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ABSTRACT Learning ability evaluation has been critical in educational and medical fields to investigate
learning achievement or cognitive impairment. Previous researchers utilized biosignal data such as functional
near-infrared spectroscopy and an electroencephalogram to reflect neural variation in factors related to
learning ability. Additionally, machine learning algorithms have been used to identify the inherent asso-
ciations between learning ability and related factors. Herein, we propose a classification framework for
college scholastic ability test levels using unsupervised features extracted from a functional near-infrared
spectroscopy signal dataset based on machine learning models. To extract unsupervised features from
functional near-infrared spectroscopy signals, we constructed a one-dimensional convolutional autoencoder
with an electroencephalogram dataset as a transfer learning approach. Eight handcrafted features (signal
mean, slope, minimum, peak, skewness, kurtosis, variance, and standard deviation) with various window
length conditions were calculated to compare influences on classification performance. Five evaluation
metrics (accuracy, precision, recall, F1-score, and area under the curve) were applied to evaluate the proposed
framework’s performance. Among the five classification algorithms (XGBoost classifier, support vector
classifier, naive Bayes classifier, decision tree classifier, and logistic regression), the XGBoost classifier was
the best at classifying college scholastic ability test levels. We found that unsupervised features extracted
from deep learning algorithms are more usable for classification than handcrafted features. Furthermore, the
applicability of transfer learning between two different neural modals was validated using the experimental
results. The results of this study provide new insights into the relationships between hemodynamics in
functional near-infrared spectroscopy signals and college scholastic ability test levels.

INDEX TERMS College scholastic ability test, functional near-infrared spectroscopy, learning ability,
machine learning, transfer learning.

I. INTRODUCTION

The associate editor coordinating the review of this manuscript and Evaluation or validation of learning ability has been widely
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investigated by researchers in the educational and medical
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domains. In particular, many researchers in the educational
field have tried to identify education or study levels in stu-
dent groups [1]-[3]. Kellaghan and Greaney [4] suggested
an assessment of students’ learning achievement to improve
education quality. They focused on the models and standards
of a national assessment. Pereira et al. [5] introduced learner-
centered assessment methods for higher education through
a review of previous studies. In addition, the influences of
examinations and written tests in relation to learning evalua-
tion were validated through an analysis.

In the medical domain, Prigoff et al. [6] assessed the effec-
tiveness of medical education achievement in the increased
virtual learning environment amid the coronavirus disease
2019 outbreak. Researchers have proposed the need for
adjustments in curricula based on exam scores from student
groups. Further, Barulli er al. [7] proposed test tools for
memory capacity to detect cognitive impairment in a clinical
setting. This memory test showed strength for neuropsycho-
logical evaluation.

Many methodologies (e.g., surveying, testing, and coun-
seling) have been used in previous allied studies to measure
the learning ability of study participants. Dermo [8] applied
an online questionnaire to evaluate the use of e-assessment
as a means to improve the quality of student learning. Le and
Tam [9] validated eight assessment methods, including sem-
inars and open-book tests, to compare the effectiveness
of these methods with regard to students’ understanding
and attitudes. Additionally, Burnett [10] used counseling
to assess the learning outcomes of participants. The author
suggested that strategies and techniques need to maximize
learning outcomes in counseling. Further, scholastic assess-
ment tests have been widely used to evaluate overall aca-
demic achievement or level in specific subjects such as
mathematics [11]-[14].

To evaluate diverse conditions in learning ability, pre-
vious studies have applied neural-related measurements
(e.g., functional magnetic resonance imaging, electroen-
cephalography, and functional near-infrared spectroscopy).
Denervaud et al. [15] evaluated errors in learning in Montes-
sori and traditionally schooled children. They used brain
functional magnetic resonance imaging (fMRI) data to iden-
tify patterns associated with errors in children. Kim et al. [16]
collected electroencephalogram (EEG) signals from college
student groups to investigate influences of indoor thermal
conditions on college students’ learning performance. Rela-
tionships between the detailed ability of students, including
working memory and executive ability, and thermal condi-
tions, were examined. Firooz and Setarehdan [17] recorded
functional near-infrared spectroscopy (fNIRS) and EEG sig-
nals from graduate students to estimate intelligence quotient
(IQ) test scores. The researchers validated the usability of
fNIRS and EEG as evaluation modalities in their research.

Various analysis methodologies have been utilized to ana-
lyze potential relations from the neural variations of partici-
pants. Howard et al. [18] examined associated brain regions
with cognitive load for several tasks. Each region-related
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task was identified through a t-test and partial least squares
analysis. Daly et al. [19] validated motivations for learn-
ing mathematics using EEG signals. Significant differ-
ences in prefrontal signals were verified using a t-test.
Sugiura et al. [20] utilized fNIRS signals to evaluate perfor-
mance in second-language-learning among young adoles-
cents. Signals from the regions of interest were compared
using a generalized linear modeling method.

Based on the aforementioned studies, recent studies have
utilized machine learning and deep learning to identify
latent patterns of neural data. Mao et al. [21] proposed a
deep learning classification algorithm to classify the fMRI
of attention deficit/hyperactivity disorder patients. The pro-
posed framework of the authors showed a state-of-the-art
performance compared with previously proposed algorithms.
Evgin et al. [22] attempted to classify bipolar disorder using
fNIRS signals on the basis of convolutional neural network
models. They demonstrated the possibility of fNIRS analysis
using feed-forward neural network algorithms.

Based on previous studies, we developed a classification
framework using machine learning algorithms for learning
ability levels based on fNIRS signals. To prescribe the oper-
ational definition of “learning ability,” we collected and
utilized college scholastic ability test (CSAT) scores from
73 participants. Additionally, the collected scores were set as
a dependent variable of machine learning algorithms. Further,
we hypothesized that unsupervised features extracted from
deep learning algorithms can show better performance than
the handcrafted features used in previous studies for fNIRS
classification tasks. To validate this hypothesis, we included
in our research design the construction of deep learning mod-
els as a feature extractor and comparisons between extracted
features and calculated handcrafted features.

