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ABSTRACT Unmanned aerial vehicle quadcopters have applications in different real-life areas. They are
nonlinear systems that necessitate the utilization of nonlinear control techniques. In this paper, we propose a
new quaternion-based tracking controller for an underactuated quadcopter based on the pseudo linear feed-
back linearization technique. The quadcopter dynamicmodel was derived using Newton and Euler equations,
and the global asymptotic stability of the quadcopter was verified using the Lyapunov stability criterion. The
proposed controller has been compared to three state-of-the-art quadcopter controllers. Through simulation
results, it has been shown that the proposed model has an effective and better performance than others. The
metrics used in this evaluation are the steady-state error, maximum error, overshoot, and settling time. The
different metrics proved the good performance of the proposed model in most of the different states that are
presented.

INDEX TERMS Attitude and altitude tracking, feedback linearization, nonlinear control, quaternion tracking
control, underactuated system.

I. INTRODUCTION
Quadcopters are among the most popular unmanned aerial
vehicles as they can be utilized in various tasks, such as search
and rescue operations [1], [2], military operations [3]–[5], and
even agricultural processes (for spraying pesticides) [6], [7].
Moreover, the vertical take-off and landing capabilities, hover
capability, great mobility, and agility of quadcopters make
them extremely versatile in various operations. However,
their usability still faces many control challenges, such as
ensuring stable operation despite high nonlinearity, under-
actuated systems, strong coupling, external disturbance, and
the need for fast control responses with satisfying regions of
convergence in the presence of uncertainties [8], [9]. Con-
troller development requires the development of a quadcopter
dynamics mathematical model. A system dynamics model
was previously obtained for a quadcopter using either the
Newton–Euler or Euler–Lagrange methods [10], and the ori-
entation of the quadcopter could be represented by rotation
matrices, Euler angles, and quaternions. Quaternions were
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employed in [11]–[14] to control the quadcopter attitude and
position, and optimum performance was proven. Quaternions
were also employed in some studies [15], [16] to solve the
tracking problems of attitude and altitude with good perfor-
mance.Moreover, the attitude tracking controller in [17]–[20]
employed quaternions to avoid the issues of Euler angle
representation.

In previous studies, variety of nonlinear techniques had
been applied to quadcopters. For example, in [21], fuzzy PD
and classical PD controllers were successfully implemented,
and the performance of the Fuzzy PD controller was shown
to be slightly better than the classical PD controller with
regard to durability against noise and ease of implementation.
To achieve good control for the position and the attitude of
the quadcopter, a PID control technique has been proposed
in [22]. The PID coefficients had been fine-tuned using a
Genetic Algorithm (GA). The controller’s robustness was
evaluated in terms of sensor noise suppression, disturbance
rejection, and sensitivity to model parameter uncertainty.
The results of the robustness tests confirmed the efficacy
and performance of the developed controller. A waypoint
navigation controller was proposed in [23], using a fuzzy
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PID controller, which controlled a quadcopter to reach the
desired position with good performance. In [24], a fuzzy
PID controller was used instead of a traditional PID. Fuzzy
controllers can improve quadcopter performance compared
with classical PID controllers. In [25], the authors demon-
strated how to adopt PID controllers in interference-enhanced
models. Among the preferred techniques, solutions relying
ona backstepping control technique using quaternion repre-
sentation were proposed in [25]–[29]. The validity of the
proposed controllers was verified by simulation and the Lya-
punov stability criterion. In [31], a backstepping controller
based on the Euler angle orientation technique was developed
to control the altitude and attitude of quadcopter systems. The
controller’s validity was also assured by the Lyapunov func-
tion. The simulation results revealed transient and tracking
responses with great precision. In [32], [33], LQR controllers
were used to control the attitude and position of quadcopters
using the Euler angle orientation approach. To increase the
control algorithm responsiveness, the LQR controller was
integrated with the feedback linearization model. The sliding
mode has the benefit of solving uncertain issues in nonlinear
system control. For example, in [34], an altitude controller
was proposed based on the second-order sliding mode tech-
nique. It has good performance compared with three refer-
ence controllers. An adaptive sliding tracking controller in
[35], achieved a low tracking error compared with a classical
sliding mode controller. Attitude and altitude tracking con-
trollers, which are based on a combination of sliding mode
techniques and PID techniques were proposed in [36]. This
controller was compared to other state-of-the-art ( four types
of sliding mode) [33], [34], [37], all of which use the same
external disturbances. The proposed controller’s efficacy is
demonstrated by the simulation results. In [38], a combi-
nation of integral sliding mode and backstepping sliding
mode controllers was established with uncertainties, and the
presence of disturbances to track the attitude and position to
achieve good tracking performance. In [39], a hybrid model
by using integral backstepping and sliding mode controller
is proposed for an efficient controller to track position and
orientation by integrating a recursive control approach. Three
state of the art [38]–[40] are implemented to compare with
this controller to prove its efficiency.

