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ABSTRACT Meteorological conditions have a strong influence on air quality and can play an important role
in air quality prediction. However, due to the ‘‘black-box’’ nature of deep learning, it is difficult to obtain
trustworthy deep learning models when considering meteorological conditions in air quality prediction.
To address the above problem, in this paper, we reveal the influence of meteorological conditions on
air quality prediction by utilizing explainable deep learning. In this paper, (1) the source data from air
pollutant datasets, including PM2.5, PM10, SO2 hourly concentration, and the meteorological condition
datasets measuring the temperature, humidity, and atmospheric pressure are obtained; (2) the Long Short-
TermMemory (LSTM) and Gated Recurrent Unit (GRU) models are established for air quality prediction in
4 conditions; (3) the SHapley Additive exPlanation (SHAP)method is employed to analyze the explainability
of the air quality prediction models. We find that the prediction accuracy is not improved by considering only
meteorological conditions. However, when combining meteorological conditions with other air pollutants,
the prediction accuracy is higher than considering other air pollutants. In addition, the largest contribution
to air quality prediction is atmospheric pressure, followed by humidity and temperature. The reason for the
different accuracies of the prediction may because of the interaction between meteorological conditions and
other air pollutants. The investigated results in this paper can help improve the prediction accuracy of air
quality and achieve trusted air quality predictions.

INDEX TERMS Explainable deep learning, air quality prediction, meteorological condition, long short-term
memory (LSTM), gate recurrent unit (GRU).

I. INTRODUCTION
The continuous acceleration of global urbanization and
industrialization has brought environmental problems. One of
the serious environmental problems is air quality induced by
the development of urbanization and industrialization [1], [2].
Due to the needs of transportation, production, and life,
energy production and consumption processes, such as power
plants, factories, and automobile exhaust emissions have
ultimately led to the continuous deterioration of global
air quality [3]. Air pollution can cause various respiratory
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diseases andmay even lead to the occurrence of cancer, which
seriously threatens people’s lives and health [4].

The main air pollutants include PM2.5, PM10, and SO2,
etc. Among them, PM2.5 is a fine particle with a diameter
smaller than 2.5 microns. Compared with larger particulate
pollutants, PM2.5 particles are more active, meaning that they
can easily carry substances that affect human health and the
environment, as well as remain in the air for a long time and
spread quickly. PM2.5 is one of the most important sources
of air pollution [2]. Due to its small particle size, it can
enter the nasal cavity and throat of the human body, and
then easily cause asthma, bronchial or cardiovascular dis-
eases [5]. Air pollution poses a great threat to people’s health
[4], [6]. Being in an environment with severe air pollution
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for a long time may cause various respiratory diseases and
even decreased cardiopulmonary function problems. The
incidence of various diseases will dramatically increase,
which will overdraft people’s health, affect people’s living
and happiness indices, and increase mortality [7]. Air
pollution also damages the ecosystem, affects its diversity and
stability, and harms the environment [1].

Frequent air pollution incidents not only cause serious
harm to human health but also cause huge economic losses
and many social problems [8]. Therefore, based on air
pollution parameters, timely scientific analysis, accurate
prediction of air quality and effective protection and treatment
can help relevant departments and related groups take
preventive measures in advance, as well as more reasonably
arrange travel. People’s health could be ensured, and the
occurrence of diseases could be prevented [9].

In addition, the prediction of air quality can also provide
reliable information for the prevention and control of air
pollution. Through further understanding of the influencing
factors and changing trends of air pollutants, effective
evaluation and prediction of air quality changes are helpful
for the control and prevention of air pollution, which would
then enable the environment and human health to be better
protected [10]. Air quality prediction is also conducive to
relevant departments to understand the air quality status,
and thus, a valuable theoretical basis can be provided
for it. In addition, air pollution prevention and control
policies can be formulated according to specific conditions.
It also provides constructive opinions and suggestions for
decision-makers to take more economical and efficient
measures to improve air quality in the future [11].

Some of the related research work is as follows. For exam-
ple, Kumar and Goyal [12] employed three statistical models:
auto regressive integrated moving average (ARIMA), princi-
pal component regression (PCR), and combination of both to
predict the daily Air Quality Index (AQI) for each season.
Cobourn [13] proposed an enhancement PM2.5 prediction
model on the basis of back-trajectory concentrations and
nonlinear regression (NLR), which has lower mean absolute
errors. The process of predicting air quality using physical
and chemical methods is more complex. Rajput et al. [14]
proposed an approach to assess and represent quality status
through an AQI, which can be useful for better forecasting
of air quality parameters. But the model is a time-frequency
prediction model, which is better for shorter time periods
only.

Moreover, Liu et al. [15] predicted PM10, NO2, and SO2
in seven locations in Guangzhou based on sample selection
and backpropagation (BP) neural network, and achieved
satisfactory prediction results. It can provide reliable and
accurate air quality prediction and warnings in practical
applications. Complex correlation calculations were per-
formed when considering the influence of meteorological
conditions. Xiao et al. [16] collected meteorological data
from 1980 to 2012 in Baoji, China, to investigate the
trend of visibility changes. PM2.5 was measured, and the

influencing factors and reasons for visibility reduction were
analyzed based on the improved equation. But only past
trends in visibility changes were analyzed, and no projections
of future trends were made. Qi et al. [8] analyzed the
relationship between the meteorological conditions and the
concentration of air pollutants in Beijing. It was demonstrated
that meteorological conditions have a corresponding effect
on air quality. However, the air quality was not predicted,
and the effect of meteorological conditions on the air quality
prediction was not studied.