To construct deep learning models for feature extraction,
the collected fNIRS dataset was insufficient to train and
evaluate algorithms from scratch. We utilized EEG signals
with characteristics similar to those of fNIRS signals for algo-
rithm training in terms of transfer learning. Zhang et al. [23]
adopted a transfer learning approach to evaluate deep con-
volutional neural networks using an EEG dataset. Moreover,
EEG and fNIRS signals showed several common advan-
tages, such as high temporal resolution, over other neural
modals. Trambaiolli et al. [24] determined signal properties
between neuro-electric (i.e., EEG) and neuro-hemodynamic
(i.e., INIRS) on the basis of their analysis results. They
focused on not only the characteristics of time-series data, but
also the capabilities of describing hemodynamic alterations
in the occipital/visual cortex using EEG signals. As a result,
we concluded that the application of deep learning algorithms
trained by EEG signals was reasonable for feature extraction.

Furthermore, we attempted to examine the possibility of
transfer learning without additional fine-tuning in deep learn-
ing algorithms between datasets collected from the same
domain. Peng et al. [25] compared the model’s perfor-
mance based on transfer learning between five similar image
datasets. They verified the potential of the transfer learning
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approach based on their experimental results. In addition,
unsupervised algorithms trained with a single dataset were
evaluated using four datasets, excluding the fine-tuning steps.
Zhong et al. [26] used three classification algorithms with
datasets collected from different domains in the transfer
learning approach. Each trained algorithm was verified and
compared without additional fine-tuning. Referring to these
previous studies, deep learning algorithms trained with EEG
signals were utilized without additional training with fNIRS
signals as feature extractors.

In this study, we developed a five-step research scheme.
First, suitable participants with regard to age and CSAT
scores were recruited, and experiments using eight-session
task materials were conducted to collect fNIRS signals.
Second, the collected fNIRS signals were preprocessed
and converted from raw signals to HbO (oxyhemoglobin)
and HbR (deoxyhemoglobin) concentration signals. Third,
one-dimensional convolutional autoencoder models were
developed using the EEG dataset as a feature extractor for
unsupervised feature extraction. Handcrafted and unsuper-
vised features were extracted from the preprocessed HbO
and HbR concentration signals. Fourth, five machine learning
classifiers were trained with extracted features (handcrafted
and unsupervised features) to classify CSAT levels. Finally,
the classification performance of each classifier was com-
pared to identify the optimized algorithms and conditions for
our research topics. The overall research scheme is shown in
Figure 1.

This work provides three main contributions to the field:

o« We propose a novel classification framework based
on machine learning algorithms for CSAT levels using
fNIRS signals.

o The applicability of a one-dimensional convolutional
autoencoder model trained with EEG signals as a feature
extractor was validated in terms of transfer learning.

o We checked the usability of unsupervised features for
classification through comparisons with handcrafted
features.

The remainder of this paper is organized as follows.
In Section II, we present the detailed procedures and meth-
ods for developing our proposed framework for CSAT-level
classification. In Section III, we present the experimental
results to evaluate our machine learning-based framework.
In Section IV, we explain the significance and implications
of our research. Finally, we conclude the paper in Section V.

il. METHODS

A. PARTICIPANTS FOR fNIRS DATASET COLLECTION

To collect fNIRS signals, we recruited participants from

undergraduate freshman groups at three different universi-

ties (Yonsei University, Honam University, and Gyeongsang

National University). Seventy-three healthy undergraduate

students participated (mean age: 19.20; female: 41, male: 32).
We used the NIRSIT Lite device of OBELAB Inc.

(Seoul) to collect information on the hemodynamic activities
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FIGURE 1. Overview of the research scheme in this study.

of participants. The sensor array of this device consisted
of five dual-wavelength laser diodes (780 and 850 nm)
and seven photodetectors separated by an 8§ mm unit dis-
tance. The optical signal collected from each channel was
sampled at 8.138 Hz. The laser and detector pairs were
separated by a distance of 3 cm. The position schemes
of optodes in the NIRSIT Lite device are depicted in
Figure 2 [27].

Prior to the experiment, we explained the fNIRS signal
collection procedure to the participants, and all experiments
were conducted after obtaining their consent. The exper-
iments were designed and conducted in accordance with
the guidelines of the Declaration of Helsinki and institu-
tional review board approval at Yonsei University (7001988-
202104-HR-659-06).

B. EEG DATASET

In this study, we compared unsupervised features extracted
using deep learning models and handcrafted features.
To extract features from fNIRS signals, one-dimensional con-
volutional autoencoder models were trained and evaluated
using EEG signals. An open-source brain-computer inter-
face (BCI) IV competition EEG dataset was utilized for
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FIGURE 2. Optode positions of the NIRSIT Lite device. The yellow circles
indicate detectors for reflected light. Green circles show the positions of
the light source. The channels, lying between each source and detector
pair, are shown in numbered white circles. The device mainly covers the
frontopolar cortex, also roughly reflecting the signals from other adjacent
regions in Prefrontal cortex including dorsolateral prefrontal cortex,
ventrolateral prefrontal cortex, and orbitofrontal cortex.

our feature extractor [28]. This dataset was provided by the
Berlin BCI group (Berlin Institute of Technology, Fraunhofer
FIRST, and University Medicine Berlin). Researchers from
the BCI group devised six experimental sessions to evaluate
motor imagery in participants. Three options for the motor
imagery task (the left hand, right hand, and foot) were sequen-
tially assigned visual cues. EEG signals included in the BCI
competition IV dataset were collected from seven healthy
subjects (all male; aged 26 to 46 years) using 59 channel
devices.

C. EXPERIMENTAL PROCEDURE

To examine hemodynamic variation in various tasks, we put
together consecutive sessions with widely used cognitive
tasks in related previous studies. Eight sessions (resting state
and seven cognitive tasks) were finally selected and provided
to participants. First (resting state step), brain activity in
the resting state was measured to investigate hemodynamic
changes before conducting the seven cognitive tasks [29].
Second (Corsi block-tapping task step), participants were
instructed to select consecutive positions of colored boxes
in the Corsi block-tapping task (CBT) [30]. The positions
of the yellow box were changed sequentially to evaluate the
memory of participants with regard to the stimulus sequence
in the task. Third (emotion task step), human-face pictures
with specific expressions were proposed to the participants
for the selection of emotions. The participants were shown
the pictures for a few seconds. Thereafter, the pictures dis-
appeared and they were configured to offer a choice [31].
Fourth (recognition task step), to evaluate the recognition
capacities of participants, facial pictures without expressions
or emotions were shown on the monitor [32]. Recognition
was assessed by having participants answer whether they
saw the picture in the previous task by selecting appropriate
buttons. Fifth (Stroop task step), participants were provided
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TABLE 1. Procedure and time periods of the eight sessions in this study.

