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ABSTRACT The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot
research topic of this decade, featuring the challenging task of the robust control with actuator time delay
considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear
Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active
Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic
model of automotive semi-active suspension system, considering time delay, is established. By defining a
parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop
time delay system are derived, while the sliding mode variable structure control with reduced conservatism is
designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed
into a feasibility problem, which can be solved by the solver ‘feasp’ in LMI toolbox. In addition, the
calculation of the critical time delay ofMRSS is expressed as a generalized eigenvalue optimization problem.
For comparison purposes, three representative controllers, including a conventional sliding mode controller,
a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on
bump and random road responses show that, the designed delay dependent controller can ensure the stability
of the suspension system, weaken the influence of time delay on the control performance and effectively
improve the ride comfort of the vehicle.

INDEX TERMS Semi-active suspension, magneto-rheological damper, time delay, sliding mode variable
structure control, linear matrix inequality.

I. INTRODUCTION
The design of an efficient vehicle suspension control system
is an important task, attracting considerable attention, since
it can significantly improve passenger comfort, safety and
vehicle maneuverability. From the perspective of the control
design, the vehicle suspension system can be classified
as passive, active and semi-active suspension [1], [2].
Attenuating the harmful effects of the vibrations, due to
various road conditions, is the primary objective of any
suspension system. Due to their nature, passive suspension
systems are faced with an inherent trade-off between
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the ride quality and handling performance, whereas the
application of active suspension systems is limited by
their large power consumption and expensive hardware.
In the past decade, semi-active suspension systems have
received considerable attention, since they can provide a
superior performance to that of passive suspensions, without
incurring the cost and complexity associated with fully active
systems [3].

At present, the research of semi-active suspension mainly
focuses on adjusting the damping coefficient of the shock
absorber. The adjustment of the damping coefficient of
a shock absorber includes stage and stepless adjustment.
By opening and closing the control valve, a stage adjustable
shock absorber can quickly switch the damping effect
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between several discrete values [4], [5]. The structure and
control system of the stage adjustable shock absorber are
relatively simple, but there are some limitations regard-
ing the ability of adapting to varying driving conditions
and road conditions. The damping coefficient of step-
less adjustable damper can continuously change within
a certain range, meaning throttling aperture adjustment
and magneto-rheological fluid viscosity adjustment [6].
Magneto-Rheological Dampers(MRDs) can change their
damping characteristics in response to changes in the strength
of a magnetic field generated by embedded electromagnets.
Thus, MRDs have no moving parts, making for a simpler,
cheaper and more durable structure [7]–[11].

However, one challenge in the use of MRD is the develop-
ment of a robust control algorithm for the suspension system.
Several control strategies have been proposed for semi-active
suspension. These control strategies include semi-active con-
trol algorithms [12], linear feedback control algorithms [13]
and modern intelligent control strategies [14]–[16]. The
above studies have significantly improved the performance of
the Magneto-Rheological Semi-Active Suspension (MRSS)
system but lack consideration for the time delay in actuator
dynamics. There is inevitable time delay in the control
procedure, which arises from measuring system variables,
determining and computing the control laws and finally
implementing the control force application. Although the
time delay may be short, it can limit the control performance,
when the delay appears in the feedback loop [17], [18].
Hu and Wang [19] studied in detail the nonlinear dynamics
in vibration control systems with time delay, deriving some
important criteria for stability analysis of systems with
delayed feedback. Hosek et al. [20] applied delayed MRD
to the vibration control in rotating mechanical structures,
due to multi degree of freedom tensional oscillations and
discussed the stability condition deduced from time delay.
Jalili and Olgac [21] extended the above results to a MRSS,
using partial state feedback with controlled time delay, while
the parameters range for stable motion and the sensitivity
analysis were also discussed. According to these studies of
the influence of time delay on control systems, unsuitable
time delay will affect the stability of the controlled system
and inevitably deteriorate the performance of the MRSS.