Air quality prediction can be performed using the tradi-
tional statistical methods and traditional machine learning
methods as well as the latest deep learning methods. Tra-
ditional statistical methods and traditional machine learning
methods generally use air quality data from a period of time
in the past and predict air quality for a period of time in the
future based on the characteristic connections and association
rules between the data, which are generally more complex,
computationally intensive and inefficient [17], [18]. Studies
on the influence of meteorological conditions on air quality
have generally considered only the relationship between air
quality and the measured meteorological conditions, and
rarely consider the effects on air quality in future trends.

In recent years, deep learning has been widely employed
in various fields [19], [20]. Deep learning has advantages in
capturing complex data relationships. Moreover, because of
the large amount of historical monitoring data for air quality,
applying deep learning methods to air quality prediction does
not require extremely detailed pollution emission parameters
and meteorological data, which can reduce the computational
effort and improve the computational efficiency [21]–[23].

For example, Kuo et al. [24] applied deep learning meth-
ods (Recurrent Neural Network) to predict air quality in
Taipei, Taiwan. The results indicated that the RNN using
the Gaussian process is better than the backpropagation
neural network and the basic RNN. Although meteoro-
logical conditions are taken into account in air quality
predictions, the effect of meteorological conditions on air
quality predictions cannot be explained. Chang et al. [25]
proposed an aggregate long short-term memory model
(ALSTM). The results showed that the aggregation model
can improve the accurate of prediction effectively. There
are still some shortcomings in the data pre-processing
which leads to some problems in the accuracy of PM2.5
prediction. Zhang et al. [26] suggested a semi-supervised
model including empirical mode decomposition (EMD) and
bidirectional long short-term memory (BiLSTM) neural
networks to predict PM2.5 concentration. It reduces the
accumulation of errors in multi-step PM2.5 prediction and can
achieve a higher accuracy rate. However, the predictions are
made through PM2.5 levels only, ignoring the influence of
other factors on the predicted results.

Deep learning methods are suitable for air quality predic-
tion, and the research of interpretable deep learning methods
has far-reaching implications for future relevance research
in air quality prediction. However, deep learning methods
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lack explainability due to their ‘‘black box’’ nature. To build
trustworthy deep learning models, much research work has
been conducted on the explainability of deep learning.

For example, Lundberg and Lee [27] proposed the Shapley
additive explanation (SHAP) method that can explain the
contribution of each feature in the machine learning model
to each predicted value. SHAP method can explain complex
machine learning models. However, only the SHAP method
is proposed, and the application of the SHAP method to
air quality prediction is not implemented. Navares and
Aznarte [28] employed the LSTM to predict air quality in
the Madrid region. And the comprehensive deep network
configuration model was used to predict, indicating that
a single comprehensive model might be a better option
than multiple individual models. Although meteorological
conditions are taken into account when predicting air quality,
there is no corresponding analysis of how meteorological
conditions affect air quality predictions.

In addition, Arrieta et al. [29] summarized the existing
literature and related research in the XAI field, provided a
new definition of interpretable machine learning, and a more
comprehensive interpretable machine learning classification
method. There is no mention of deep learning interpretable
analysis operations in terms of the influence of meteoro-
logical conditions on air quality prediction. Zhang et al. [30]
used partial correlation diagram (PDP), SHAPmethod, linear
regression (LR), and decision tree (DT) methods to study the
interpretability of machine learning models on the thermal
comfort of smart buildings. It can be extended to explainable
deep learning analysis for prediction of air quality.

However, currently, while several deep learning models
utilize meteorological conditions for air quality prediction,
meteorological conditions are only used as input data, and
there is little researchwork on the influence ofmeteorological
conditions on air quality prediction. In this case, the influence
of meteorological conditions on air quality prediction in deep
learning models is not yet well understood, such as how
it affects air quality prediction. This is because the deep
learning model has the common ‘‘black box’’ nature, i.e.,
the weak explainability. Although it is possible to combine
meteorological condition data with air quality data, and then
use the deep learning model’s powerful fitting advantage
for complex data relationships to predict air quality. There
are still many difficulties in analyzing the influence of
meteorological condition data on air quality prediction and
their correlations.

To address the above problems, in this paper, we reveal
the impact of meteorological conditions on air quality
prediction using explainable deep learning and explain
how meteorological conditions affect air quality prediction
accordingly. By revealing the influence of meteorological
conditions on the prediction of air quality, the accuracy
is further improved. Deep learning models for air quality
prediction with higher accuracy and credibility can be
obtained. Thus, it can be better applied in practice. This
can help people plan their travel arrangements reasonably

and take corresponding preventive measures on time to
protect their health. Through the advanced understanding
of the air quality status, corresponding prevention and
control measures are adopted to realize timely and effective
environmental management.

The contributions of this paper could be summarized as
follows.

1) LSTM and GRU models were employed for air quality
prediction under four different conditions and achieved
positive results.

2) The influence of meteorological conditions on air
quality prediction is revealed using explainable deep
learning methods.

3) How meteorological conditions affect air quality pre-
diction is revealed using the SHAP method, which is
beneficial to further improve the accuracy of air quality
prediction.

The rest of this paper is organized as follows. Section II
describes the dataset and methods used in this article.
Section III analyzes the results of the air quality prediction
and uses the SHAP method to conduct an explainability
analysis of the deep learning model. Section IV discusses the
use of explainable deep learning methods as well as possible
future work. Section V is a conclusion of the paper.