No. Cognitive task Time periods
1 Resting state (no task) 5 min
2 Corsi block-tapping task 12 min
3 Emotion task 5 min
4 Recognition task 6 min
5 Stroop task 10 min
6 Tower of London task 8 min
7 N-back task 13 min
8 Verbal fluency task 8 min

with colored words to select the color of words in the Stroop
task [33]. In addition, participants were asked to verify the
meaning of the words regardless of the word. Sixth (Tower
of London task step), participants performed the Tower of
London tasks and were provided with three beads and sticks
to assess their planning and problem-solving capabilities
[34]. Seventh (N-back task step), participants took part in the
N-back task, which involved the sequential positions of stars
in a grid [35]. Participants selected the previous positions of
stars in three types of tasks (1-back, 2-back, and 3-back).
Finally (verbal fluency task), participants’ verbal fluency was
evaluated by speaking related words in a limited period [36].
In addition, the time at which the word was spoken was
recorded to identify the continuity of the answers. The proce-
dures for the cognitive tasks and their time periods are listed
in Table 1.

D. fNIRS SIGNAL PREPROCESSING

After data were collected from participants via the cognitive
tasks, fNIRS data were preprocessed to remove artifacts or
noise in the signal. To exclude physiological and environ-
mental noise, band-pass filtering with a range of 0.005 to
0.1 Hz was used. In addition, a 30 dB signal-to-noise ratio was
applied to qualify the noise of detected channels. After apply-
ing two processes (band-pass filter and signal-to-noise ratio),
we calculated relative changes in oxy-Hb (i.e., HbO concen-
tration signal) and deoxy-Hb (i.e., HbR concentration signal)
using the modified Beer—Lambert law (MBLL) [37], [38].

E. EEG SIGNAL PREPROCESSING

To construct a feature extractor (i.e., a one-dimensional
convolutional autoencoder), we utilized the BCI IV EEG
dataset. Unlike previous studies that analyzed in detail
(e.g., power spectrum analysis or spectral analysis), we
preprocessed only basic characteristics of EEG signals (e.g.,
sampling frequency and scale of signal values). The EEG
signals included in the BCI IV dataset consisted of 1000 Hz
signals. Based on previous studies [39], [40], we downsam-
pled the data to 100 Hz and normalized the scale of val-
ues to range from —1 to 41 to achieve faster training of
algorithms.

50867



IEEE Access

J. Choi et al.: Machine Learning Approach for Classifying CSAT Levels With Unsupervised Features

TABLE 2. Dimensions of preprocessed EEG datasets for developing
one-dimensional convolutional autoencoder algorithms.

TABLE 4. Model structure of the one-dimensional convolutional
autoencoder.

Test dataset
(No. of rows,
No. of columns)

(37011, 680)
(36129, 700)
(35517, 720)
(34101, 750)
(32804, 780)

Validation dataset
(No. of rows,
No. of columns)

(37128, 680)
(36231, 700)
(35162, 720)
(33747, 750)
(32450, 780)

Length  Training dataset
of No. of rows,
values  No. of columns)

680 (227013, 680)
700 (213211, 700)
720 (206322, 720)
750 (198062, 750)
780 (190452, 780)

TABLE 3. Experimental conditions for hyperparameter setting of the
feature extractor.

Length of Length of

No. theinput the latent Batch size Learning Epochs No. of
rate layers
layer vector
1 680 20 2048 0.0003 500 8
2 700 45 2048 0.0003 500 8
3 720 60 2048 0.0003 500 8
4 750 170 2048 0.0003 500 8
5 780 343 2048 0.0003 500 8

After the aforementioned steps for preprocessing, we com-
posed three datasets for training and evaluation of deep
learning algorithms. Signals collected from seven partic-
ipants were divided into training (five participants), val-
idation (single participant), and test (single participant)
datasets. In the case of the training dataset, five participants
were randomly assigned. Additionally, two other partici-
pants were also randomly assigned to the validation and test
datasets.

To identify optimal hyperparameters such as the length of
layers and size of latent vectors in deep learning models,
we compared datasets and the different lengths of the EEG
dataset. Referring to previous studies using similar algo-
rithms, we selected five conditions for the length of the input
layer (i.e., length of input signal data) and the length of latent
vectors (i.e., length of extracted vectors) [41]. Accordingly,
five datasets with different signal lengths were composed for
the construction of feature extractors. The training, valida-
tion, and test datasets were included in each dataset. Further,
we checked that the dimensions of the datasets were similar
for each condition. The detailed dimensions of each dataset
are listed in Table 2.

F. CONSTRUCTION OF FEATURE EXTRACTOR

To extract unsupervised features from fNIRS signals, we uti-
lized one-dimensional convolutional autoencoder algorithms.
Additionally, as mentioned in the previous paragraph,
we compared five conditions to determine the optimal hyper-
parameters for the algorithms. The detailed conditions for the
comparison are listed in Table 3.

The reconstruction performance of each condition was
evaluated using three evaluation indices (root mean squared
error, mean relative error, and mean absolute error) and
a comparison of figures. Among the five conditions for
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. No. of
Layer No. of input Kernel . Other
(Module) Layer channels output size Stride conditions
channels
(input) One-dimensional vector (720 length)
1 1D Conv 1 8 30 2 Batch norm
2 1D Conv 8 16 20 2 Batch norm
3 1D Conv 16 32 30 2 Batch norm
4 1D Conv 32 64 20 2 Batch norm
5 1D 64 32 20 2 Batch norm
transConv
6 1D 32 16 30 2 Batch norm
transConv
7 1D 16 8 20 2 Batch norm
transConv
g D 8 1 30 2 Batchnorm
transConv

(Output) Reconstructed one-dimensional vector (720 length)

1D conv: one-dimensional convolutional layer; 1D transConv: 1
dimensional transposed convolutional layer; Batch norm: batch
normalization.

hyperparameter setting, the third condition (720 length of
input layer and 60 length of latent vector) showed lower
index values than the other conditions (the detailed results are
explained in Section IIL.). Based on these results, we trained
and evaluated algorithms with a 720-length of input layers
and 60 latent vector conditions. The detailed structures of
the one-dimensional convolutional autoencoder are listed in
Table 4. We utilized the encoder module (layers 1-4) as a
feature extractor.

