furthermore, in order
to explore and present a compatible RISC-V with Trusted
Execution Environment (TEE) featuring security algorithm
accelerators, the work [90] uses a 64-bit RISC-V with the
IMAFDC ISA implementation, along with a Rocket chip
generator as a hardware platform. The work features SHA-3
and Ed25519 accelerators and provides a procedure for the
software to authenticate a Linux bootloader.

Similarly, Siddiqi et al. [91] use a lowRISC FPGA imple-
mentation to propose a hardware/software-based solution

51406 VOLUME 10, 2022

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

FIGURE 18. Architectural protection mechanism of [85].

to secure system integrity. In addition, the work provides
a solution for securing the processor by implementing a
self-authenticated secure boot and provide Information Flow
Tracking (IFT) to detect and stop memory corruption attacks.

Dessouky et al. [92] provide a testbed of real-world
software-exploitable RTL bugs based on RISC-V SoCs,
exploring TLB, cache, and memory attacks to identify spe-
cific vulnerabilities classes. To further explore microarchi-
tectural security, the authors conducts two case studies on
the Ariane and PULPissimo SoC. Furthermore, to encourage
SoC security research, Fischer et al. [89] employs the Ari-
ane SoC RTL to investigate hardware vulnerabilities in SoC
designs.

With difficulty in ensuring the trustworthiness of the fabri-
cation process of silicon devices, Bolat et al. [85] propose an
architectural protection mechanism, shown in Figure 18. The
mechanism detects hardware Trojans infesting the instruction
and data memories of the system by shielding the communi-
cation of the processor and memory.

The work [93] investigates undocumented instructions on
RISC-V and ARM ISAs and propose two methods to look for
undocumented instructions. Both methods execute a single
instruction in a controlled manner, allowing the processor to
determine if the instruction is valid by comparing the results
to the ISA specification.

Fell et al. [94] explore side-channel attacks and investigate
the impact of source-code obfuscation techniques to verify
what information leakage is exploitable. The work proposes
a compiler-based technique to mitigate leakage by employing
an extension to the LLVM compiler.

Nyman et al. [95] extend the RISC-V ISA with seven new
Storage Region Stack (SRS) management instructions to pro-
vide context-specific enforcement. The authors modify the
instruction decode stage of the processor pipeline to interpret
the new instructions. Similarly, the work [91] modifies the
execute stage of the processor pipeline to add support to tag
propagation and tag check features.

Finally, the work [95] proposes a Runtime Scope Enforce-
ment (RSE) approach to mitigate all known Data-Oriented

Programming (DOP) attacks efficiently on memory-unsafe
programming languages. The proposed technique enforces
memory safety constraints during compile-time, resulting in
a low-performance overhead.

B. RELIABILITY
Fault injections can be applied to measure coverage and
latency parameters, explore error propagation, and analyze
the system workload and fault handling capabilities. In addi-
tion, different fault injection models can be utilized to exploit
reliability characteristics of given hardware [96], requiring
countermeasures to avoid and protect such exploits.

Laurent et al. [97] examine fault injection at the microar-
chitectural layer and propose a cross-layer approach. The
authors inject single-bit faults in the experiments to simulate
faulty behaviors in a lowRISC processor. The simulation
results show behaviors of forwarding capabilities, speculative
execution, and writing in a General-Purpose Register (GPR)
during branch instruction. The authors also review software
fault models and provide alternatives to bypass the counter-
measures set by data- and control-flow integrity.

In [98], the authors inject faults on a 64-bit, 5-stage
pipeline, lowRISC processor to highlight the importance
of hidden registers in the processor pipeline. They provide
countermeasures against hidden registers attacks by explor-
ing the multiplier unit and forwarding characteristics, which
are invisible from the software point of view and entirely
dependent on the processor implementation. In the context
of coverage analysis and fault simulation, the work [99]
introduces a metric for RISC-V instructions and registers
coverage. The work analyzes and compares three available
RISC-V test suites and combines them into a unified tool.

The work [100] seeks to provide an efficient solution for
fault effect analysis and simulation by introducing a vir-
tual prototype-based approach. Bit flips are performed into
the fetched/executed instructions, the GPRs and CSRs of
a RISC-V processor and simulated to analyze the impact
during software execution. In contrast, the work [74] found

VOLUME 10, 2022 51407

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

that Single Event Upsets (SEUs) barely affect the number of
silent data corruption in the presence of an OS. Similarly,
the work [101] evaluates the reliability of running software
applications against SEUs that affect the configuration and
processor memories. The work compares the utilization of
hardened-by-replication software with the baseline version in
a set of benchmarks.

C. LOW-POWER
The IoT is one of the fastest-growing approaches among
embedded systems. Devices used in IoT need to meet com-
munication and energy efficiency requirements. In this con-
text, Liu et al. [33] propose a domain-specific architecture
design for Convolutional Neural Network-based IoT applica-
tions, with a heterogeneous processor design and accelerator
for the inference of CNNs.

The methodology proposed in [38] seeks to minimize
energy consumption and meets the defined threshold for
a given application-level metric. Furthermore, the toolkit
proposed in [77] takes multi-layer perceptrons trained with
Fast Artificial Neural Network (FANN) to generate code for
energy-efficient neural networks on microcontrollers.

Imianosky et al. [102] evaluate CCSDS 123 Compressor
performance and power consumption on RISC-V and ARM
architectures by executing the algorithms in FreeRTOS and
Zephyr OSs. The authors concluded that RISC-V uses less
power when compared to the ARM processor, while ARM
offers higher performance. The work also showed that
FreeRTOS has a lower overhead to the algorithm execution
than Zephyr when executed on a RISC-V processor.