II. MATERIALS AND METHODS
A. OVERVIEW
In this paper, we employ the explainable deep learning
method SHapley Additive exPlanations to reveal the impact
of meteorological conditions on air quality prediction. Our
objective is to discuss the influence of meteorological
conditions on air quality prediction to improve the air quality
prediction accuracy of the deep learning model; see the
workflow of the research work in Figure 1.
First, we collect a large amount of hourly concentration

data of air pollutants, as well as meteorological data from
the same location and time from publicly available websites.
The raw data is cleaned up. Second, deep learning models
suitable for air quality prediction are established. Since both
LSTM and GRU models are classical time-series prediction
models and comparedwith Recurrent Neural Network (RNN)
models, LSTM models can learn long-term dependence
information, and GRU models are variants of LSTM models,
which are simpler in structure compared with LSTM models
and can also achieve better results. Both models are RNN-
based versions. Instead of using the original RNN model,
the research work uses the more effective LSTM and GRU
to establish deep learning models (stand-alone LSTM model
and stand-alone GRU model) for air quality prediction.
The prediction first separately considers meteorological
conditions and other air pollutants, before combining the
meteorological conditions and the other air pollutants for
comparison and analysis. Third, the SHapley Additive
exPlanations (SHAP) method conducts a single analysis and
an analysis for all features of the deep learning model.
Additionally, the influence of meteorological conditions on
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FIGURE 1. Flowchart of revealing the influence of meteorological
conditions on air quality prediction by explainable deep learning.

air quality prediction is revealed. The foundation for the
practical application of air quality prediction is expressed.

B. STEP 1: DATA COLLECTION AND CLEANING
The dataset for this research work is from the Harvard
Dataverse [31], including hourly average concentrations of
regulated air pollutants data collected from 35 air quality
monitoring stations and hourly average meteorological
parameter data collected from 18 meteorological stations in
Beijing from January 30th, 2017 to January 31st , 2018. Air
quality data is provided by the Ministry of Environmental
Protection (MEP) of China. Hourly averaged meteorological
data in the same period was accessed from The National
Oceanic and Atmospheric Administration (NOAA).

The obtained dataset name and available URL are as
follows:

Dataset: Air pollution and meteorological data in Beijing
2017–2018.

URL: https://doi.org/10.7910/DVN/USXCAK
In this paper, the objective is to reveal the influence

of meteorological conditions on air quality prediction to
improve the accuracy of the deep learning model for the
practical application of air quality prediction.

The hourly average air pollutant concentration data and
meteorological data at the same location should be selected
for the investigation. By comparing the latitude and longitude
position information of 35 air quality monitoring stations
and 18 meteorological stations, the two closest stations were
found, and the influence of meteorological conditions on air

quality prediction was explored. In addition, feature selection
is also required. High-quality feature selection can help
improve the accuracy of air quality prediction. Therefore,
corresponding analysis and selection of air quality prediction
features are required. If using high-quality features, better
air quality prediction effects can be obtained, and model
performance can be improved.

In the collected data, there are 4,405missing values, 54,696
irrelevant values, and 11,440 redundant values, and the final
dataset has a total of 57,083 available data.

The processing methods for dealing with missing values
include the direct deletion method, global constant replace-
ment method, statistical number filling method (including
mean value filling, median filling, mode filling, etc.),
interpolation and kNN filling method, etc. [32], [33]. Since
this paper is time-series data, the kNN filling method (K-
Nearest Neighbors) is employed to achieve a better data
filling effect.

The kNNfilling method is derived from the kNN algorithm
and inherits the idea of the kNN algorithm. It employed
distance measurement to identify neighboring points and rec-
ognizes k samples that are similar in space in the dataset [34].
These ‘‘k’’ samples, that is, neighboring observations, are
employed to estimate the value of the missing data point [35].
Missing values for each sample are interpolated employing
the weighted average of the adjacent observations contained
in the ‘‘k’’ neighborhood found in the dataset.

The selection of k in the kNN algorithm is also very
important [36]. If the selected k value is too large, it will
lead to over-simplification of themodel, and the fitting results
will be influenced by the farther point due to too many
samples selected for fitting, which is also easy to produce
prediction errors. In practical applications, a smaller k value
is generally chosen. Since the missing values in this paper are
relatively small, the existing data are relatively complete, and
the dataset used in this paper is time-series data, the effect of
the farther apart time on the vacancy value is small. Therefore,
to improve the accuracy of the final fitting results, a relatively
small k value, k= 3, is chosen to achieve the required missing
value filling results.

For irrelevant and redundant values, the direct deletion
method is employed for processing. The final dataset of
this paper contains a total of 61,488 values. The missing
values are some of the blank values of the parameters in the
corresponding dates, and a total of 4,405 missing values were
filled. Irrelevant values are the values of other influencing
factors that are not relevant to the study of this paper, and
a total of 54,696 irrelevant values were removed. Redundant
values are the valuesmeasured at times outside the study time,
and a total of 11,400 redundant values were removed.

C. STEP 2: CONSTRUCTION OF DEEP LEARNING MODELS
Deep learning models for time-series data analysis can be
employed for air quality prediction. In this paper, two deep
learning models, i.e., the LSTM model and the GRU model,
are employed for air quality prediction. The LSTM model,
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FIGURE 2. LSTM and GRU structure, (a) is the structure of LSTM model,
(b) is the structure of GRU model.

known as Long short-term memory, is first proposed by
Hochreiter and Schmidhuber [37]. It is a variant of RNN
with a long-term memory function. The GRU model, known
as Gated Recurrent Unit, is a variant of the LSTM model.
It is proposed by Cho, and Merrienboer [38]. Both the LSTM
model and the GRU model are typical time-series prediction
models that can be employed to predict air quality. The
structure of the LSTM and GRU models is illustrated in
Figure 2.