G. EXTRACTION OF UNSUPERVISED FEATURES

We obtained HbO and HbR signals following the previously
mentioned preprocessing steps. To extract unsupervised fea-
tures from the feature extractor, preprocessed HbO and HbR
signals were divided into 720-length units. Single signals of
720-length were applied to the feature extractor. From the fea-
ture extractor (encoder module), one-dimensional 60-length
vectors with 64 output channels were obtained. Extracted
feature vectors were converted to single vectors by averaging
channels without changes in length.

H. CALCULATION OF HANDCRAFTED FEATURES

To compare the influence of unsupervised features and
handcrafted features on classification performance, we cal-
culated eight handcrafted features used in previous
studies.

1) SIGNAL MEAN
The signal means of HbO and HbR concentration signals
were calculated as follows:

1 & ,

o = — > HbX(i) 1

Ny =

=1
In this formula, u,, is the mean value for a given window.
Subscript w indicates the window for the calculation. i; and
i denote the start and end points of the window, respectively.
N,, is the number of signal values in the window, and HbX
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refers to the HbO or HbR concentration signal data. In many
previous studies, signal mean values were utilized for classi-
fication in BCI research [42], [43].

2) SIGNAL SLOPE

To extract the signal slope features, we referred to the cal-
culation methods used in previous studies [44]. The highest
and lowest signal values in the window were compared. The
signal slope features were calculated as follows:

Slope,, = H,, — L,, 2)

where subscript w indicates the window, and Slope,, is
the calculated signal slope feature value. H,, and L,
denote the highest and lowest values in the window,
respectively.

3) SIGNAL PEAK
The signal peak feature is the peak value of the signal values

in the window. Some previous studies have shown that peak
value features worked best in fNIRS research [45], [46].

4) SIGNAL MINIMUM

The signal minimum feature is the minimum value of the sig-
nal in a given window. In associated studies on fNIRS-BCI,
authors validated the usability of these features [47]-[49].

5) SIGNAL SKEWNESS AND KURTOSIS
The signal skewness feature was calculated as follows:

E(HbX,, — p)’
e 3
o
where Skewness,, indicates the skewness feature value cal-
culated from the signal values in the window. o in the
denominator represents the standard deviation of the HbO or
HbR concentration signal value for the given window. In the
numerator, [, denotes the mean value in the window, and
E, denotes the expectation of HbO or HbR signal. The signal
kurtosis was computed as follows:
E((HDX,, — U«w)4
e el @)
o
where Kurtosis,, indicates the calculated kurtosis feature
value. These features (skewness and kurtosis) have been uti-
lized in related fNIRS research [50], [51].

Skewness,, =

Kurtosis,, =

6) SIGNAL VARIANCE AND STANDARD DEVIATION
We calculated the variance and standard deviation values for

a given window. These features have also been reported as
being effective in fNIRS research [52], [53].

I. CLASSIFICATION ALGORITHMS

We applied five machine learning classifiers for our research
topics (CSAT level classification using fNIRS features). The
first classification algorithm was decision tree classifiers
[54]. This classification algorithm is mainly composed of
flow charts, such as tree structure flow charts (nodes and
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branches). The tree was built in two phases. First, in the
build (growth) phase, the training dataset was split recursively
based on local optimal criteria until the samples included in
the dataset belonged to each of the partitions in the same
class labels. Second, to prevent overfitting of the models,
noise and outliers were removed in the pruning phase. More-
over, the second phase was conducted using fully grown
trees. In terms of the model structure, three sub-structures
(internal nodes, branches, and leaf nodes) consisted of these
algorithms. We utilized decision tree classifiers with an iter-
ative dichotomiser 3 (ID3) algorithm. ID3 algorithms use
information gain to select the splitting attribute. Further,
information gain represents the variation of entropy values.
In summary, information gain was calculated using the dif-
ference in entropy before and after splitting.

The second classification algorithm was logistic regression
[55]. A maximum likelihood estimation method was used
to estimate the coefficients of the regression models. Subse-
quently, the regression model calculated a likelihood value
L(x), where 0 < L(x) < 1. The association between class
label and input vectors was indicated by the likelihood values.
If the likelihood values were higher than the threshold (0.5),
the class was classified as having high CSAT levels in binary
cases. In the three class condition Y, we considered Y as a
specified value of either “low,” “middle,” or “high.” As
a result, the logistic regression model calculated the prob-
ability values to categorize each class under diverse class
conditions.

The third classifier was a naive Bayes algorithm [56].
This probabilistic classifier utilizes the Bayes theorem. All
attributes in the dataset are assumed to be independent.

Support vector classifiers (SVC) were used as the fourth
classification algorithm [47]. In our study, this classifier was
applied using a nonlinear kernel (radial basis kernel). The
feature space of the dataset was classified using hyperplanes
separated by class labels. In the research by Bhavsar & Pan-
chal [58], the authors compared classification performance
via SVC models under linear, polynomial, and radial basis
kernel conditions. They showed advantages of radial basis
kernels for high dimensional classification tasks. Therefore,
to evaluate the classification performance of the different
algorithms under various class conditions, we selected a
radial basis kernel with non-linear characteristics. Addition-
ally, the participants in the dataset were completely separated
to prevent overfitting of the models.

Finally, the XGBoost classifier was utilized to compare
the classification performance with the aforementioned algo-
rithms [59]. This classifier was an ensemble of several
decision-tree models. Furthermore, this model comprised
gradient-boosting algorithms with regularized objectives.
We minimized the regularized objective function to optimize
the algorithms. The differences between the predicted y: and
target yi were compared in differential convex loss func-
tion. Penalization term was added to adjust the complexity
of the models. An additional regularization term smoothens
the last learned weight to avoid overfitting. In our study,
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we assigned categories of CSAT levels (e.g., “low,” “mid-

dle,” and “high” in three class case) in y;.