The SoC adopted by [30] has low-power characteristics,
enabling designers to perform power-tradeoffs at runtime
by adjusting the back-gate bias voltage. In contrast, the
work [51] proposes methods to aid decisions that signifi-
cantly impact the power consumption strategies by validating
firmware-based power management implementations.

The proposal presented in [103] is well-suited for low-
intensity tasks at low data rates and uses a microcontroller
running at 25MHz. Further, the work presents ultra-low-
power comparator circuits, which run on low frequencies to
improve the power overshoot identification. Similarly, the
work [55] keeps the CPU below 350mW when running face-
detection routines and 35mW when the CPU is waiting for
interrupts.

D. DISCUSSION
This section sought to review works that tackled or have sim-
ilarities with security, reliability, and low-power characteris-
tics. RISC-V enables designers to implement novel resources
to improve the processor architecture features.

Due to the RISC-V nature of supporting a variety of envi-
ronments, several works took advantage of the open ISA to
provide security, reliability, and power efficiency solutions to
secure processes as well as to run applications in an environ-
ment with low-power requirements.

VIII. CONCLUSION
Despite the novelty of RISC-V, a large variety of works aims
at adapting and using RISC-V architectures to explore the
capabilities of an open ISA. The different implementations
of RISC-V aspire to improve or extend the fundamental
specifications to satisfy peculiar computing needs. Low-level
programming environments strive for a stable specifica-
tion to comply with high-level programming environments.
RISC-V’s specification has primarily fulfilled these environ-
ments by providing engineers and researchers with a reliable
ISA base. In addition, RISC-V’s goal of supporting a broad
set of computing environments has enabled enterprises and
academia to tackle specific software requirements with low
cost and flexibility.

This survey demonstrated how RISC-V is prevalent in
works that seek to tackle specific requirements and how the
community can benefit from an open architecture specifi-
cation. Furthermore, given RISC-V’s novelty and the rich
software ecosystem, the community has well received and
contributed to adopting RISC-V architectures into a wide
range of systems, from small and constrained devices to large-
scale computers.

REFERENCES
[1] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, ‘‘The RISC-V

instruction set manual, volume I: User-level ISA,’’ Dept. EECS, Univ.
California, Berkeley, Berkeley, CA, USA, Tech. Rep. 22, May 2017.
[Online]. Available: https://riscv.org/wp-content/uploads/2017/05/riscv-
spec-v2.2.pdf

[2] D. Patterson and A. Waterman, The RISC-V Reader: An Open Archi-
tecture Atlas, 1st ed. Berkeley, CA, USA: Strawberry Canyon, 2017.
[Online]. Available: http://riscvbook.com/

[3] RISC-V Int. Accessed: Apr. 10, 2022. [Online]. Available:
https://riscv.org/

[4] K. Asanovic and D. A. Patterson, ‘‘Instruction sets should be free: The
case for RISC-V,’’ Dept. EECS, Univ. California, Berkeley, Berkeley,
CA, USA, Tech. Rep. UCB/EECS-2014-146, Aug. 2014. [Online]. Avail-
able: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-
146.html

[5] G. S. Nicholas, Y. Gui, and F. Saqib, ‘‘A survey and analysis on
SoC platform security in ARM, Intel and RISC-V architecture,’’
in Proc. IEEE 63rd Int. Midwest Symp. Circuits Syst. (MWSCAS),
Springfield, MA, USA, Aug. 2020, pp. 718–721, doi: 10.1109/MWS-
CAS48704.2020.9184573.

[6] T. Lu, ‘‘A survey on RISC-V security: Hardware and architecture,’’ 2021,
arXiv:2107.04175.

[7] R. Newell, J. Xie, and H. Handschuh, ‘‘Survey of notable security-
enhancing activities in the RISC-V universe,’’ in Proc. 17th Int. Workshop
Cryptograph. Architectures Embedded Log. Devices (CryptArchi).
Prague, CzechRepublic: CryptArchi, 2019, pp. 1–10. [Online]. Available:
https://labh-curien.univ-st-etienne.fr/cryptarchi/workshop19/abstracts/
newell.pdf

[8] B.Marshall, G. R. Newell, D. Page,M.-J.-O. Saarinen, and C.Wolf, ‘‘The
design of scalar AES instruction set extensions for RISC-V,’’ IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2021, no. 1, pp. 109–136,
Dec. 2020, doi: 10.46586/tches.v2021.i1.109-136.

[9] A. Dörflinger, M. Albers, B. Kleinbeck, Y. Guan, H. Michalik,
R. Klink, C. Blochwitz, A. Nechi, and M. Berekovic, ‘‘A com-
parative survey of open-source application-class RISC-V processor
implementations,’’ in Proc. 18th ACM Int. Conf. Comput. Frontiers,
New York, NY, USA, May 2021, pp. 12–20, doi: 10.1145/3457388.
3458657.

[10] I. Elsadek and E. Y. Tawfik, ‘‘RISC-V resource-constrained cores: A
survey and energy comparison,’’ in Proc. 19th IEEE Int. New Cir-
cuits Syst. Conf. (NEWCAS), Toulon, France, Jun. 2021, pp. 1–5, doi:
10.1109/NEWCAS50681.2021.9462781.