In this paper, PM2.5 predictions are first performed by
only PM2.5 data. Then, meteorological conditions and other
air pollutant data are considered separately for air quality
prediction. Finally, meteorological condition data and other
air pollutants are combined to make air quality predictions,
as illustrated in Table 1. The MAE, MSE, RMSE, and
R2 values of the LSTM and GRU models for air quality
prediction are compared and analyzed for each of the above
categories.

D. STEP 3: EXPLAINABILITY ANALYSIS OF DEEP
LEARNING MODELS
Traditional feature importance analysismethods only identify
which feature is important, but are not clear about how
that feature affects the prediction results. SHAP is a
game-theoretic approach to explain the output of anymachine
learning model. It connects optimal credit allocation with
local explanations by the classical Shapley values from game
theory and the related extensions [27]. The SHAP value
reflects the influence of the features in each sample and
shows the positivity and negativity of the influence, which
belongs to the post hoc explanation of the model and can
be interpreted for complex machine learning models. The
principle of the SHAP method is illustrated in Figure 3. The
base value (e.g., -0.08) in Figure 3 indicates the average value
of the model prediction and the output indicates the model
prediction output value of a single sample. In Figure 3, the
SHAP method explains the final Prediction Output, which is

FIGURE 3. Principle of SHAP method.

due to the influence of PM2.5, PM10, and other factors on the
final prediction result of +0.01, +0.03, etc., resulting in the
final model output of 0.02.

Therefore, the SHAP method is chosen in this paper
to conduct deep learning model explainability research to
reveal the influence of meteorological conditions on air
quality prediction. First, single-sample analysis is performed
to analyze the distribution of SHAP values for individual
features and individual samples. Analysis for all features is
then performed to analyze the importance distribution of all
features in the air quality prediction to have a more intuitive
understanding of the influence of meteorological conditions
on air quality prediction.

III. RESULTS
A. EXPERIMENTAL ENVIRONMENT
The software and hardware environment configurations used
in this paper are listed in Table 2 and Table 3.

B. EXPERIMENTAL DATA
After comparing latitude and longitude, air pollutant data
from the closest located Wanliu air quality monitoring
station (39.987◦N, 116.287◦E) and meteorological condition
data from the Hadian meteorological monitoring station
(39.986◦N, 116.291◦E) are utilized for air quality prediction.
Since the monitoring times of the two sites do not exactly
overlap, the data between January 30th, 2017, 16:00, and
January 31st , 2018, 15:00 are taken for the training test. The
kNN interpolation method is used to fill in the missing values,
and the irrelevant values are removed by direct deletion.
PM2.5 is selected for air quality prediction because it has
a strong influence on human health and is of the highest
concern.

PM2.5 predictions are first conducted by only PM2.5
data, where the first 70% was taken as the training data,
and the last 30% as the test data. Then, based on the
reading of the relevant literature and the analysis of the
results of the pre-experiments, PM10 (µg/m3), and SO2
(µg/m3) were taken from the air pollutant concentration
data for the prediction of the air pollutant PM2.5 (µg/m3).
And meteorological conditions, including temperature(◦),
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TABLE 1. Input and output of the prediction.

TABLE 2. Software environment configurations used in this paper.

TABLE 3. Hardware environment configurations used in this paper.

humidity(%) and pressure (hPa) were employed for the
prediction of the air pollutant PM2.5 (µg/m3). The first 70%
was taken as the training data and the last 30% as the test
data. Meteorological conditions, including temperature(◦),
humidity(%) and pressure (hPa), are then combined with
PM2.5(µg/m3), PM10(µg/m3), and SO2(µg/m3), for predic-
tion of the air pollutant PM2.5(µg/m3). Again, the first 70%
was taken as the training data and the last 30% as the test data.

C. EXPERIMENTAL RESULTS AND ANALYSIS
The results of air quality prediction employing the LSTM
model and GRU model are illustrated in Figure 4.
Figure 4 (a) shows the line graph of the real data.
In Figure 4 (b)∼ (i), the red line represents the real raw data,
the blue line represents the model training prediction value,
and the black line represents the test value.

The mean absolute error (MAE), mean squared error
(MSE), root mean squared error (RMSE), coefficient of
determination (R2) predicted by the LSTM and GRU models
for 500 epochs are calculated, and the comparative analysis
is illustrated in Figure 5 and Table 4. It can be seen that the
results of LSTM and GRU models are close, but generally,
LSTM can achieve better prediction results compared to
GRU model, because although the MAE of LSTM model
is larger compared to GRU, both MSE and RMSE have a
larger decrease compared to GRU, and R2 has also improved
compared to GRU.

In the LSTM model, considering only meteorological
conditions, the MAE and MSE values are the largest, and
the RMSE and R2 values are also larger and compared to
the prediction using only PM2.5 concentration, the prediction
results do not improve but decrease. Considering only air
pollutants, MAE, MSE, and RMSE decrease compared to
meteorological conditions only and PM2.5 concentration
only, and R2 increases, the predictions improve. Considering
only air pollutants, MAE, MSE, and RMSE decrease
compared to considering only meteorological conditions and
only PM2.5 concentration, and R2 increase, the predictions
improve. The combination of meteorological conditions with
air pollutants for air quality prediction is even better than
considering only air pollutants, MAE, MSE, and RMSE
values all decrease further and R2 values increase further.
In the GRU model, the MAE decreases when only

meteorological conditions are considered compared to only
the PM2.5 concentration are considered, while other values
do not change significantly. The MAE increases when
only meteorological conditions are considered, but the MSE
and RMSE decrease, and the R2 value increases when
only meteorological conditions are considered. Air quality
prediction is also better when meteorological conditions are
considered in combination with other air pollutants, but not
as much as the LSTM enhancement. This indicates that mete-
orological conditions cannot achieve better prediction results
when employed directly for PM2.5 prediction, meteorological
conditions may become an interference factor in air quality
prediction and interfere with the accuracy of air quality
forecasting while combining with other air pollutants can
lead to better prediction results than employing air pollutant
data only, which can have a good influence on air quality
prediction.