In order to overcome the actuator time delay problem,
one approach is to design a compensator, acting in parallel
with the controlled object, to weaken and eliminate the
influence of time delay on the control performance. In [22]
a smith predictor was designed to compensate the input time
delay, so that the closed-loop system became a delay-free
system. Zhou [23] studied the input delay compensation of
control systems with input delay and designed a nested-
pseudo compensator, to predict the future states, so that
the input delay, which can be arbitrarily large yet bounded,
is completely compensated. Furthermore, Taylor series
expansion is a frequently used compensation method, where
time delay is compensated by expanding the state vectors
into Taylor series and its higher order terms are ignored,

enabling the state equation to be written into an augmented
form [24], [25]. Although the method of compensator can
weaken the influence of time delay, it needs to establish
an accurate model of the controlled object. However, its
robust performance is relatively poor. The other method is
to include the actuator time delay into the controller design
process [26], [27] and to design a controller that can robustly
stabilize the system and guarantee the system performance,
in spite of the time delay existence. Due to the uncertainty and
nonlinearity of suspension systems, it is necessary to design
a robust controller to improve the performance of MRSS.
The sliding mode variable structure control makes the system
state move along the sliding surface, through the switching
of control variables, which is invariant to the parameter
perturbation and disturbance of MRSS. In the early years,
Yokoyama et al. [28] conducted the sliding mode control
on MRSS, by employing the proposed Bouc-Wen hysteresis
model of the MRD and ideal skyhook suspension system as
the control reference model. Pan [29] and Deshpande [30]
considered a two-degree-of-freedom model as the research
object and studied the influence of the switching coefficient
of the sliding mode surface on the control effect of active
suspension. Based on the aforementioned prior knowledge,
in order to achieve better robust performance, Wang and
Zhao [31] studied an intelligent second order sliding mode
control method, combining second-order sliding mode con-
trol and Recurrent Radial Basis Function Neural Network
(RRBFNN). However, the lack of consideration for time
delay, as well as the absence of analysis of the effect of
time delay on the system stability, motivate this study of
a controller design that can robustly stabilize the system,
in spite of the existence of time delay.

Based on the prior literature survey, the time delay
dependent controller can ensure the stability ofMRSS system
and still show good robustness and control performance,
in the case of time delay. However, calculating the critical
time delay of the MRSS system, while ensuring that it lies
within the critical time delay range, is the key problem
of controller design. In this paper, a delay dependent
sliding mode variable structure controller for MRSS with
time delay is proposed. Based on the method of Linear
Matrix Inequality (LMI), the asymptotic stability problem
of sliding mode is transformed into a feasibility problem,
which can be solved by the solver ‘feasp’ in the LMI
toolbox. In addition, the calculation of critical time delay
of a semi-active suspension system is also expressed as a
generalized eigenvalue optimization problem. The remainder
of this paper is organized as follows. In Section II, the
problem is formulated. In Section III, a delay dependent
sliding mode variable structure controller is proposed, for
MRSSwith time delay, while the delay stability condition and
the calculation method of critical delay are provided by using
LMI. In Section IV, the time delay measurement of MRD is
carried out. In Section V, the proposed MRSS control system
is simulated and verified. In Section VI, real vehicle tests are
presented. Finally, conclusions are included in Section VII.
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II. MAGNETO-RHEOLOGICAL TIME DELAY SEMI-ACTIVE
SUSPENSIONMODEL
A. MRD MODEL
The dynamic performance test ofMRD shows that, the output
force of MRD can be expressed by piston rod displacement
and velocity, showing very strong nonlinear characteristics.
The Sigmoid model is proposed to describe the nonlinear
hysteretic characteristics of MRD [32], as shown in Fig.1.

FIGURE 1. Sigmoid model.

Here, ignoring the shear thinning occurrence and inertia
effect of magneto-rheological fluid, the mechanical model of
MRD can be expressed by the following formula:

FMRD = F0
1− e−a(ẋMRD+k0xMRD)

1+ e−a(ẋMRD+k0xMRD)
+ C0(ẋMRD+k0xMRD)+f0

(1)

where,FMRD represents the damping force of MRD,F0 is
the maximum yield stress,a represents the parameter related
to the damping coefficient in the pre yield zone,C0 is the
parameter related to the damping characteristics of the post
yield zone,k0 represents the hysteresis loop width scale
factor,f0 refers to the offset damping force and xMRD is the
dynamic stroke of MRD.

The F0 and C0 are related to the MRD coil current, which
can be calculated, according to the nonlinear least square
method. {

F0 = b1I + c1
C0 = b2I + c2

(2)

where,I represents the current of damper coil;b1, b2, c1, c2
represent the characteristic parameters of MRD.