J. EVALUATION METRICS

To compare the classification performances between algo-
rithms, we applied five evaluation metrics. True positive
(TP), true negative (TN), false positive (FP), and false nega-
tive (FN) were calculated from a confusion matrix to evaluate
performance using other indices with accuracy. TP and TN
values indicate the number of correctly classified samples.
In contrast, FP and FN values represent incorrectly classified
samples. Using the four basic values from the confusion
matrix, we obtained four additional indicators (precision,
recall, Fl-score, and accuracy). Additionally, the true pos-
itive rate and false positive rate were checked to draw the
receiver operating characteristic (ROC) curve. Further, the
performance of the algorithms was evaluated using area under
the curve values from the ROC curve.

K. TRAINING AND EVALUATION OF MACHINE LEARNING
CLASSIFIERS

We utilized datasets consisting of features (both handcrafted
and unsupervised) and class labels to train and evaluate five
machine learning algorithms. To validate the classification
performance of classifiers in various class conditions, we set
three class conditions in our experiments (three, four, and five
classes). Further, detailed experimental conditions based on
the characteristics of fNIRS signals (HbO or HbR, channels
of signal) and window length for handcrafted feature extrac-
tion were applied to compare the effects of the conditions on
the classification performance. For example, in the case of the
characteristics of fNIRS signals, the HbO and HbR signals
were separately applied for feature extraction. Additionally,
the fNIRS dataset used in our study consisted of distinguished
signals collected from each of the 15 channels. Individual
signals were separately applied for comparison. Further, nine
different window length conditions (from 2 s length to 10 s
length of window) were used for handcrafted features to com-
pare and validate the influence of features on performance in
our research settings. As a result, we conducted experiment
with 32,400 conditions (8 features x 9window length x
15 channels x 5models x 3class labels x HbO and HbR =
32,400) for handcraft feature conditions and 450 conditions
for unsupervised feature conditions (15 channels x 3class
labels x 5 models x HbO and HbR = 450).

To train and evaluate the algorithms, we utilized 10-fold
cross-validation to prevent overfitting. The number of rows
in the dataset was the same (1,530 rows) for both hand-
crafted and unsupervised feature conditions. Additionally,
the number of columns (i.e., features) differed according to
the feature conditions. For example, in the case of unsu-
pervised feature conditions, the dimension of the dataset
was (1530, 61). Unlike unsupervised feature conditions,
the number of columns in the handcrafted feature condi-
tion differed on the basis of length of the windows. The
average number of columns in a handcrafted feature was
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FIGURE 3. Distribution of class labels in the dataset for the training and
evaluation of the machine learning models. (a), (b), (c): class label
distribution of the dataset with the handcrafted features from the HbO
and channel 1 condition signals. (d), (e), (f): class label distribution of the
dataset with the handcrafted features from the HbR and channel

1 condition signals. (a), (d): three class labels. (b), (e): four class labels.
(c), (f): five class labels.

706. Furthermore, to handle imbalance of the number of
instances in each class label, we applied weights to train-
ing of machine learning algorithms. The examples of dis-
tribution of the class label in the dataset were depicted
in Figure 3.

L. TOOLS
All codes for deep learning models, ML classifiers, and data
preprocessing were written using Pytorch (version 1.4.1),

Python (version 3.7.1; scikit-learn, version 2.4.1), and R (ver-
sion 4.0.3).

IIl. RESULTS

A. CONSTRUCTION OF THE FEATURE EXTRACTOR

To extract unsupervised features from fNIRS signals, we con-
structed a one-dimensional convolutional autoencoder as a
feature extractor. Five hyperparameter conditions were com-
pared to confirm the model structure and training parameters.
Among the five conditions, the third condition (720 length of
input layer and 60 length of latent vector) showed the lowest
error values among the three error indices. The detailed error
values are listed in Table 5. Additionally, we checked the
similarity between the original and reconstructed signals in
terms of visualization. The visualization of EEG signals is
depicted in Figure 4.

B. CLASSIFICATION PERFORMANCE OF ML CLASSIFIERS
We evaluated the classification performances of five ML clas-
sifiers based on various experimental conditions for feature

VOLUME 10, 2022



J. Choi et al.: Machine Learning Approach for Classifying CSAT Levels With Unsupervised Features

IEEE Access

extraction and class labels. Among the five algorithms (deci-
sion tree classifier, logistic regression, naive Bayes classifier,
support vector classifier, and XGBoost classifier) for classifi-
cation, the XGBoost classifier showed the best classification
performance. Detailed experimental results from XGBoost
and other classifiers were presented in Appendix A and B.
The performance of the XGBoost classifier in classifying
CSAT levels under unsupervised feature conditions is shown
in Tables 6-8.

In the case of handcrafted features, XGBoost classifiers
showed that the averaged values of the evaluation metrics
were approximately 79%. In contrast, the classification per-
formance was relatively higher using the unsupervised fea-
tures extracted from the deep learning algorithms under all
experimental conditions (averaged evaluation metric value
was 87%).

IV. DISCUSSION

In our study, we attempted to classify CSAT levels based on
machine learning classifiers with several features extracted
from fNIRS signals. Unsupervised features and handcrafted
features were extracted from fNIRS signals in different pro-
cesses to compare the effects for CSAT-level classification.

To propose reasonable evidence for our research topics
(classifying CSAT levels through machine learning algo-
rithms with fNIRS signals), we identified several associated
previous studies on two aspects (learning ability evaluation
with neuro-related dataset and analysis with machine or deep
learning algorithms).

First, considering the relationship between neuro-related
datasets (e.g., EEG or fNIRS) and learning ability, Kaewkam-
nerdpong [60] evaluated human learning ability using neu-
roimaging (EEG and fNIRS signals). He suggested that
utilizing the real-time brain state for evaluation of the tar-
get learning ability was valuable from the experimental
results. Artemenko ef al. [61] collected fNIRS signals in
event-related potential (ERP) measurements to investigate
an individual’s math ability. The authors compared the vari-
ations of fNIRS waves with arithmetic materials between
high and low performers. Soltanlou et al. [62] examined
cognitive development related to mathematics and language
using fNIRS signals. Brain activation changes were measured
during the language- and mathematics skills-related experi-
ments in schoolchildren groups. Based on previous research,
including the aforementioned studies, we concluded that the
application of neuroimaging techniques (especially fNIRS)
was suitable for the classification of CSAT levels as learning
ability measurement.