D. INFLUENCE OF METEOROLOGICAL CONDITIONS ON
AIR QUALITY PREDICTION REVEALED BY SHAP
1) ANALYSIS FOR SINGLE SAMPLE
Two samples from the data (labeled sample 1 and sample 2)
are randomly selected for the analysis of SHAP values, and
the distribution of an individual sample SHAP values is
illustrated in Figures 6 ∼ 7 (the eigenvalue data in the figure
is normalized). The red part indicates features that make
positive contributions to the predicted value, while the blue
part indicates features that make negative contributions to the
predicted value. Each segment indicates the contribution of
a specific feature, and the length of the segment indicates
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FIGURE 4. The results of air quality prediction employing the LSTM model and GRU model. (a) is the real data line, (b) ∼ (e) is
the result of air quality prediction with PM2.5 data, meteorological condition data, other air pollutants data, and combination
of other air pollutants and meteorological condition data by using LSTM model, (f) ∼ (i) is the result of air quality prediction
with PM2.5 data, meteorological condition data, other air pollutants data, and combination of other air pollutants and
meteorological condition data by using GRU model.

the contribution of the current feature to the current sample
SHAP value (for features whose contribution is too small, it is
not indicated due to the image space. In all of the subsequent

figures, pressure means atmospheric pressure, and all of
the later sections are replaced by pressure for atmospheric
pressure.)

VOLUME 10, 2022 50761



Y. Yang et al.: Revealing Influence of Meteorological Conditions on Air Quality Prediction

TABLE 4. Experimental results of LSTM and GRU models.

FIGURE 5. Comparison of LSTM and GRU model experimenta results. (a) is the experimenta results of LSTM model, (b) is the experimenta results of
GRU model.

For the LSTM model, it can be seen in Figure 6 that when
only meteorological conditions are considered, the base value
is -0.1018, sample 1 output is -0.01, and sample 2 is -0.17.
In sample 1, pressure makes the largest positive contribution,
followed by humidity and temperature, which make a
negative contribution. The contribution of PM2.5 is small,
and it makes positive contribution. In sample 2, pressure and
humidity both make positive contributions, while PM2.5
and temperature make negative contributions, with PM2.5
making the largest contribution. In both samples, all three
types of meteorological conditions are able to produce
large contribution values, weakening the contribution of
PM2.5, which may be one of the reasons for the lack of
improvement in air quality prediction when considering only
meteorological conditions.

When only considering other air pollutant data, the base
value is -0.0706, the sample 1 output is 0.93, and the sample 2
output is 1.00. The features PM2.5, PM10, and SO2 all
make positive contributions, with SO2 making the largest
contribution in both samples 1 and 2, and for the predictions
of samples 1 and 2, SO2 was more important.
When combining the other air pollutant data with the

meteorological condition data, the base value is -0.06008,
and the predicted value for both samples 1 and 2 is 0.17.
In sample 1, pressure and SO2 make positive contributions,

humidity and temperature make negative contributions, and
other features are ignored in the visualization due to their
small contribution. In sample 1, the pressure made the largest
contribution. In sample 2, pressure, humidity, PM2.5, and
SO2 all made positive contributions, and temperature made
a negative contribution. In both samples, the contribution of
meteorological conditions for air quality prediction is larger
and has a greater influence on air quality prediction.

For the GRU model, it can be seen in Figure 6 that when
only meteorological conditions are considered, the base value
is -0.2435, the output value of sample 1 is 0.04 and the
output value of sample 2 is -0.47. In sample 1, pressure and
PM2.5 make positive contributions, temperature and humidity
make negative contributions, and pressure makes the largest
contribution. In sample 2, pressure and humidity make
positive contributions, temperature and PM2.5 make negative
contributions, and PM2.5 makes the largest contribution.

When only other air pollutants are considered, the base
value is -0.1997, the output value of sample 1 is 0.99, and
that of sample 2 is 1.0. In sample 1, PM10 and SO2 makes
a positive contribution, PM2.5 makes a negative contribution,
and SO2 provides the maximum contribution value.

When combining the other air pollutants with the
meteorological conditions, the base value is -0.3097, and
the sample 1 output value is -0.26. Pressure and PM10
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FIGURE 6. The distribution of individual sample SHAP values in LSTM model. (a) is the distribution of sample 1 SHAP value
consider meteorological conditions, (b) is the distribution of sample 2 SHAP value consider meteorological conditions,
(c) is the distribution of sample 1 SHAP value consider other air pollutants, (d) is the distribution of sample 2 SHAP value
consider other air pollutants, (e) is the distribution of sample 1 SHAP value consider combination of other air pollutants
and meteorological conditions, (f) is the distribution of sample 2 SHAP value consider combination of other air pollutants
and meteorological conditions.

make positive contributions, temperature, SO2, and humidity
make negative contributions, and pressure makes the largest
contribution. The output value of sample 2 is -0.6, with PM10,
pressure and humidity making positive contributions and
SO2, temperature, and PM2.5 making negative contributions.
The SO2 contribution is the largest.

From Figures 6 ∼ 7, it can be investigated that mete-
orological conditions make a certain contribution to the
predicted values and can reach larger SHAP values in some
samples.