51408 VOLUME 10, 2022

http://dx.doi.org/10.1109/MWSCAS48704.2020.9184573
http://dx.doi.org/10.1109/MWSCAS48704.2020.9184573
http://dx.doi.org/10.46586/tches.v2021.i1.109-136
http://dx.doi.org/10.1145/3457388.3458657
http://dx.doi.org/10.1145/3457388.3458657
http://dx.doi.org/10.1109/NEWCAS50681.2021.9462781

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

[11] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design RISC-V Edition: The Hardware Software Interface, 1st ed.
San Francisco, CA, USA: Morgan Kaufmann, 2017. [Online]. Available:
https://dl.acm.org/doi/book/10.5555/3153875

[12] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic,
‘‘The RISC-V instruction set manual volume II: Privileged architec-
ture version 1.9,’’ Dept. EECS, Univ. California, Berkeley, Berkeley,
CA, USA, Tech. Rep. UCB/EECS-2016-129, Jul. 2016. [Online]. Avail-
able: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-
129.html

[13] Semico Research & Consulting Group. (2019). RISC-V Market Anal-
ysis: The New Kid on the Block. [Online]. Available: https://semico.
com/content/risc-v-market-analysis-new-kid-block

[14] M. Larabel. (2016). NVIDIA is building its next-gen falcon
controller using RISC-V. Phoronix. [Online]. Available: https://www.
phoronix.com/scan.php?page=news_item&px=NVIDIA-RISC-V-Next-
Gen-Falcon

[15] A. Shilov. (2021). Western digital reveals SweRV RISC-V core, cache
coherency over Ethernet initiative. AnandTech. [Online]. Available:
https://www.anandtech.com/show/13678/western-digital-reveals-swerv-
risc-v-core-and-omnixtend-coherency-tech

[16] J. Hsu. (2021). RISC-V star rises among chip developers worldwide.
IEEE Spectrum. [Online]. Available: https://spectrum.ieee.org/tech-
talk/semiconductors/design/riscv-rises-among-chip-developers-
worldwide

[17] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao, J. Luo,
Z. Chen, C. Li, Y. Pu, J.Meng, X. Yan, Y. Xie, andX. Qi, ‘‘Xuantie-910: A
commercial multi-core 12-stage pipeline out-of-order 64-bit high perfor-
mance RISC-V processor with vector extension : Industrial product,’’ in
Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA), Valencia,
Spain, May 2020, pp. 52–64, doi: 10.1109/ISCA45697.2020.00016.

[18] A. Shilov. (2021). Huawei’s HiSilicon develops first RISC-V design
to overcome ARM restrictions. Tom’s Hardware. [Online]. Avail-
able: https://www.tomshardware.com/news/huaweis-hisilicon-develops-
first-risc-v-design-to-overcome-arm-restrictions

[19] J. Andersson, ‘‘Development of a NOEL-V RISC-V SoC targeting space
applications,’’ in Proc. 50th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. Workshops (DSN-W), Los Alamitos, CA, USA: IEEE Computer
Society, Jun. 2020, pp. 66–67, doi: 10.1109/DSN-W50199.2020.00020.

[20] S. Shankland. (2021). Apple shows interest in RISC-V chips, a competitor
to iPhones’ ARM tech. CNet. [Online]. Available: https://www.cnet.com/
tech/mobile/apple-shows-interest-in-risc-v-chips-a-competitor-to-
iphones-arm-tech/

[21] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gurkaynak, and L. Benini, ‘‘Near-threshold RISC-V
corewithDSP extensions for scalable IoT endpoint devices,’’ IEEETrans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2700–2713,
Oct. 2017, doi: 10.1109/TVLSI.2017.2654506.

[22] PULP Platform. (2021).PULPUsers. Pulp Platform. [Online]. Available:
https://www.pulp-platform.org/pulp_users.html

[23] J. O. Mixon. (Nov. 2019). Semico Forecasts Strong Growth for RISC-V.
[Online]. Available: https://riscv.org/announcements/2019/11/9679/

[24] F. Gomez, M. Masmano, V. Nicolau, J. Andersson, J. Le Rhun, D. Trilla,
F. Gallego, G. Cabo, and J. Abella Ferrer, ‘‘De-RISC—Dependable
Real-Time Infrastructure For Safety-Critical Computer Systems,’’ Ada
User J., vol. 41, no. 2, pp. 12–107, Jun. 2020. [Online]. Available:
http://hdl.handle.net/2117/341317

[25] C. Hernandez, J. Flieh, R. Paredes, C.-A. Lefebvre, I. Allende,
J. Abella, D. Trillin, M. Matschnig, B. Fischer, K. Schwarz, J. Kiszka,
M. Ronnback, J. Klockars, N. McGuire, F. Rammerstorfer, C. Schwarzl,
F. Wartet, D. Ludemann, and M. Labayen, ‘‘SELENE: Self-monitored
dependable platform for high-performance safety-critical systems,’’ in
Proc. 23rd Euromicro Conf. Digit. Syst. Design (DSD), Kranj, Slovenia,
Aug. 2020, pp. 370–377, doi: 10.1109/DSD51259.2020.00066.

[26] S. Di Mascio, A. Menicucci, G. Furano, C. Monteleone, and M. Ottavi,
‘‘The case for RISC-V in space,’’ inApplications in Electronics Pervading
Industry, Environment and Society, S. Saponara and A. De Gloria, Eds.
Springer, Cham, Switzerland, 2019, pp. 319–325, doi: 10.1007/978-3-
030-11973-7_37.