Second, in terms of analysis through machine learning
or deep learning algorithms, Benerradi et al. [63] applied
machine learning and deep learning classifiers to classify
mental workload status in a continuous human—computer
interaction (HCI) research with an fNIRS dataset. They
checked the promise of machine learning models for fNIRS
analysis in their research. Hosseini et al. [64] discovered dis-
criminative characteristics within fNIRS data collected from
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TABLE 5. Errors of five experimental conditions for the feature extractor.

Condition RMSE MRE MAE
1 0.1968 0.0348 0.0128
2 0.2262 0.7871 0.0149
3 0.0163 0.0622 0.0109
4 0.1033 0.2654 0.0795
5 0.1432 0.1363 0.0942

RMSE: root mean squared error; MRE: mean relative error; MAE: mean
absolute error.

children with language disorders. A total of five machine
learning classifiers were used to detect hemodynamic differ-
ences in healthy and disordered groups. Rojas et al. [65] sug-
gested a classification framework for pain assessment using
fNIRS signals collected from nonverbal patients. K-nearest
neighbor algorithms were used for pain assessment. The
authors focused on the advantages of machine learning mod-
els to investigate functional biomarkers for pain using fNIRS
signals. Based on the previous mentioned studies, we verified
that machine learning models have the potential to analyze
fNIRS datasets for CSAT level classification. As a result,
we confirmed that our research topic regarding CSAT level
classification with fNIRS signals based on machine learning
algorithms was well founded.

To reflect variations in fNIRS signals for CSAT level
classification, we utilized several features used in previous
studies. Khan and Hong [66] extracted eight features (mean
oxyhemoglobin, mean deoxyhemoglobin, skewness, kurto-
sis, signal slope, number of peaks, sum of peaks, and signal
peak) from prefrontal fNIRS signals. The extracted features
were applied to classify the neural states between alert and
drowsy states. A total of 15 window conditions were used
to extract the features. Yoo er al. [67] extracted mean, slope,
kurtosis, and skewness features to decode multiple sound
categories from fNIRS collected from the auditory cortex.
Yang et al. [68] considered seven features (HbO mean, HbR
mean, HbO slope, HbR slope, time to peak in hemodynamic
response, skewness, and kurtosis) extracted from fNIRS sig-
nals as digital biomarkers to identify mild cognitive impair-
ment (MCI). Among the diverse features utilized in previous
studies, we found and extracted eight common features to
compare the influences about classification performance with
unsupervised features in our experimental settings. In addi-
tion, differences in window length conditions for feature
extraction have been examined in previous studies [69]-[71].
In this regard, we extracted and applied handcrafted features
with nine conditions (from 2 s length to 10 s length) for the
length of windows.

In many previous studies that analyzed datasets using
machine learning or deep learning algorithms, datasets col-
lected from enough participants were utilized for research.
For example, Jang et al. [72] used an electrocardiogram
(ECG) signal dataset measured from 1,278 patients to train
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FIGURE 4. Visualization results of the original EEG signal and
reconstructed EEG signals from the one-dimensional convolutional
autoencoder. Black graphs indicate the original EEG signal and red graphs
indicate the reconstructed EEG signal.

deep learning models. They showed that the amount of data
was sufficient to train and evaluate algorithms. Addition-
ally, Jang et al. [41] utilized an actigraphy dataset gath-
ered from 14,482 healthy individuals for analysis. However,
in our study, we obtained fNIRS signals from 73 partici-
pants. We considered that the number of participants could
be relatively insufficient for analysis using deep learning
algorithms directly. To overcome the shortage of datasets,
we selected a transfer learning approach based on previous
studies [73], [74]. To extract unsupervised features from deep
learning algorithms, one-dimensional convolutional autoen-
coder models were trained using the BCI IV EEG dataset
preferentially. Whether the characteristics of the EEG data
were well reflected in model parameters was verified through
a comparison of five hyperparameter conditions between the
reconstructed and actual signals. As a result, an encoder
module trained by EEG signals was used as a feature extractor
to extract fNIRS unsupervised features. Moreover, in the
case of the dataset collected from the same domain (i.e.,
EEG and fNIRS), we attempted to examine whether the pre-
trained algorithm was suitable for feature extraction without
additional fine-tuning.

From our experimental results, the overall classification
performances were compared to find optimized algorithms
for our research topics. Among the five classifiers, the
XGBoost classifier showed the highest evaluation metric val-
ues under all experimental conditions. Similar results have
been reported in previous studies. Zhu et al. [75] classified
major depressive disorder groups using machine learning
algorithms based on collected fNIRS signals. In this case, the
performance of the XGBoost classifier was higher than that
of the random forest classifier. Additionally, Khan et al. [76]
verified the suitability of XGBoost classifiers in a finger
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movement classification task using an fNIRS dataset. As a
result, we confirmed that the XGBoost algorithms were most
suitable for fNIRS signal analysis for CSAT-level classifica-
tion in our research scheme.

In experimental conditions with handcrafted features, aver-
aged classification performances of XGBoost classifiers in
eight features were compared to locate the common window
length and signal conditions (i.e., HbO and HbR) for each fea-
ture extraction. First, in the case of signal slope features, a 4 s
length window and HbO concentration signal condition were
commonly found in three class conditions (three, four, and
five classes). Noori et al. [77] utilized signal slope features
with a relatively short window length for calculations. They
verified that the experimental conditions using slope features
showed the best classification performance.

Second, in conditions with signal peak features,
we checked that HbR concentration signal and 3 s length of
window was found in all conditions. Third, the HbO signal
and 6 or 7 s length window (three class conditions: 6 s window
length condition, four class conditions: 7 s window condition,
and five class conditions: 6 s window condition) were found
for signal standard deviation feature conditions.

Finally, under the HbR signal condition for signal stan-
dard deviation features, we found that 4 or 5 s length win-
dows (three class conditions: 4 s window length condition,
four class conditions: 5 s window condition, and five class
conditions: 4 s window condition) commonly showed the
best performance. Ghaffar et al. [78] used signal standard
deviation features with a 5 s window for classification in
their fNIRS-BCI research. The authors used the KNN and
LDA algorithms with standard deviation features and ver-
ified higher accuracy than for other frameworks proposed
in benchmark studies. By comparing the classification per-
formances between our research and previous studies, we
identified similar tendencies in our experimental results with
regard to handcrafted features.