B. SEMI-ACTIVE SUSPENSION MODEL
Since theMRD actuator consists of mechanical and hydraulic
systems, unavoidable time delays are encountered in real
applications. In addition, time delays may appear in the
control channel, particularly in the digital controller, as it
carries out the complex calculations associated with the
control law, as well as the process of collection and
transmission of sensor signal. Compared to the actuator time
delay, the one caused by signal collection/transmission and
control law calculation is extremely small. Therefore, this
paper only considers the influence of actuator time delay,
on the performance of the MRSS control system. A two

degree of freedom quarter vehicleMRSSmodel with actuator
response time delay is established, as shown in Fig.2. This
model has been used extensively in the literature, because
it can capture many important characteristics of complicated
suspension models.

FIGURE 2. Semi-active suspension model.

The dynamic equation of a vehicle semi-active suspension
system is expressed as follows:

mbz̈b + kb(zb − zt )+ cs(żb − żt )
+FMRD(t − τ )sgn(żb − żt ) = 0

mt z̈t − kb(zb − zt )+ kt (zt − zr )− cs(żb − żt )
−FMRD(t − τ )sgn(żb − żt ) = 0

(3)

where,zb refers to the vertical displacement of a sprung
mass,zt refers to the vertical displacement of a non-sprung
mass,żb and z̈b refer to vertical velocity and acceleration
of a sprung mass,żt and z̈t refer to the vertical velocity
and acceleration of a non-sprung mass,mb refers to the
sprung mass,mt refers to the non-sprung mass,kb refers to
the suspension spring stiffness,kt refers to the tire stiffness,zr
refers to the road excitation,τ refers to the time delay of
system control input.

By defining the state variableX =
[
zb zb − zt żb żb − żt

]T
and output variable Y =

[
z̈b zb − zt zt − zr

]T ,the state
space equation of MRSS is expressed as:{

Ẋ(t) = AX(t)+ Bu(t − τ )+ Ezr (t)
Y(t) = CX(t)+ Du(t − τ )+Gzr (t)

(4)

where, A,B,E,C,D,G, and u(t), as shown at the bottom of
the next page.

III. TIME DELAY-DEPENDENT SLIDING MODE
CONTROLLER DESIGN
In the MRSS control system, time delay is inevitable. In this
article, a delay dependent sliding mode variable structure
controller is designed, to compensate for the time delay,
reducing its negative impact on the control performance.
The control law is directly derived from delay differential
equations, so this method is easy to ensure the stability of the
control system. The schematic diagram of the MRSS control
system is shown in Fig.3.
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FIGURE 3. The schematic diagram of the MRSS control system.

A. SLIDING MODE CONTROLLER DESIGN
A control input time delay is found in the systems described
by Eq.(4). This delay increases the difficulty of the sliding
mode design. A switching functional with sliding mode
compensator is constructed, to overcome this difficulty as
follows:

s = HX +
∫ t

t−τ
HBu(t − ξ )dξ+P (5)

where,H is a 1 × 4 constant matrix to be calculated;P is a
sliding mode compensator with the following mathematical
model:

Ṗ = −H(A+ BK )X (6)

where,K is a constantmatrix related to the value of time delay.
The existence and reach ability conditions of sliding mode
can be classified as generalized sliding mode conditions sṡ <
0. The following exponential reaching law can be used to
improve the dynamic quality of reaching motion, as follows:

ṡ = −αfsat (
s
µ
)− βs (7)

where,α refers to the convergence velocity and β refers to the
arrival velocity. The function fsat is defined as follows:

fsat (
s
µ
) =


1 s > µ

s/µ −µ ≤ s ≤ µ
−1 s < −µ

(8)

where,µ refers to the boundary layer thickness. The differen-
tiation of switching functional along the trajectories of system
states can be expressed in the following form:

ṡ = HẊ+HBu(t − τ )+ Ṗ (9)

In accordance with Eqs. (6), (7) and (9), the following
formula is obtained:

HBu−HBKX+HEzr = −αfsat (
s
µ
)− βs (10)

Therefore, the sliding mode control law u is obtained as:

u = KX− [HB]−1
[
HEzr + αfsat (

s
µ
)+ βs

]
(11)

Under the control law described in Eq. (11), the sliding
mode equation of MRSS can be expressed as follows:

Ẋ = AX+ BKX(t − τ )+ E(zr (t)− zr (t − τ )) (12)

The parameter matrix K is related to the time delay of
the system. Therefore, the control law in Eq. (11) is a
delay dependent sliding mode controller. In the following,
the existence and stability conditions of sliding mode of
the system are derived by using LMI, while the calculation
method of the critical time delay for the stability of MRSS is
given.