[27] Grand View Research. (Jul. 2021). Industrial Internet of Things
Market Worth $1.11 Trillion by 2028. [Online]. Available: https://www.
grandviewresearch.com/press-release/global-industrial-internet-of-
things-iiot-market

[28] Grand View Research. (Jun. 2021). Industrial Internet of Things Mar-
ket Size Report. [Online]. Available: https://www.grandviewresearch.
com/industry-analysis/industrial-internet-of-things-iiot-market

[29] K. Boeckl, K. Boeckl, M. Fagan, W. Fisher, N. Lefkovitz, K. N. Megas,
E. Nadeau, D. G. O’Rourke, B. Piccarreta, and K. Scarfone, Considera-
tions for Managing Internet of Things (IoT) Cybersecurity and Privacy
Risks, Standard NISTIR 8228, United States Department of Commerce,
National Institute of Standards and Technology, Gaithersburg, MD, USA,
2019, doi: 10.6028/NIST.IR.8228.

[30] L. Auer, C. Skubich, and M. Hiller, ‘‘A security architecture for
RISC-V based IoT devices,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Florence, Italy, 2019, pp. 1154–1159, doi:
10.23919/DATE.2019.8714822.

[31] M. Malenko and M. Baunach, ‘‘Hardware/software co-designed periph-
eral protection in embedded devices,’’ in Proc. IEEE Int. Conf. Ind.
Cyber Phys. Syst. (ICPS), Taipei, Taiwan, May 2019, pp. 790–795, doi:
10.1109/ICPHYS.2019.8780325.

[32] V. B. Y. Kumar, N. Gupta, A. Chattopadhyay, M. Kasper, C. Kraus,
and R. Niederhagen, ‘‘Post-quantum secure boot,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2020, pp. 1582–1585, doi:
10.23919/DATE48585.2020.9116252.

[33] Z. Liu, J. Jiang, G. Lei, K. Chen, B. Qin, and X. Zhao, ‘‘A heteroge-
neous processor design for CNN-based AI applications on IoT devices,’’
Proc. Comput. Sci., vol. 174, pp. 2–8, Jan. 2020, doi: 10.1016/j.procs.
2020.06.048.

[34] SiFive. (2021). SiFive Intelligence. [Online]. Available: https://www.
sifive.com/cores/intelligence

[35] J. Lee, H. Chen, J. Young, and H. Kim, ‘‘RISC-V FPGA platform
toward ROS-based robotics application,’’ in Proc. 30th Int. Conf. Field-
Program. Log. Appl. (FPL), Gothenburg, Sweden, Aug. 2020, p. 370, doi:
10.1109/FPL50879.2020.00075.

[36] PULP Platform. (Jun. 2017). PULPino: Datasheet. [Online]. Available:
https://pulp-platform.org/docs/pulpino_datasheet.pdf

[37] N. A. Said, M. Benabdenbi, and K. Morin-Allory, ‘‘FPU bit-width
optimization for approximate computing: A non-intrusive approach,’’ in
Proc. 15th Design Technol. Integr. Syst. Nanosc. Era (DTIS), Marrakesh,
Morocco, Apr. 2020, pp. 1–6, doi: 10.1109/DTIS48698.2020.9080931.

[38] J. Castro-Godinez, M. Shafique, and J. Henkel, ‘‘Towards quality-
driven approximate software generation for accurate hardware: Work-
in-progress,’’ in Proc. Int. Conf. Compil., Archit., Synth. Embed-
ded Syst. (CASES), Shanghai, China, Sep. 2020, pp. 12–14, doi:
10.1109/CASES51649.2020.9243814.

[39] F. Zaruba and L. Benini, ‘‘The cost of application-class processing:
Energy and performance analysis of a Linux-ready 1.7-GHz 64-bit RISC-
V core in 22-nm FDSOI technology,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 27, no. 11, pp. 2629–2640, Nov. 2019, doi:
10.1109/TVLSI.2019.2926114.

[40] LowRISC. (2021). Ibex RISC-V Core. [Online]. Available: https://github.
com/lowRISC/ibex

[41] OpenHW Group. (2021). OpenHW Group CORE-V CV32E40P RISC-V
IP. [Online]. Available: https://github.com/openhwgroup/cv32e40p

[42] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, ‘‘SonicBOOM: The
3rd generation Berkeley out-of-order machine,’’ in Proc. 4th Workshop
Comput. Archit. Res. RISC-V, vol. 5, 2020.

[43] BOOM. (2021). The Berkeley Out-of-Order RISC-V Processor. [Online].
Available: https://github.com/riscv-boom/riscv-boom

[44] Cobham Gaisler. (2021). NOEL-V Processor. [Online]. Available:
https://www.gaisler.com/index.php/products/processors/noel-v

[45] PULP Platform. (Mar. 2021). PULPissimo: Datasheet. [Online].
Available: https://raw.githubusercontent.com/pulp-platform/pulpissimo/
master/doc/datasheet/datasheet.pdf

[46] D. A. Santos, L. M. Luza, L. Dilillo, C. A. Zeferino, and D. R. Melo,
‘‘Reliability analysis of a fault-tolerant RISC-V system-on-chip,’’
Microelectron. Rel., vol. 125, Oct. 2021, Art. no. 114346, doi:
10.1016/j.microrel.2021.114346.