Further, to find suitable channel conditions for
classification utilizing handcrafted features, we compared
the frequency of channels based on the best classification
performance in each condition. Fifteen channels were divided
into three groups based on their position in the prefrontal
regions. Channels 1, 4, 7, 10, 13, and 15 were included in
the orbitofrontal cortex (OFC) group. Channels 2, 5, 8, 11,
and 14 were sorted into the frontopolar prefrontal cortex
group. The remaining channels (channels 3, 6, 9, and 12)
were included in the dorsal prefrontal cortex group. Among
the three region groups, we found that the frequency of
channels belonging to the orbitofrontal cortex group was the
largest. Based on these results, the signals collected from the
orbitofrontal cortex groups (channels 1, 4, 7, 10, and 13) were
found to be relatively more suitable for classifying CSAT
levels than other channels in terms of handcrafted features.
Spinella and Miley [79] examined the relationships between
educational attainment and OFC regions. They found that
reinforcing goal-directed behaviors and impulse control from
the education process can influence the OFC regions.
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TABLE 6. Classification performance of the XGBoost classifier with unsupervised features (three class labels).

Condition

Condition

. Channel  Precision Recall Fl-score  Accuracy AUC . Channel  Precision Recall Fl-score  Accuracy AUC
(signal) (signal)
HbO signal Chl 0.866 0.871 0.869 0.895 0.930 HbR signal Chl 0.891 0.821 0.875 0.896 0.930
Ch2 0.864 0.870 0.865 0.932 0.930 Ch2 0.866 0.807 0.879 0.892 0.940
Ch3 0.697 0.759 0.880 0.898 0.940 Ch3 0.881 0.870 0.866 0.896 0.930
Ch4 0.695 0.763 0.778 0.891 0.930 Ch4 0.893 0.871 0.877 0.897 0.920
Ch5 0.713 0.737 0.794 0.896 0.930 Ch5 0.887 0.876 0.876 0.886 0.940
Cho6 0.867 0.870 0.871 0.927 0.930 Cho6 0.879 0.876 0.866 0.892 0.940
Ch7 0.894 0.871 0.886 0.863 0.940 Ch7 0.889 0.876 0.898 0.897 0.940
Ch8 0.876 0.877 0.892 0.897 0.930 Ch8 0.865 0.872 0.861 0.881 0.940
Ch9 0.885 0.870 0.877 0.884 0.930 Ch9 0.845 0.870 0.886 0.897 0.930
Chl0 0.853 0.879 0.886 0.892 0.930 Chl0 0.870 0.865 0.866 0.885 0.920
Chll 0.893 0.893 0.886 0.879 0.930 Chll 0.891 0.870 0.886 0.889 0.940
Chl2 0.854 0.870 0.894 0.885 0.930 Chl12 0.861 0.890 0.865 0.889 0.930
Chl13 0.845 0.869 0.858 0.895 0.930 Chl13 0.899 0.876 0.872 0.890 0.920
Chl4 0.870 0.886 0.890 0.886 0.940 Chl14 0.890 0.829 0.875 0.889 0.930
Chl5 0.898 0.832 0.869 0.899 0.930 Chl5 0.871 0.893 0.891 0.898 0.940
Mean 0.838 0.847 0.866 0.895 0.932 Mean 0.879 0.864 0.876 0.892 0.933
AUC: Area under the curve
TABLE 7. Classification performance of the XGBoost classifier with unsupervised features (four class labels).
Condition . Condition ..
(signal) Channel  Precision Recall Fl-score  Accuracy AUC (signal) Channel  Precision Recall Fl-score  Accuracy AUC
HbO signal Chl 0.892 0.863 0.851 0.864 0.940 HbR signal Chl 0.838 0.867 0.886 0.880 0.950
Ch2 0.865 0.890 0.740 0.879 0.950 Ch2 0.855 0.867 0.855 0.868 0.940
Ch3 0.861 0.899 0.859 0.869 0.950 Ch3 0.870 0.882 0.871 0.882 0.950
Ch4 0.879 0.888 0.877 0.888 0.950 Ch4 0.850 0.889 0.861 0.863 0.940
Chs 0.860 0.884 0.867 0.884 0.950 Chs 0.866 0.881 0.869 0.881 0.950
Ch6 0.860 0.871 0.853 0.871 0.940 Ché 0.851 0.866 0.855 0.866 0.940
Ch7 0.880 0.898 0.884 0.890 0.950 Ch7 0.871 0.873 0.862 0.873 0.950
Ch8 0.890 0.900 0.890 0.900 0.940 Ch8 0.889 0.864 0.851 0.864 0.950
Ch9 0.870 0.889 0.877 0.889 0.940 Ch9 0.844 0.861 0.847 0.871 0.940
Chl10 0.843 0.899 0.878 0.901 0.950 Ch10 0.779 0.815 0.872 0.890 0.940
Chll 0.851 0.880 0.854 0.864 0.940 Chll 0.861 0.874 0.862 0.874 0.940
Chl2 0.843 0.878 0.727 0.898 0.940 Ch12 0.860 0.880 0.868 0.880 0.940
Ch13 0.880 0.890 0.887 0.891 0.940 Ch13 0.888 0.899 0.889 0.901 0.950
Chl4 0.831 0.817 0.829 0.885 0.940 Chl4 0.860 0.882 0.867 0.882 0.940
Chl5 0.867 0.881 0.869 0.881 0.950 Chl5 0.879 0.891 0.880 0.891 0.940
Mean 0.865 0.882 0.849 0.884 0.945 Mean 0.857 0.873 0.866 0.878 0.944
AUC: Area under the curve
TABLE 8. Classification performance of the XGBoost classifier with unsupervised features (five class labels).
Copdltlon Channel  Precision Recall Fl-score  Accuracy AUC Cor}dntlon Channel  Precision Recall Fl-score  Accuracy AUC
(signal) (signal)
HbO signal Chl 0.651 0.831 0.801 0.877 0.950 HbR signal Chl 0.877 0.846 0.808 0.846 0.950
Ch2 0.880 0.831 0.803 0.851 0.950 Ch2 0.875 0.837 0.803 0.839 0.950
Ch3 0.882 0.851 0.851 0.853 0.950 Ch3 0.873 0.829 0.896 0.829 0.950
Ch4 0.871 0.848 0.810 0.848 0.950 Ch4 0.851 0.831 0.803 0.831 0.950
Chs 0.879 0.852 0.812 0.852 0.950 Chs 0.861 0.839 0.897 0.893 0.940
Cho6 0.814 0.830 0.806 0.839 0.950 Cho6 0.874 0.842 0.805 0.842 0.950
Ch7 0.872 0.841 0.804 0.841 0.950 Ch7 0.890 0.843 0.813 0.842 0.950
Ch8 0.804 0.845 0.820 0.845 0.950 Ch8 0.811 0.862 0.828 0.862 0.950
Ch9 0.808 0.865 0.833 0.865 0.960 Ch9 0.861 0.827 0.893 0.827 0.950
Chl0 0.876 0.847 0.862 0.847 0.960 Chlo 0.883 0.843 0.811 0.846 0.950
Chll 0.871 0.841 0.801 0.841 0.960 Chll 0.872 0.846 0.804 0.846 0.950
Chi2 0.817 0.835 0.813 0.838 0.950 Ch12 0.898 0.854 0.819 0.845 0.950
Chl13 0.811 0.865 0.833 0.865 0.950 Chl13 0.884 0.863 0.821 0.862 0.960
Chl4 0.871 0.837 0.802 0.837 0.950 Chl4 0.893 0.813 0.891 0.813 0.950
Chls 0.891 0.848 0.813 0.848 0.950 Chl5 0.883 0.846 0.812 0.846 0.950
Mean 0.840 0.844 0.818 0.850 0.952 Mean 0.872 0.841 0.834 0.845 0.950