B. SYSTEM STABILITY ANALYSIS
The sliding mode in Eq. (12) can be rewritten as follows:

Ẋ = (A+ BK )− BK
∫ t

t−τ
ẋ(θ )dθ + Eδ (13)

where,δ = zr (t)− zr (t − τ ).
The Lyapunov-Krasovskii functional is defined as follows:

V = XT (t)GX(t)+
∫ 0

−τ

∫ t

t+η
ẊT (ξ )ZẊ(ξ )dξdη

+

∫ t

t−τ
XT (ξ )QX(ξ )dµ (14)

A =


0 0 1 0
0 0 0 1
0 −kb/mb 0 −cs/mb

kt/mt −kb/mt − kt/mt − kb/mb 0 −cs/mt − cs/mb


B =

[
0 0 −1/mb −1/mb − 1/mt

]T
E =

[
0 0 0 −kt/mt

]T
C =

 0 −kb/mb 0 −cs/mb
0 1 0 0
1 −1 0 0


D = [ 1/mb 0 0 ]T

G = [ 0 0 −1 ]T

u(t) = FMRD(t)sgn(1v).

VOLUME 10, 2022 51131



M. Zhu et al.: Delay-Dependent Sliding Mode Variable Structure Control of Vehicle MRSS

where,G, Z, and Q are 4 × 4 dimensional positive definite
matrices. The differential equation of V can be written as
follows:

V̇ ≤ XT [ATG+GA+ τX+ Y+ YT ]X+ δTETPX

+ 2XT [GBK− Y]X(t − τ )+ XTPEδ + XTQX

+XT (t − τ )[KTBTG− YT ]X− XT (t − τ )QX(t − τ )

+ τ [AX+ BKX(t − τ )+ Eδ]T

×Z [AX+ BKX(t − τ )+ Eδ]

=
[
X X(t − τ ) δ

]
9
[
X X(t − τ ) δ

]T (15)

where,9, as shown at the bottom of the page. If9 < 0, then
V̇ < 0. Thus, the sliding mode of the system, as described in
Eq. (12), is asymptotically stable. In accordance with Schur
complementmatrix property, thematrix inequality9 < 0 can
be rewritten as follows (16), as shown at the bottom of the
page.

The matrix diag
{
G−1 G−1 I Z−1

}
is multiplied on the

left and right sides of matrix inequality in Eq. (16). I is a 4×
4 unit matrix. Eq.(16) is rewritten as follows (17), as shown
at the bottom of the page, where,8 = G−1AT

+ AG−1 +
τG−1XG−1 +G−1YG−1 +G−1YTG−1 +G−1QG−1.
Considering the definitions: L = G−1, M = KL,

N = LXL, J = LYL, S = LQL, and T = Z−1, Eq.(17)
can be transformed into the following formula (18), as shown
at the bottom of the page.
If there is a 4 × 4 matrix L,N,S, and M ∈ R1×4, J ∈

R4×4, for any time delay satisfying 0 ≤ τ ≤ τc,K =
ML−1 is considered correct. The sliding mode in Eq. (12)
is asymptotically stable, while τc is the critical time delay
of vehicle MRSS system. By using Lyapunov-Krasovskii
functional, the time delay control strategy, meeting the

stability of closed-loop system requirement, is designed,
while the respective conditions are derived. Compared to
sliding mode controller with time delay compensator, the
time delay dependent sliding mode controller can robustly
stabilize the system and guarantee the system performance,
despite the existence of time delay. In order to solve the
gain matrix K, the above conditions are transformed into
equivalent linear matrix inequalities, which is easier to
calculate and solve.