[47] SiFive. (2021). SiFive Performance P550 Core Sets New Standard
as Highest Performance RISC-V Processor IP. [Online]. Available:
https://www.sifive.com/press/sifive-performance-p550-core-sets-new-
standard-as-highest

[48] M. Larabel. (2021). SiFive announces the performance P550 as
the fastest RISC-V processor yet. Phoronix. [Online]. Available:
https://www.phoronix.com/scan.php?page=news_item&px=SiFive-
Performance-P550-P270

VOLUME 10, 2022 51409

http://dx.doi.org/10.1109/ISCA45697.2020.00016
http://dx.doi.org/10.1109/DSN-W50199.2020.00020
http://dx.doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/DSD51259.2020.00066
http://dx.doi.org/10.1007/978-3-030-11973-7_37
http://dx.doi.org/10.1007/978-3-030-11973-7_37
http://dx.doi.org/10.6028/NIST.IR.8228
http://dx.doi.org/10.23919/DATE.2019.8714822
http://dx.doi.org/10.1109/ICPHYS.2019.8780325
http://dx.doi.org/10.23919/DATE48585.2020.9116252
http://dx.doi.org/10.1016/j.procs.2020.06.048
http://dx.doi.org/10.1016/j.procs.2020.06.048
http://dx.doi.org/10.1109/FPL50879.2020.00075
http://dx.doi.org/10.1109/DTIS48698.2020.9080931
http://dx.doi.org/10.1109/CASES51649.2020.9243814
http://dx.doi.org/10.1109/TVLSI.2019.2926114
http://dx.doi.org/10.1016/j.microrel.2021.114346

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

[49] Bloomberg. (2021). SiFive Performance P550 Core Sets New Standard
as Highest Performance RISC-V Processor IP. [Online]. Available:
https://www.bloomberg.com/press-releases/2021-06-22/sifive-
performance-p550-core-sets-new-standard-as-highest-performance-
risc-v-processor-ip

[50] SiFive. (Oct. 2017). SiFive FE310-G000 Manual. [Online]. Available:
https://static.dev.sifive.com/FE310-G000.pdf

[51] V. Herdt and R. Drechsler, ‘‘Efficient techniques to strongly enhance the
virtual prototype based design flow,’’ in Proc. IEEE Comput. Soc. Annu.
Symp. VLSI (ISVLSI), Limassol, Cyprus, Jul. 2020, pp. 182–187, doi:
10.1109/ISVLSI49217.2020.00041.

[52] PULP Platform. (Feb. 2019). PULP Hardware Reference Manual.
[Online]. Available: https://raw.githubusercontent.com/pulp-
platform/pulp/master/doc/datasheet.pdf

[53] PULP Platform. (2021). HERO Documentation. [Online]. Available:
https://pulp-platform.org/hero.html

[54] Microsemi. (Dec. 2019). PolarFire SoC Advanced Datasheet.
[Online]. Available: https://www.microsemi.com/document-portal/
doc_download/1244583-polarfire-soc-advance-datasheet

[55] E. Torres-Sanchez, J. Alastruey-Benedé, and E. Torres-Moreno, ‘‘Devel-
oping an AI IoT application with open software on a RISC-V SoC,’’ in
Proc. XXXV Conf. Design Circuits Integr. Syst. (DCIS), Segovia, Spain,
2020, pp. 1–6, doi: 10.1109/DCIS51330.2020.9268645.

[56] QEMU. (2021). RISC-V System Emulator. [Online]. Available:
https://qemu.readthedocs.io/en/latest/system/target-riscv.html

[57] Gem5. (2021). About Gem5. [Online]. Available: https://www.gem5.
org/about

[58] RISC-V. (2021). Spike RISC-V ISA Simulator. [Online]. Available:
https://github.com/riscv/riscv-isa-sim

[59] B. Landers. (2021). RARS—RISC-V Assembler and Runtime Simulator.
[Online]. Available: https://github.com/TheThirdOne/rars

[60] R. Giorgi and G. Mariotti, ‘‘WebRISC-V: A web-based education-
oriented RISC-V pipeline simulation environment,’’ in Proc. Work-
shop Comput. Archit. Educ., New York, NY, USA, 2019, pp. 1–6, doi:
10.1145/3338698.3338894.

[61] M. B. Petersen, ‘‘Ripes: A visual computer architecture simulator,’’ in
Proc. ACM/IEEE Workshop Comput. Archit. Educ. (WCAE), Jun. 2021,
pp. 1–8, doi: 10.1109/WCAE53984.2021.9707149.

[62] A. Castellanos. (2019). RISC-V Assembler and Runtime Simulator.
[Online]. Available: https://github.com/andrescv/Jupiter

[63] V. M. de Morais Costa. (2022). RISC-V Instruction Set Simulator (Built
for Education). [Online]. Available: https://github.com/vmmc2/Vulcan

[64] G. Savaton. (2022). A Visual Simulator for Teaching Computer
Architecture Using the RISC-V Instruction Set. [Online]. Available:
https://github.com/Guillaume-Savaton-ESEO/emulsiV

[65] W. Stallings, Operating Systems: Internals and Design Principles,
9th ed. Indianapolis, IN, USA: Pearson, 2018. [Online]. Available:
https://www.pearson.com/us/higher-education/program/Stallings-
Operating-Systems-Internals-and-Design-Principles-9th-
Edition/PGM1262980.html

[66] B. James, H. Quinn, M. Wirthlin, and J. Goeders, ‘‘Applying compiler-
automated software fault tolerance to multiple processor platforms,’’
IEEE Trans. Nucl. Sci., vol. 67, no. 1, pp. 321–327, Jan. 2020, doi:
10.1109/TNS.2019.2959975.

[67] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Sys-
tems: Concepts andDesign, 5th ed. Reading,MA,USA:Addison-Wesley,
2011. [Online]. Available: https://dl.acm.org/doi/10.5555/2029110

[68] M. Bohman, B. James, M. J. Wirthlin, H. Quinn, and J. Goeders,
‘‘Microcontroller compiler-assisted software fault tolerance,’’ IEEE
Trans. Nucl. Sci., vol. 66, no. 1, pp. 223–232, Jan. 2019, doi:
10.1109/TNS.2018.2886094.