AUC: Area under the curve
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To compare the influence of each feature on classifica-
tion performance, we applied unsupervised features from
a feature extractor trained by EEG signals. With regard to
the classification performances of the XGBoost classifier,
the five evaluation metric values of the unsupervised fea-
ture condition were higher than those of the handcrafted
features. We confirmed that unsupervised features extracted
using deep learning algorithms were more appropriate for
classification than the eight handcrafted features. Based on
the aforementioned results, we verified that a deep learn-
ing algorithm can work well as a feature extractor without
fine-tuning when the transfer learning approach is applied
between similar domain datasets.

In addition, we sorted the experimental results for each
channel in ascending order based on the classification per-
formance to compare the appropriateness of signals collected
from channels for classification. After sorting the results,
we selected the channel with the highest number of cases for
each metric. The frequency of channels in the OFC group was
higher than that in the other groups. In the case of channel
importance for classification, we found a similar trend with
handcrafted features (i.e., signals of the OFC group were
relatively appropriate for our research topic).

In summary, we compared the classification performances
of five machine learning classifiers between handcrafted and
unsupervised features to verify the usability of the features for
CSAT classification. As a result, the XGBoost classifier was
found to be most suitable for classification. We concluded
that unsupervised features were more usable for classifying
CSAT levels based on the experimental results. In addition,
the applicability of the transfer learning approach without
fine-tuning was verified in deep learning models between the
same domain dataset (EEG and fNIRS). Furthermore, fNIRS
signals measured from the OFC groups were more adequate
than those measured from the other groups for our research
topics.

V. CONCLUSION

In this work, we proposed a machine learning-based frame-
work for classifying CSAT levels using unsupervised features
extracted from deep learning algorithms. Based on previ-
ous studies on the relationship between learning ability and
neural activities, hemodynamics in fNIRS signals using the
NIRSIT Lite device were measured to extract handcrafted
and unsupervised features. To evaluate our framework from
various perspectives, we designed experiments using vari-
ous class labels and feature extraction conditions. We found
that the XGBoost classifier exhibited the best classification
performance and that unsupervised features extracted by the
feature extractor trained with EEG signals were suitable for
classifying the CSAT levels.

The first strength of this study was the application of fNIRS
signals, which are not widely used to classify CSAT levels.
Second, we determined the ideal conditions for fNIRS signals
for feature extraction. Third, in terms of transfer learning,
we checked the usability of one-dimensional convolutional
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autoencoder algorithms as feature extractors with different
neural modals (i.e., EEG and fNIRS). Fourth, an fNIRS
dataset collected from undergraduate students in three differ-
ent universities with eight cognitive task sessions was used to
reflect variations in CSAT levels and neural activities.

Our study has some limitations. First, {NIRS signals can
include detailed differences between diverse cognitive tasks.
These differences can affect the learning ability evaluation
results and CSAT levels. However, we considered overall
characteristics instead of specific changes to classify the
CSAT levels. Second, deep learning algorithms can be used
to detect latent patterns in fNIRS signals for CSAT level clas-
sification. An additional fNIRS dataset needs to be collected
for applying deep learning models in further studies. Finally,
to generalize our framework, we need to consider external
validation through fNIRS signals collected from other par-
ticipant groups (e.g., other countries or societies) in further
studies.

APPENDIX A
Experimental Results with handcraft features from three clas-
sification algorithms (XGBoost, logistic regression, and sup-
port vector classifier).
https://figshare.com/articles/dataset/Experiment_results_
with_unsupervised_features/19100429. Choi, Junggu; Ko,
Inhwan; Nah, Yoonjin; Kim, Bora; Park, Yongwan; Cha,
Jihyun; Han, Sanghoon (2022): Experimental results with
handcraft features. figshare. Dataset. https://doi.org/10.6084/
m9.figshare.19100429. (XLSX)

APPENDIX B
Experimental Results with unsupervised features from three
classification algorithms (XGBoost, logistic regression, and
support vector classifier).
https://figshare.com/articles/dataset/Experimental _result_
with_unsupervised_features/19100618. Choi, Junggu; Ko,
Inhwan; Nah, Yoonjin; Kim, Bora; Park, Yongwan; Cha,
Jihyun; Han, Sanghoon (2022): Experimental result with
unsupervised features. figshare. Dataset. https://doi.org
/10.6084/ m9.figshare.19100618. (XLSX)
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