C. CALCULATION OF CRITICAL TIME DELAY
The critical time delay is the critical point, where a time
delay system changes from an asymptotically stable state to
an unstable state. It is the maximum allowable delay time,
while the system maintains a stable state. The critical delay
of the MRSS control system in Eq. (4) can be obtained by
solving the following optimization problems (19), as shown
at the bottom of the next page.
The global optimal solution of Eq. (19) can be obtained

by using the solver ‘gevp’ in LMI toolbox. In accordance
with the Schur complement matrix property, the above
optimization problem in Eq. (19) can be transformed into the
following generalized eigenvalueminimization problem (20),
as shown at the bottom of the next page.
The global optimal solution γ of the above optimization

problem in Eq. (20) is also obtained by using the solver ‘gevp’
in LMI toolbox, while the critical time delay τc = 1/γ .

IV. TIME DELAY MEASUREMENT OF MRD
In order to verify the feasibility and mechanical character-
istics of MRD, as an actuator of automotive semi-active
suspension, the prototype of MRD is produced. According

9 =

ATG+GA+ τX+ Y+ YT
+Q+ τATZA GBK− Y+ τATZBK GE+ τATZE

KTBTG− YT
+ τKTBTZA τKTBTZBK−Q τKTBTZE

ETG+ τETZA τETZBK τETZE



ATG+GA+ τX+ Y+ YT

+Q GBK− Y GE τATZ
KTBTG− YT

−Q 0 τKTBTZ
ETG 0 0 τETZ
τZA τZBK τZE −τZ

 < 0 (16)


8 BKG−1 −G−1YG−1 E τG−1AT

G−1KTBT −G−1YTG−1 −G−1QG−1 0 τG−1KTBT

ET 0 0 τET

τAG−1 τBKG−1 τE −τZ−1

 (17)


LAT
+ AL+ τN+ J+ JT + S BM− J E τLAT

MTBT − JT −S 0 τMTBT

ET 0 0 τET

τAL τBM τE −τT

 < 0 (18)
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to the test method of automobile shock absorber, the time
delay measurement of MRD is carried out on material testing
machine, as shown in Fig.4.

FIGURE 4. MRD time delay test.

The amplitude of material testing machine is set at 25mm,
the frequency is at 0.4Hz and the loading mode has the form
of a triangular wave. In the stretching stroke of the shock
absorber, the current input to the MRD coil is regulated
between 0-0.5A, 0-1.0A, 0-1.5A, 0-2.0A, where as the
damping force of MRD, from one steady state to another,
is measured. The test results are shown in Fig.5.

The time delay of MRD is defined as the time required for
the initial damping force to reach 95% of the steady state
damping force [33]. The results, as derived from Fig.5, are
listed in Tables1 and 2.

Tables 1 and 2 show that, the change of coil current range
has little effect on the time delay of MRD. The time delay
of current increase is obviously less than that of current
decrease, which is mainly caused by the residual magnetism
in the magnetic circuit of the MRD. The existence of the
residual magnetic field hinders the rapid decline of the

FIGURE 5. Damping force under different coil currents. (a) Coil current
increase. (b) Coil current decrease.

damping force of the damper. The test results show that, the
time delay of the designed MRD is no more than 28ms and it
shows fast dynamic response speed.

max
L,M,N,J,S,T

τ

s.t. L > 0,N > 0,S > 0,
[
N J
JT L

]
≥ 0

LAT
+ AL+ τN+ J+ JT + S BM− J E τLAT

MTBT − JT −S 0 τMTBT

ET 0 0 τET

τAL τBM τE −τL

 < 0 (19)

min γ

s.t.
[
N J
JT L

]
≥ 0 LAT

MTBT

ET

L−1

 LAT

MTBT

ET

T < −γ
LAT

+ AL+ τN+ J+ JT + S BM− J E
MTBT − JT −S 0

ET 0 0


L > 0,N > 0,S > 0 (20)
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TABLE 1. Time delay with increasing coil current.

TABLE 2. Time delay with decreasing coil current.

V. SIMULATION VALIDATION
In order to verify the effectiveness of the proposed control
system and the controller, the model is simulated using
MATLAB/Simulink software, under two different road
conditions. Table 3 shows the parameters of the MRSS.

TABLE 3. Semi-active suspension parameters.