[69] R. Stahl, D. Mueller-Gritschneder, and U. Schlichtmann, ‘‘Driver genera-
tion for IoT nodes with optimization of the hardware/software interface,’’
IEEE Embedded Syst. Lett., vol. 12, no. 2, pp. 66–69, Jun. 2020, doi:
10.1109/LES.2019.2948264.

[70] Q. Zhang, J. Qiao, Q.Meng, andY. Chen, ‘‘Automatic kernel code synthe-
sis and verification,’’Comput. Secur., vol. 91, Apr. 2020, Art. no. 101733,
doi: 10.1016/j.cose.2020.101733.

[71] M. N. Ince, J. Ledet, and M. Gunay, ‘‘Building an open source
Linux computing system on RISC-V,’’ in Proc. 1st Int. Informat.
Softw. Eng. Conf. (UBMYK), Ankara, Turkey, Nov. 2019, pp. 1–4, doi:
10.1109/UBMYK48245.2019.8965559.

[72] C. Dietrich and D. Lohmann, ‘‘OSEK-V: Application-specific RTOS
instantiation in hardware,’’ SIGPLANNotices, vol. 52, no. 5, pp. 111–120,
Jun. 2017, doi: 10.1145/3140582.3081030.

[73] M. Malenko and M. Baunach, ‘‘Device driver and system call iso-
lation in embedded devices,’’ in Proc. 22nd Euromicro Conf. Digit.
Syst. Design (DSD), Kallithea, Greece, Aug. 2019, pp. 283–290, doi:
10.1109/DSD.2019.00049.

[74] I. Wali, A. Sanchez-Macian, A. Ramos, and J. A. Maestro, ‘‘Ana-
lyzing the impact of the operating system on the reliability of a
RISC-V FPGA implementation,’’ in Proc. 27th IEEE Int. Conf. Elec-
tron., Circuits Syst. (ICECS), Glasgow, U.K., Nov. 2020, pp. 1–4, doi:
10.1109/ICECS49266.2020.9294858.

[75] B. Mezger, F. Bortoluzzi, C. A. Zeferino, P. R. O. Valim, and
D. R. Melo, ‘‘A basic microkernel for the RISC-V instruction set archi-
tecture,’’ Anais Comput. Beach, vol. 12, pp. 057–063, Apr. 2021, doi:
10.14210/cotb.v12.p057-063.

[76] S. Savas, Z. Ul-Abdin, and T. Nordström, ‘‘A framework to gener-
ate domain-specific manycore architectures from dataflow programs,’’
Microprocessors Microsyst., vol. 72, Feb. 2020, Art. no. 102908, doi:
10.1016/j.micpro.2019.102908.

[77] X. Wang, M. Magno, L. Cavigelli, and L. Benini, ‘‘FANN-on-MCU: An
open-source toolkit for energy-efficient neural network inference at the
edge of the Internet of Things,’’ IEEE Internet Things J., vol. 7, no. 5,
pp. 4403–4417, May 2020, doi: 10.1109/JIOT.2020.2976702.

[78] C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi,
‘‘TriCheck: Memory model verification at the trisection of software,
hardware, and ISA,’’ in Proc. 22nd Int. Conf. Architectural Support
Program. Lang. Oper. Syst., New York, NY, USA, 2017, pp. 119–133,
doi: 10.1145/3037697.3037719.

[79] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2014. [Online]. Available:
https://dl.acm.org/doi/10.5555/2655363

[80] D. Du, Z. Hua, Y. Xia, B. Zang, and H. Chen, ‘‘XPC: Architectural
support for secure and efficient cross process call,’’ in Proc. ACM/IEEE
46th Int. Symp. Comput. Architecture, Phoenix, AZ, USA, Jun. 2019,
pp. 671–684, doi: 10.1145/3307650.3322218.

[81] L. Kohútka andV. Stopjaková, ‘‘Novel efficient on-chip task scheduler for
multi-core hard real-time systems,’’Microprocessors Microsyst., vol. 76,
Jul. 2020, Art. no. 103083, doi: 10.1016/j.micpro.2020.103083.

[82] M. Naylor, S. W. Moore, and D. Thomas, ‘‘Tinsel: A manythread overlay
for FPGA clusters,’’ in Proc. 29th Int. Conf. Field Program. Log. Appl.
(FPL), Sep. 2019, pp. 375–383, doi: 10.1109/FPL.2019.00066.

[83] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz,
S. Mangard, and D. Gruss, ‘‘Efficient in-process isolation for
RISC-V and ×86,’’ in Proc. USENIX Security. Boston, MA, USA:
USENIX Association, Aug. 2020, pp. 1677–1694. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/
schrammel

[84] J. Liu, Y. Qin, and D. Feng, ‘‘SeRoT: A secure runtime system on trusted
execution environments,’’ in Proc. IEEE 19th Int. Conf. Trust, Secur.
Privacy Comput. Commun. (TrustCom), Guangzhou, China, Dec. 2020,
pp. 30–37, doi: 10.1109/TrustCom50675.2020.00018.

[85] A. Bolat, L. Cassano, P. Reviriego, O. Ergin, and M. Ottavi, ‘‘A micro-
processor protection architecture against hardware trojans in memories,’’
in Proc. 15th Design Technol. Integr. Syst. Nanosc. Era (DTIS), Mar-
rakesh, Morocco, Apr. 2020, pp. 1–6, doi: 10.1109/DTIS48698.2020.
9080961.

[86] T. Hunt, Z. Jia, V. Miller, C. J. Rossbach, and E. Witchel, ‘‘Isolation
and beyond: Challenges for system security,’’ in Proc. Workshop Hot
Topics Oper. Syst., New York, NY, USA, May 2019, pp. 96–104, doi:
10.1145/3317550.3321427.