Over the years, feedback linearization has attracted a lot of
interest. In [42], the authors proposed a feedback lineariza-
tion technique using a Luenberger observer to rebuild the
no measured variables required to improve the robustness
and performance of the proposed controller. The control
system (i.e., observer, estimator, and controller) showed to
have an interesting contribution for controlling the systems
equipped with a minimum number of sensors. In [43], two
sub controllers (i.e., feedback linearization and two PD con-
trollers) were used to control the quadcopter. The proposed
model could simultaneously combine tilting and movement
along the desired trajectories, and the validity of the control
system was tested by simulation. In [44], the authors pro-
posed attitude, altitude, and position controller to keep the

quadcopter under control and stable. To prove the validity of
this controller, it was compared with two state-of-the-art from
the previous literature studies, and it was also tested exper-
imentally. In [45], the authors presented a nonlinear output
feedback control approach that achieved an asymptotic alti-
tude and attitude trajectory tracking for a quadcopter system,
and the external disruptions and model uncertainties were
considered. To attain high performance and good stability,
the authors in [46], proposed a hybrid model to control the
position and the attitude of the quadcopter model. This model
was linearized using feedback linearization approach, and a
mixed sensitivity H∞ optimum controller was then built and
synthesized. The controller was put to the test to see howwell
it can reject disturbances, reduce sensor noise, and deal with
model uncertainties. In [47], the authors proposed a model
based on feedback linearization side by side with backstep-
ping. The proposed model presented satisfying results under
high acceleration trajectory tracking and slowly varying wind
conditions. Moreover, the authors in [48] proposed a hybrid
system that relies on feedback linearization and LQR meth-
ods. The proposed technique was successful in tracking a
predetermined trajectory and presenting small position errors
under model inaccuracies, uncertainties, and disturbances.
In our early work [49], the proposed controller task is to
regulate the attitude and altitude of a quadcopter, but the
regulation applications are less than the tracking applications.
Also, new variables have been added to fit the proposed
controller for tracking. The friction factor with air has also
been added to make the proposed controller more realistic.

In this paper, the main contributions are as follows.
• A new quaternion-based feedback controller design
is proposed for tracking quadcopter orientation and
altitude.

• The proposed controller is not complex and allows low-
end microcontroller-based implementations.

• A comparison with three controllers of the state-of-the-
art quadcopter controllers (Non linear1, Non linear2,
Non linear3) was conducted to demonstrate the effec-
tiveness and performance of the proposed controller. The
three controllers that were compared to the proposed
model are summarized in the following three points.
â Non linear1 controller achieved locally asymptotic

stability [48]. Various aerodynamic and gyroscopic
effects might be considered in quadcopter model.
However, to keep the model as simple as possible,
the authors ignored it. In altitude controller, it does
not consider the first derivative of the desired alti-
tude, this neglect has somewhat affected the perfor-
mance compared to the proposed altitude controller.

â Non linear2 controller achieved locally asymptotic
stability [44]. It uses Euler angle representation that
has singular configurations, in which the angular
velocity loses one degree of freedom. These draw-
backs can be avoided using unit quaternions that
have proven good performance in comparison to the
other representations.
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â Non linear3 controller achieved almost global
asymptotic stability [52]. It uses quaternion
representation that achieved good performance
compared to Non linear1, and Non linear2. This
controller takes into consideration attitude tracking
problem but doesn’t consider the altitude track-
ing problem. Moreover, the gyroscopic moment,
and various aerodynamic is not included in this
controller.
• The gyroscopic moment, aerodynamic rotation,

and translation drag are considered to achieve
good accuracy. To the best of authors’ knowl-
edge, there are no solutions for attitude and alti-
tude control in the literature used this technique
without simplifying assumptions.

• The efficiency of the proposed controller is
clearly shownwhen the quadcopter is in or near a
corner pose due to use quaternion representation
instead of Euler angle representation.

• The stability analysis of the proposed controller
meets Lyapunov stability conditions.