For convenience purposes, the delay dependent sliding
mode controller is referred to as controller I. The controller
parameters are H =

[
14.28 −1.25 0 35.6

]
, α = 0.15,

β = 34, and µ = 0.01. The critical time delay of the
MRSS system is obtained as τc = 32.4ms, by using ‘gevp’
in the LMI toolbox, to solve the optimization problem in
Eq. (20). In accordance with the test results, the time delay
of MRD is 28 ms, which is less than the critical time
delay. The solver ‘feasp’ in LMI toolbox is used to solve
Eq.(18), while the delay dependent sliding mode controller
K =

[
−198.14 182.06 19.87 −3.67

]
. In the simulation,

it is assumed that the actuator shows time delay and a
sliding mode variable structure controller without time delay
is designed. In the comparison, this controller is called
controller II. Moreover, in the following simulation and real
vehicle test, smith compensation method for time delay is
used as a comparative analysis.

A. BUMP PULSE ROAD
The bump pulse road simulation was used to analyze the
suppression effect of time delay dependent sliding mode
control on bump vibration. In the simulation, the vehicle
passes over the single bump at v = 40km/h speed. The single

bump model can be expressed as follows:

xr (t) =


λ

2
(1− cos(

2πv
l
t)) 0 ≤ t ≤

l
v

0 t >
l
v

(21)

where,λ = 0.06m, l = 2m.
The curves of sprung mass acceleration, suspension

dynamic deflection and tire dynamic displacement are shown
in Figs. 6, 7 and 8, respectively. After the pulse signal
is administered, the sprung mass acceleration, suspension
dynamic deflection and tire dynamic displacement increase
sharply, followed by a rapid attenuation under the effect
of damping. However, the low frequency oscillation is still
active for some time.

FIGURE 6. Sprung mass acceleration.

FIGURE 7. Suspension dynamic deflection.

Table 4 shows the results of road bump pulse simulation,
where the sprung mass acceleration, suspension dynamic
deflection and tire dynamic displacement, under the action
of controller I, are reduced by 23.76%, 35.34% and 51.37%,
respectively, while the adjustment time of the transition
process is short, compared to the one of passive suspension.
Although the adjustment time of controller II is shorter than
in passive suspension, its peak value is higher than that of
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FIGURE 8. Tire dynamic displacement.

TABLE 4. Simulation results of road bump pulse.

passive suspension by 43.35%, 28.22% and 2.75%. The delay
dependent sliding mode controller can reduce the vehicle
peak response and shorten the time needed to attenuate the
bump pulse effect, in the spite of time delay.

FIGURE 9. Random and time-varying delay.

The white noise, as shown in Fig. 9, is used to simulate the
random and time-varying delay of MRSS control loop, where
the upper limit of maximum delay is less than 30ms. The
effect of time-varying delay on the sprung mass acceleration

FIGURE 10. Sprung mass acceleration.

is illustrated in Fig.10. Even in the case of input time-varying
delay, the controller I can still effectively improve the comfort
of the vehicle. The controller shows strong robustness to the
influence of input time delay.

B. RANDOM ROAD
The random road model can be expressed as follows [34]:

ẋr (t) = −2πg0xr (t)+ 2π
√
G0vθ (t) (22)

where, the road surface unevenness factor of G0 is 64×10−6

and the vehicle speed is v = 20m/s. θ (t) is the Gaussian white
noise with zero mathematical expectation and the lower cut-
off frequency is g0 = 0.1.
Figure11 shows the vertical acceleration of sprung mass.

In the case of control input time delay, controller I exhibits
good suppression effect, at the peak value of the sprung mass
acceleration. However, the control quality of controller II on
the sprung mass vertical acceleration is inferior to that of the
passive suspension.

FIGURE 11. Sprung mass acceleration.

As shown in Fig. 12, the control input time delay mostly
affects the first-order main mode. This condition indicates
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FIGURE 12. Amplitude frequency characteristic of sprung mass
acceleration.

that, time delay has a great influence on the vibration of
the vehicle body, but it shows far less influence on the
vibration of the wheel. At a time delay of 28 ms, controller I
reduces the first-order peak value of the sprung mass
acceleration frequency characteristic by 56.8%, compared to
the respective measure of the passive suspension. In the low-
frequency resonance region, the peak value of controller II is
13.6% higher than that of passive suspension.

The dynamic deflection result of suspension is shown in
Fig.13.