[87] D. Hwang, M. Yang, S. Jeon, Y. Lee, D. Kwon, and Y. Paek, ‘‘RiskiM:
Toward complete kernel protection with hardware support,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Florence, Italy, Mar. 2019,
pp. 740–745, doi: 10.23919/DATE.2019.8715277.

[88] D. Šišejkovićć, F. Merchant, L. M. Reimann, R. Leupers, M. Giacometti,
and S. Kegreiß, ‘‘A secure hardware-software solution based on RISC-
V, logic locking and microkernel,’’ in Proc. 23th Int. Workshop Softw.
Compil. Embedded Syst., New York, NY, USA, May 2020, pp. 62–65,
doi: 10.1145/3378678.3391886.

[89] M. Fischer, F. Langer, J. Mono, C. Nasenberg, and N. Albartus, ‘‘Hard-
ware penetration testing knocks your SoCs off,’’ IEEE Design Test,
vol. 38, no. 1, pp. 14–21, Feb. 2021, doi: 10.1109/MDAT.2020.3013730.

51410 VOLUME 10, 2022

http://dx.doi.org/10.1109/ISVLSI49217.2020.00041
http://dx.doi.org/10.1109/DCIS51330.2020.9268645
http://dx.doi.org/10.1145/3338698.3338894
http://dx.doi.org/10.1109/WCAE53984.2021.9707149
http://dx.doi.org/10.1109/TNS.2019.2959975
http://dx.doi.org/10.1109/TNS.2018.2886094
http://dx.doi.org/10.1109/LES.2019.2948264
http://dx.doi.org/10.1016/j.cose.2020.101733
http://dx.doi.org/10.1109/UBMYK48245.2019.8965559
http://dx.doi.org/10.1145/3140582.3081030
http://dx.doi.org/10.1109/DSD.2019.00049
http://dx.doi.org/10.1109/ICECS49266.2020.9294858
http://dx.doi.org/10.14210/cotb.v12.p057-063
http://dx.doi.org/10.1016/j.micpro.2019.102908
http://dx.doi.org/10.1109/JIOT.2020.2976702
http://dx.doi.org/10.1145/3037697.3037719
http://dx.doi.org/10.1145/3307650.3322218
http://dx.doi.org/10.1016/j.micpro.2020.103083
http://dx.doi.org/10.1109/FPL.2019.00066
http://dx.doi.org/10.1109/TrustCom50675.2020.00018
http://dx.doi.org/10.1109/DTIS48698.2020.9080961
http://dx.doi.org/10.1109/DTIS48698.2020.9080961
http://dx.doi.org/10.1145/3317550.3321427
http://dx.doi.org/10.23919/DATE.2019.8715277
http://dx.doi.org/10.1145/3378678.3391886
http://dx.doi.org/10.1109/MDAT.2020.3013730

B. W. Mezger et al.: Survey of RISC-V Architecture Software Support

[90] T.-T. Hoang, C. Duran, D.-T. Nguyen-Hoang, D.-H. Le, A. Tsukamoto,
K. Suzaki, and C.-K. Pham, ‘‘Quick boot of trusted execution
environment with hardware accelerators,’’ IEEE Access, vol. 8,
pp. 74015–74023, 2020, doi: 10.1109/ACCESS.2020.2987617.

[91] A. S. Siddiqui, G. Shirley, S. Bendre, G. Bhagwat, J. Plusquellic, and
F. Saqib, ‘‘Secure design flow of FPGA based RISC-V implementation,’’
in Proc. IEEE 4th Int. Verification Secur. Workshop (IVSW), Rhodes,
Greece, Jul. 2019, pp. 37–42, doi: 10.1109/IVSW.2019.8854418.

[92] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi,
H. Khattri, J. M. Fung, A.-R. Sadeghi, and J. Rajendran, ‘‘HardFails:
Insights into software-exploitable hardware bugs,’’ in Proc.
USENIX Security. Santa Clara, CA, USA: USENIX Association,
Aug. 2019, pp. 213–230. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity19/presentation/dessouky

[93] R. Dofferhoff, M. Goebel, K. Rietveld, and E. van der Kouwe,
‘‘IScanU: A portable scanner for undocumented instructions on RISC
processors,’’ in Proc. 50th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw. (DSN), Valencia, Spain, Jun. 2020, pp. 306–317, doi:
10.1109/DSN48063.2020.00047.

[94] A. Fell, H. T. Pham, and S.-K. Lam, ‘‘TAD: Time side-channel attack
defense of obfuscated source code,’’ in Proc. 24th Asia South Pacific
Design Autom. Conf., New York, NY, USA, Jan. 2019, pp. 58–63, doi:
10.1145/3287624.3287694.

[95] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd,
N. Asokan, and A.-R. Sadeghi, ‘‘HardScope: Hardening embedded sys-
tems against data-oriented attacks,’’ in Proc. 56th ACM/IEEE Annu.
Design Autom. Conf., Las Vegas, NV, USA, Jun. 2019, pp. 1–6, doi:
10.1145/3316781.3317836.

[96] I. Koren and C. M. Krishna, Fault-Tolerant Systems, 2nd ed.
San Francisco, CA, USA: Morgan Kaufmann, 2021, doi: 10.1016/B978-
0-12-818105-8.00011-5.

[97] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and
A. Papadimitriou, ‘‘Cross-layer analysis of software fault models and
countermeasures against hardware fault attacks in a RISC-V processor,’’
Microprocessors Microsyst., vol. 71, Nov. 2019, Art. no. 102862, doi:
10.1016/j.micpro.2019.102862.