2) ANALYSIS OF ALL SAMPLES
The summary graph of SHAP before and after the addition of
meteorological conditions is illustrated and ranked according
to the importance of the features. The horizontal axis is the
value of SHAP, as illustrated in Figure 8. The graph is wider
at the point aggregation and thinner at the point dispersion,
the redder color indicates a higher feature value, and the bluer
color indicates a lower feature value.

When only meteorological conditions are considered, for
the LSTMmodel, the larger the feature value of the pressure,
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FIGURE 7. The distribution of individual sample SHAP values in GRU model. (a) is the distribution of sample 1 SHAP value
consider meteorological conditions, (b) is the distribution of sample 2 SHAP value consider meteorological conditions, (c) is
the distribution of sample 1 SHAP value consider other air pollutants, (d) is the distribution of sample 2 SHAP value consider
other air pollutants, (e) is the distribution of sample 1 SHAP value consider combination of other air pollutants and
meteorological conditions, (f) is the distribution of sample 2 SHAP value consider combination of other air pollutants and
meteorological conditions.

humidity, and temperature, the larger the SHAP value, with
PM2.5 clustered at approximately 0 and unable to provide
a large contribution. The GRU model indicates a similar
pattern to the LSTM model, but the smaller the feature of
PM2.5, the larger the SHAP value, although it also mostly
clustered at approximately 0, providing a limited contribution
to the model prediction, though also detrimental to the model
prediction.

Considering other air pollutants, for the LSTM model, all
three features exhibit a positive effect on themodel, and as the
feature value becomes larger, the SHAP value also increases.

Most of the points with small feature values have a negative
impact on the model, and a small number of points with small
feature values also have a positive impact on the model. For
the GRU model, large SO2 values are accompanied by large
SHAP values, indicating that large SO2 values have a positive
effect on the predicted values and that a higher SO2 is more
likely to increase the predicted PM2.5 values. The distribution
characteristics of the PM10 and SO2 SHAP values are similar,
but there are individual cases of high feature values and low
SHAP values, which may be caused by the influence of other
factors. Most of the PM2.5 SHAP values are clustered at
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FIGURE 8. SHAP summary map, (a) ∼ (b) is LSTM and GRU model consider meteorological condition, (c) ∼ (d) is LSTM and GRU model consider other air
pollutants, (e) ∼ (f) is LSTM and GRU model consider combination of other air pollutants and meteorological conditions.

approximately 0. Some of the larger features include both
samples with positive and negative effects on the predicted
values. Thus, their effects on the prediction results do not have
very obvious characteristics.

After combining meteorological conditions with other air
pollutant conditions, the three characteristics of meteorolog-
ical conditions have a greater impact on the predicted values
in both the LSTM and GRU models, ranking in the top three.
Pressure contributes substantially more to the prediction of
the LSTM and GRU models than other features. When the
pressure is larger, it has a greater positive effect on the
predicted value, and when the pressure is smaller, it has a
greater negative effect on the model. In the LSTM model,
humidity has a smaller range of SHAP value distribution
compared to pressure, but it also has a larger effect relative
to other features, and the larger the feature is, the greater
the positive effect. SO2, PM10, and PM2.5 have the same
influence pattern as meteorological conditions, but their
SHAP values are smaller, and most of them are clustered
around SHAP value = 0.
In the GRU model, when the feature values of humidity

and temperature are large, the SHAP value is positive and

has a positive impact on the predicted results, but the impact
value is not large. There are also some values with smaller
feature values that also have a positive impact on the model,
while most values with smaller feature values have a negative
impact on the predicted values. SO2, PM2.5, and PM10 with
large feature values have a negative effect on the predicted
values, which may be due to the limitations of the model
itself. SO2, PM2.5, and PM10 are mostly clustered around
SHAP value = 0. The SHAP values are all small and have
limited influence on the prediction results. Additionally, the
air quality prediction is mainly influenced by meteorological
conditions.

3) ANALYSIS OF SINGLE FEATURE
The SHAP value distribution of each feature is plotted as
illustrated in Figures 9∼ 14. The horizontal coordinate is the
normalized feature value, and the vertical coordinate is the
SHAP value that corresponds to the feature.

In the LSTM model, when only meteorological conditions
are considered, the SHAP value increases as the temperature,
humidity and pressure increase. As PM2.5 increases, the
SHAP value decreases. This is not in accordance with
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FIGURE 9. The SHAP value distribution of each feature consider meteorological condition by LSTM model. (a) is the SHAP value
for PM2.5, (b) is the SHAP value for Temperature, (c) is the SHAP value for Humidity, (d) is the SHAP value for Pressure.

FIGURE 10. The SHAP value distribution of each feature consider other air pollutants by LSTM model. (a) is the SHAP value for
PM2.5, (b) is the SHAP value for PM10, (c) is the SHAP value for SO2.
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FIGURE 11. The SHAP value distribution of each feature consider combination of air pollutant and meteorological condition by
LSTM model. (a) is the SHAP value for PM2.5, (b) is the SHAP value for PM10, (c) is the SHAP value for SO2, (d) is the SHAP value
for Temperature, (e) is the SHAP value for Humidity, (f) is the SHAP value for Pressure.

the prediction law and may be due to the addition of
meteorological conditions, which have an effect on the
SHAP value of PM2.5, and thus, interfere with the prediction
results.

In the LSTMmodel, when considering other air pollutants,
the SHAP value distribution diagram of each feature is
illustrated in Figure 10. As seen in Figure 10, the SHAP value
of PM2.5 increases with the increase of the PM2.5 feature
value, and when it reaches a certain value, it indicates a trend
of a decreasing value with the increase of a feature value.
However, it is not obvious and gradually tends to be stable.