FIGURE 13. Suspension dynamic deflection.

Compared to controller II and smith compensation, the
delay dependent sliding mode controller I can produce good
control effect on the suspension dynamic deflection, even in
the case where the control system shows time delay.

In random road simulation, in order to analyze the
influence of time delays on the delay dependent sliding mode
control performance, the RootMean Square (RMS) responses
of the sprung mass acceleration, suspension dynamic deflec-
tion and tire dynamic displacement at different time delay
values, are listed in Tables 5, 6 and 7, as well as illustrated
in Figs.14, 15 and 16.

TABLE 5. RMS response value (Controller I).

TABLE 6. RMS response value (Controller II).

TABLE 7. RMS response value (Smith compensation).

It is evident that, the RMS values of sprung mass
acceleration, suspension dynamic deflection and tire dynamic
displacement of MRSS increase along the rise of time
delay. The control performance of the MRSS system
finally deteriorates rapidly, when the time delay exceeds
30ms. Compared to controller II and smith compensation,
controller I shows good robustness and control performance.
At the time delay of 45ms, the RMS of sprung mass
acceleration, suspension dynamic deflection and tire dynamic
displacement for controller II reach 3.66 m/s2, 1.98cm,
0.62cm, respectively, which seriously affects the ride comfort
and handling stability of the vehicle. This occurs because
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FIGURE 14. The RMS of Sprung mass acceleration.

FIGURE 15. The RMS of suspension dynamic deflection.

FIGURE 16. The RMS of tire dynamic displacement.

the controller II does not compensate for the time delay.
As time delay increases, the RMS of the sprung mass
acceleration increases accordingly, until it runs into the
expected instability. Actually, the solution to the optimization
problem in Eq. (20) provides the critical time delay value
of the MRSS at 32.4ms. When the time delay is greater
than the critical time delay, the stability of the sliding mode

cannot be guaranteed, resulting in instability of the afore-
mentioned delay dependent sliding mode control of MRSS
system.

VI. REAL VEHICLE TEST VERIFICATION
A. TEST PLATFORM
Real vehicle test is conducted on a four-channel road simula-
tion shaking machine, in order to verify the effectiveness of
the control strategy. The instrument used in the test and the
schematic of the test are shown in Fig.17.

FIGURE 17. Real vehicle test system.

The real vehicle test system includes the vehicle, four
acceleration sensors, charge amplifier, data acquisition
instrument, a personal computer, a controller, a MRD and a
road simulation shaking table. Two acceleration sensors are
placed on the vehicle body, specifically mounted on the shock
absorber, to measure the sprung mass vibration. One sensor is
used to provide input signal to the controller, while the other
is used to test the vibration state of the vehicle body. Another
pair of acceleration sensors are placed on the lower control
arm of the suspension, in order to measure the vibration of
the non-sprung mass. As the test vehicle stands on the road
simulation shaking table, the controller receives the signals
from the force and displacement sensors, to calculate the
tire dynamic load. In accordance with the acceleration sensor
signals and the signals from the road simulation shaking table,
the controller outputs 0–2A current to the MRD coil.

B. TEST RESULTS AND ANALYSIS
On the test platform, the control strategy of controllers I,
controller II and smith compensation, are used to test the
effectiveness of the proposed approach, under two road
conditions. The real vehicle test parameters are the same as
those in the simulation framework.

In the case of pulse road excitation, the sliding switching
function of controllers I and II are illustrated in Fig.18.
The illustration shows that, the sliding switching function
of controller I converges to 0 at 0.4s, which can effectively
attenuate the suspension vibration. The sliding switching
function of controller II, without considering time delay,
converges to 0 at 0.6s. The time delay dependent slidingmode
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FIGURE 18. Sliding switching function.

controller shows a faster convergence speed, while reducing
the adverse effect of time delay.

FIGURE 19. Sprung mass acceleration.

FIGURE 20. Suspension dynamic deflection.

The bump pulse road test results are shown in Figs. 19, 20
and 21. The controller I can reduce the peak value of vertical
acceleration, from 11.6 m/s2 to 4.98 m/s2, while improving
the performance by 57.8%. The peak value of suspension

FIGURE 21. Tire dynamic load.

dynamic deflection is reduced by 42.6%, from 0.068m to
0.039m. The peak value of tire dynamic load is also well
suppressed, while the adjustment time is significantly shorter
than that of controller II.