[98] J. Laurent, V. Beroulle, C. Deleuze, and F. Pebay-Peyroula, ‘‘Fault
injection on hidden registers in a RISC-V rocket processor and
software countermeasures,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Florence, Italy, Mar. 2019, pp. 252–255, doi:
10.23919/DATE.2019.8715158.

[99] P. Adelt, B. Koppelmann, W. Mueller, and C. Scheytt, ‘‘Register
and instruction coverage analysis for different RISC-V ISA
modules,’’ in Proc. 24th GMM/ITG/GI Workshop Methods
Description Lang. Modeling Verification Circuits Syst. (MBMV).
Frankfurt, Germany: VDE, 2021, pp. 1–8. [Online]. Available:
https://ieeexplore.ieee.org/document/9399723

[100] P. Adelt, B. Koppelmann, W. Mueller, and C. Scheytt, ‘‘A scalable
platform for QEMU based fault effect analysis for RISC-V
hardware architectures,’’ in Proc. 23rd GMM/ITG/GI Workshop
Methods Description Lang. Modeling Verification Circuits Syst.
(MBMV), Stuttgart, Germany, 2020, pp. 1–8. [Online]. Available:
https://ieeexplore.ieee.org/document/9094540

[101] C. De Sio, S. Azimi, A. Portaluri, and L. Sterpone, ‘‘SEU eval-
uation of hardened-by-replication software in RISC-V soft proces-
sor,’’ in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nan-
otechnol. Syst. (DFT), Athens, Greece, Oct. 2021, pp. 1–6, doi:
10.1109/DFT52944.2021.9568342.

[102] C. Imianosky, P. R. O. Valim, C. A. Zeferino, and F. Viel, ‘‘Evaluating the
CCSDS 123 compressor running on RISC-V and ARM architectures,’’
in Proc. X Brazilian Symp. Comput. Syst. Eng. (SBESC), Florianopólis,
Brazil, Nov. 2020, pp. 1–7, doi: 10.1109/SBESC51047.2020.9277854.

[103] I. Karageorgos, K. Sriram, J. Vesely, M. Wu, M. Powell, D. Borton,
R. Manohar, and A. Bhattacharjee, ‘‘Hardware-software co-design for
brain-computer interfaces,’’ in Proc. ACM/IEEE 47th Annu. Int. Symp.
Comput. Archit. (ISCA), Valencia, Spain, May 2020, pp. 391–404, doi:
10.1109/ISCA45697.2020.00041.

BENJAMIN W. MEZGER (Student Member,
IEEE) received the B.S. degree in computer sci-
ence from the University of Vale do Itajaí, in 2019,
where he is currently the M.S. degree in applied
computer science. His research interests include
RISC-V, operating systems, and fault tolerance.

DOUGLAS A. SANTOS (Student Member, IEEE)
received the B.E. degree in computer engineering
and the M.S. degree in applied computer science
from the University of Vale do Itajaí, in 2019 and
2021, respectively. He is currently pursuing the
Ph.D. degree with the Laboratoire d’Informatique,
de Robotique et de Microelectronique de Mont-
pellier (LIRMM). His research interests include
RISC-V, embedded systems, and fault tolerance.

LUIGI DILILLO (Member, IEEE) received the
Diploma degree in electronic engineering from
the Politecnico di Torino, Italy, in 2001, and the
Ph.D. degree in microelectronics from the Uni-
versity of Montpellier. He is currently a CNRS
Researcher with the LIRMM Laboratory. His
research interests include memory test and reli-
ability, power-aware test, radiation impact on
electronics, radiation monitoring, and space and
radiation-hardened system design.

CESAR A. ZEFERINO (Member, IEEE) received
the Ph.D. degree in computer science from the
Federal University of Rio Grande do Sul, Brazil,
in 2003. He is currently a Full Professor and
the Director of the School of Sea, Science and
Technology, University of Vale do Itajaí—Univali,
Brazil, where he also heads the Laboratory of
Embedded and Distributed Systems. His research
interests include digital systems design, embed-
ded systems, networks-on-chip, and hardware
acceleration.

DOUGLAS R. MELO (Member, IEEE) received
the B.E. degree in computer engineering and the
M.S. degree in applied computer science from the
University of Vale do Itajaí, in 2008 and 2012,
respectively, and the Ph.D. degree in electrical
engineering from the Federal University of Santa
Catarina, in 2020. He is currently an Adjunct Pro-
fessor with the University of Vale do Itajaí and a
Researcher with the Laboratory of Embedded and
Distributed Systems. His research interests include

systems-on-chip, networks-on-chip, and fault tolerance.

VOLUME 10, 2022 51411

http://dx.doi.org/10.1109/ACCESS.2020.2987617
http://dx.doi.org/10.1109/IVSW.2019.8854418
http://dx.doi.org/10.1109/DSN48063.2020.00047
http://dx.doi.org/10.1145/3287624.3287694
http://dx.doi.org/10.1145/3316781.3317836
http://dx.doi.org/10.1016/B978-0-12-818105-8.00011-5
http://dx.doi.org/10.1016/B978-0-12-818105-8.00011-5
http://dx.doi.org/10.1016/j.micpro.2019.102862
http://dx.doi.org/10.23919/DATE.2019.8715158
http://dx.doi.org/10.1109/DFT52944.2021.9568342
http://dx.doi.org/10.1109/SBESC51047.2020.9277854
http://dx.doi.org/10.1109/ISCA45697.2020.00041