The SHAP value of PM10 increases with an increasing feature
value, and the SHAP value is more scattered and has fewer
data points when the feature value is larger. The SHAP value
of SO2 increases linearly with the increase in the SO2 feature,
and the linear relationship is more obvious.

The SHAP value of each feature considering the combi-
nation of other air pollutants and meteorological conditions
in the LSTM model is illustrated in Figure 11. As seen
from Figure 11, the SHAP values of PM2.5, PM10, and
SO2 decrease substantially, and the linear relationship with
feature value is not obvious, though it still retains the
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FIGURE 12. The SHAP value distribution of each feature consider meteorological conditions by GRU model. (a) is the SHAP value
for PM2.5, (b) is the SHAP value for Temperature, (c) is the SHAP value for Humidity, (d) is the SHAP value for Pressure.

trend of increasing with the feature. The SHAP values of
the temperature, humidity, and pressure all have a more
obvious linear relationship with the feature value. The larger
the feature is, the larger the SHAP values of temperature,
humidity, and pressure. The SHAP values of temperature,
humidity, and pressure all tend to smooth out after reaching
a certain value.

In the GRU model, similar to the LSTM model, the
SHAP values of temperature, humidity, and pressure also
tend to increase with increasing feature values when
only meteorological conditions are considered, but tend
to decrease slightly after reaching a certain value. PM2.5,
however, shows a decreasing SHAP value as the feature value
increases.

For the GRU model, the distribution of the SHAP value
for each feature when considering other air pollutants is
illustrated in Figure 13. As illustrated in Figure 13, there is
a fluctuating effect of PM2.5 concentration on the predicted
effect of PM2.5. There is a certain linear relationship when
the PM2.5 value is small, and the linear relationship weakens
as the PM2.5 value keeps increasing, but it indicates a trend
where while the SHAP value increases, the PM2.5 value also
increases. The relationship between PM10 and the predicted
results is not obvious, but it generally also indicates that the
SHAP value increases with an increasing PM10 value. The
linear relationship of SO2 is more obvious.With an increasing

SO2 value, the SHAP value increases, and its contribution to
the predicted value increases.

The distribution of SHAP values for each feature consider-
ing the combination of other air pollutants andmeteorological
conditions to the GRU model is illustrated in Figure 14.
As illustrated in Figure 14, the SHAP value of the air
pollutant concentration data changes after the addition of
meteorological condition data. With the change in PM2.5,
PM10, and SO2 feature values, the changing pattern of the
SHAP value is not obvious. For PM2.5 and SO2, the general
trend of the SHAP value decreases with an increasing feature
value, while the general distribution of PM10 is loose with no
obvious trend.

From the above descriptions, it is clear that meteorological
conditions have a greater influence on air quality predic-
tion results, and when only meteorological conditions are
considered for air quality prediction, the accuracy of air
quality prediction cannot be improved. Thismay be caused by
the fact that meteorological conditions affect the prediction
contribution of PM2.5. The SHAP value of the contribution
of meteorological conditions to air quality prediction is
generally high. Additionally, the contribution is high and
increases with the increasing feature. When meteorological
conditions are considered in combination with other air
pollutants, meteorological conditions interfere less with the
SHAP value of PM2.5 due to the interaction between other
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FIGURE 13. The SHAP value distribution of each feature consider other air pollutants by GRU model. (a) is the SHAP value for
PM2.5, (b) is the SHAP value for PM10, (c) is the SHAP value for SO2.

air pollutants and meteorological conditions, and can play a
positive role themselves, thus facilitating the prediction of air
quality.

4) ANALYSIS OF ALL FEATURES
The SHAP value of all of the samples of each feature is
first found as an absolute value and then averaged. The mean
| SHAP value | of each feature is obtained as the importance
of each feature and ranked in descending order from largest
to smallest. The feature importance before and after adding
meteorological conditions to the LSTM and GRU models is
illustrated in Figure 15.

As seen fin Figure 15, the LSTM and GRU models have
essentially the same ranking of feature importance. When
only meteorological conditions are considered, the meteo-
rological conditions pressure, temperature, and humidity all
have higher importance features than PM2.5, weakening the
importance of PM2.5 for air quality prediction, which in turn
leads to unsatisfactory prediction results.

When only other air pollutant conditions are considered,
SO2 is the most important feature influencing the predicted
values, followed by PM10 and PM2.5. In the GRU model, the
mean | SHAP value | of SO2 is much larger than the other two
features, while the mean | SHAP value | of PM10 and PM2.5
in the LSTM is smaller than that of SO2, but it still occupies a
certain proportion. To some extent, it explains why the LSTM

model effect is slightly better than the GRU model effect in
this experiment.

After combining meteorological conditions with other air
pollutant conditions, meteorological conditions remain the
top threemost important factors influencing predictions in the
LSTM and GRU models, but this condition plays a positive
role. The mean | SHAP value | of pressure is the largest and
much larger compared to other factors, indicating that the
contribution of pressure to air quality prediction is the largest.
The mean | SHAP value | of humidity and temperature
compared to the air pollutant concentration is also much
larger. For the hourly air pollutant concentration feature, the
LSTM and GRUmodels are ranked slightly differently. In the
LSTM, the mean | SHAP value | is SO2, PM10, and PM2.5
from largest to smallest, while in the GRU model, the mean
| SHAP value | is SO2, PM2.5, and PM10 from largest to
smallest. However, these three features are less important in
both models.