FIGURE 22. Sprung mass acceleration.

FIGURE 23. Power spectral density of sprung mass acceleration.

In the case of random road excitationwith 10mmamplitude
and 10 Hz signal bandwidth, the test results are shown in
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FIGURE 24. Suspension dynamic deflection.

FIGURE 25. Power spectral density of tire dynamic load.

Figs. 22 to 25. Specifically, in Fig.22, the sprung mass
acceleration of controller II appears to increase. Furthermore,
through the time delay dependent sliding mode control
strategy, the controller I can reduce the peak acceleration
value.

The Power Spectral Density (PSD) of sprung mass
acceleration is illustrated in Fig. 23.

In Fig.23, the result illustrates that controller I can reduce
the PSD value of sprung mass acceleration, in spite of the
existence of time delay, especially in the vicinity of the
sprung mass resonant frequency (1.3Hz), indicating that the
vehicle ride comfort can be improved. Regarding controller II
and smith compensation, the energy vibration of the vehicle
body and wheels increases significantly, as the wheel jump
occurrence is observed.

In Fig.24, the suspension dynamic deflection peak value
of controller I is 0.04m. The suspension dynamic deflection
peak values of controller II and smith compensation are
0.075m and 0.058m, respectively, which leads to a more
agitated suspension motion, and less ride comfort.

In Fig.25, the tire dynamic load PSD of controller I is
significantly less than in the case of controller II and smith
compensation, around the non-sprungmass natural frequency
(13.2Hz), which implies that the vehicle road attachment

and vehicle handling performance can also be improved by
controller I.

TABLE 8. Sprung mass acceleration (RMS).

TABLE 9. Suspension dynamic deflection (RMS).

TABLE 10. Tire dynamic load (RMS).

The random road test results are listed in Tables 8, 9 and 10.
Compared to controller II, controller I reduces the RMS value
of sprung mass acceleration, from 0.87 m/s2 to 0.46 m/s2,
while it simproves the performance by 47.1%. The RMS
value of suspension dynamic deflection is reduced from
0.87cm to 0.72cm, which means improvement by 17.2%. The
RMS value of tire dynamic load is reduced, from 0.663 kN
to 0.427 kN. The test results are slightly lower than those of
the above simulation, due to the load change of the vehicle.
The conclusion of the test is consistent with that of the
simulation analysis. The real vehicle test results show that,
the delay dependent sliding mode controller can ensure the
stability of the system, overcome the influence of time delay
on the control quality of MRSS and exhibits a good damping
performance.

VII. CONCLUSION
1) This paper proposes a delay dependent sliding mode
variable structure control, based on LMI, to suppress the
vibration of the MRD suspension system. In accordance with
the nonlinear characteristics of MRD, a dynamic model of
automotive semi-active suspension, considering time delay,
is established. By defining a parameter-dependent Lyapunov
switching functional, the conditions for asymptotic stability
of closed-loop time delay system are derived, while the
sliding mode variable structure control of reduced conser-
vatism is designed. According to the method of LMI, the
asymptotic stability problem of sliding mode is transformed
into a feasibility problem, which can be solved by the solver
‘feasp’ in LMI toolbox. In addition, the calculation of the
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critical time delay of semi-active suspension system is also
expressed as a generalized eigenvalue optimization problem.

2) The prototype of MRD is produced on trial basis, while
the time delay measurement of MRD is carried out on a
material testing machine. According to the test results, the
time delay of the designed MRD is no more than 28ms and it
offers high dynamic response speed. The critical time delay
of MRSS is calculated at 32.4ms, through the optimization
problem. When the time delay is greater than the critical time
delay, the stability of the sliding mode cannot be guaranteed,
resulting in the instability of the MRSS system.

3) The simulation and real vehicle test have validated that,
theMRSS performance is improved, when using the designed
delay dependent sliding mode variable structure controller,
despite the actuator time delay. However, this work only
studies the time delay dependent sliding mode controller for
a quarter of a vehicle. Nonetheless, the body attitudes, such
as roll and pitch control, need also to be further studied. The
implementation of new design techniques for MRSS system
would be an interesting topic of future research.
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