In summary, for each air quality prediction data feature,
the larger the average absolute value of SHAP is, the higher
the importance of the feature and the greater the influence on
the prediction results. After the meteorological condition data
is added, the SHAP method verifies that the average absolute
values of SHAP for all three types of added meteorological
condition data are high and could even reach the top three in
the importance ranking of all samples, which is a factor that
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FIGURE 14. The SHAP value distribution of each feature considering the combination of other air pollutants and meteorological
conditions by GRU model. (a) is the SHAP value for PM2.5, (b) is the SHAP value for PM10, (c) is the SHAP value for SO2, (d) is
the SHAP value for Temperature, (e) is the SHAP value for Humidity, (f) is the SHAP value for Pressure.

highly contributes to air quality prediction. It is demonstrated
that meteorological condition data has a large impact on air
quality prediction results. Adding meteorological condition
data to air quality prediction can make the prediction results
more accurate.

Compared with existing work, our research focuses on
how meteorological conditions affect air quality prediction
by employing the explainable deep learning method SHapley
Additive exPlanations (SHAP) to reveal the impact of
meteorological conditions on air quality prediction. This is
beneficial to improve the air quality prediction accuracy
of deep learning models in practical applications, and to

establish deep learning models with higher accuracy and
efficiency for air quality prediction to protect people’s lives
and health.

IV. DISCUSSION
In this paper, we reveal the influence of meteorological con-
ditions on air quality prediction by utilizing the explainable
deep learning method (SHAP). In this way, more accurate
air quality predictions can be achieved, and more effective
environmental protection strategies can be formulated.

By employing the SHAP method to explain the deep
learning model for air quality prediction, we can not
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FIGURE 15. Feature importance before and after adding meteorological conditions. (a) ∼ (b) is the feature importance ranking considering
meteorological condition by LSTM model and GRU model, (c) ∼ (d) is the feature importance ranking considering other air pollutants by LSTM and GRU
model, (e) ∼ (f) is the feature importance ranking considering the combination of other air pollutants and meteorological conditions.

only identify which features are of high importance for
air quality prediction but also explain how the features
affect the air quality prediction results and obtain the
magnitude of the contribution of each type of feature to
the prediction results. This helps us to have a clearer
understanding of the influence of meteorological conditions
on air quality prediction in deep learning models and to have
more knowledge about air quality prediction deep learning
models to employ them more appropriately for air quality
prediction.

However, there are several limitations of the research
work described in this paper. The SHAP method has high
computational effort, large computational memory required,
and low computational efficiency. In our work, we had to
ignore several features and reduce the computational dimen-
sion for research purposes due to the huge computational
volume and excessive computation time, as well as the huge
storage space required of SHAP. This reduces the air quality
prediction performance of the model to a certain degree.
In the air pollutant dataset, we selected three out of six
pollutants for prediction. In the meteorological condition

dataset, we also selected three meteorological conditions
with a higher correlation with air quality from the six types
of meteorological conditions data. To achieve the purpose
of the study, we had to lose some prediction accuracy,
which is an aspect we need to study further in-depth in the
future.

In the future, the SHAP algorithm needs to be further
optimized to reduce computational effort, improve compu-
tational efficiency, and better explain how meteorological
conditions affect air quality prediction. It is hoped that the
working principle of deep learning models for air quality
prediction can also be further investigated by revealing
the influence of meteorological conditions on air quality
prediction, and optimization and improvement of air quality
prediction deep learning model can be carried out, and
the air quality prediction accuracy and efficiency of the
deep learning model can be further improved. Ultimately,
a more accurate and trustworthy deep learning model
for air quality prediction will be built to be applied in
realistic air quality prediction to protect people’s lives and
health.
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V. CONCLUSION
In this paper, we employ the explainable deep learning
method, SHapley Additive exPlanations, to reveal the influ-
ence of meteorological conditions on air quality prediction.
The essential idea is to use the SHAP interpretation method
to interpret the established LSTM and GRU air quality pre-
diction models and analyze the influence of meteorological
conditions on air quality prediction.

The results show that (1) in both the LSTM and GRUmod-
els, the prediction accuracy is not improved by considering
only meteorological conditions. However, when considering
other air pollutants, the prediction accuracy is improved,
and when combining meteorological conditions with other
air pollutants, the prediction accuracy is even higher.
(2) Whether only considering meteorological conditions or
combining meteorological conditions and other air pollutants
for PM2.5 prediction, in both the LSTM and GRU models,
the meteorological conditions have a high contribution and
importance to air quality prediction, meaning that they
are all in the top three in terms of contribution. The
largest contribution to air quality prediction is made by
atmospheric pressure, the second by humidity, and the third
by temperature. When considering only air pollutants, SO2
contributes themost to the air quality prediction. (3) However,
when only meteorological conditions are considered for air
quality prediction, the high contribution of meteorological
conditions to the prediction interferes with the results and
makes the results more inaccurate. When meteorological
conditions are considered in combination with other air
pollutants, the high contribution of meteorological conditions
to the prediction facilitates the prediction of air quality
and leads to better results. (4) The reason for the different
accuracies of the final prediction may be that the SHAP
value is different in different conditions, meaning that the
contribution to the prediction result is different. This is caused
by the interaction of meteorological conditions with other air
pollutants.

Compared with other research, this paper employs an
explainable deep learning method, the SHAP method,
to analyze how meteorological conditions affect air quality
prediction. This facilitates the in-depth analysis and under-
standing of the deep learningmodels for air quality prediction
and improves the trustworthiness of the deep learningmodels.
In the future, we plan to build deep learning models with
higher accuracy and trustworthiness for air quality prediction,
which can be applied to realistic air quality prediction.
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