• The proposed controller achieved global asymp-
totic stability.

The rest of this paper is organized as follows. The model,
kinematics, and dynamics of the quadcopter are detailed in
Section II. The flight controller design and stability analysis
are presented in Section III. The simulation results of the pro-
posed controller are presented and discussed in Section IV.
Finally, the conclusion is mentioned in Section V.

II. SYSTEM DESIGN
A. QUADCOPTER STRUCTURE
In general, a quadcopter is a rigid body that is subjugated
by its mass (m) and inertia (J). It is a flying vehicle with
four propellers attached at the end of a cross frame, where
one pair rotates clockwise, and the other pair rotates coun-
terclockwise, both at equal distances from the vehicle center
as shown in Fig.1. A body-fixed frame origin is typically
placed to coincide with the center of mass. Around the normal
direction, each propeller produces a normal force Fi and a
moment Mi. The mobility of the quadcopter is based on a
fixed Earth frame with axes [X Y Z ]. The origin vector of
the quadcopter’s body frame is set to r = [Xb Yb Zb]T .
Moreover, ṙ denotes the quadcopter’s velocity, r̈ denotes its
acceleration, and � denotes its angular velocity. Moreover,
R denotes the quadcopter rotation matrix with respect to the
ground frame. The control of a quadcopter is performed by
varying the speed of each rotor. To generate vertical take-off
and landing, the four rotors’ speeds are equal. To produce a
rotation around the X-axis (roll rotation) coupled with motion
along the Y-axis, the speed of the second and fourth rotors
is changed. For a rotation around the Y-axis (pitch rotation)
coupled with a motion along the X-axis, the speed of the first
and third rotors is changed. To produce a rotation around the
Z-axis (yaw rotation), the torque produced by each propeller
pair must have a different polarity.

FIGURE 1. Quadcopter system coordinates.

B. KINEMATIC MODEL
Three coordinate frames are considered when building the
mathematical model of a quadcopter: Earth fixed frame, body
frame, and desired frame, as illustrated in Fig.1. The position
and gravitational force of the quadcopter are measured in ref-
erence to the Earthfixed frame. However, the angular velocity
and thrust of the quadcopter are measured in reference to
the body frame. A unit quaternion q is used to represent the
orientation of the body frame relative to the Earth frame [50].
For a body frame rotation about a unit axis n with an angle
−π < θ < π , a unit quaternion q is expressed as shown
in (1).

q =
[
cos (θ/2)
n sin (θ/2)

]
=

[
q0
qv

]
(1)

The derivative of the quaternion is described by Eq. (2).

q̇ = q⊗ q� (2)

where q� =
[

0
�/2

]
and the operator ⊗ is denotedfor the

quaternion multiplication operator and � is the body frame
angular velocity.

C. DYNAMICS
Two subsystems explain the dynamic model of the quad-
copter body: a rotating subsystem (attitude) and a transla-
tional subsystem (altitude (z), x, and y). The Euler torque
equation describes the rotational motion, while the Newton
force describes the translational motion of the quadcopter
body.

1) ROTATIONAL DYNAMICS
The rotational movement of the quadcopter is described in
the body frame (i.e., to have the inertia matrix invariant with
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time) by Eq. (3) as mentioned in [14].

J�̇+�× J�+ Jr �×

 0
0
ωr

+ kr� =MB (3)

where � denotes the vehicle’s angular velocity, J ∈ R3×3 is
the symmetric positive definite moment of inertia matrix of
the vehicle, Jr is the rotor’ inertia, ωr = ω1−ω2+ω3−ω4,
kr is the aerodynamic rotation drag coefficients, and MB is
the total torque acting on the quadrotor body.

2) TRANSLATIONAL DYNAMICS
The quadcopter’s translation equations of motion are based
on Newton’s Second Law [51], and they are calculated with
regard to the Earth’s fixed frame[14], as shown in Eq. (4).

mr̈ = mg

 0
0
1

+ RFb − ktṙ (4)

where kt represents the aerodynamic translation drag
coefficients.

Fb =

 0
0
Fb

 =
 0

0
kf
(
ω2
1 + ω

2
2 + ω

2
3 + ω

2
4

)
 (5)

Assume that the propeller speeds can be instantly altered, and
that the system has four inputs, MB and Fb. The quadcopter
system’s input vector is specified as

U = [MBFb]T = [u1 u2 u3 u4]T .

III. FEEDBACK LINEARIZATION CONTROL
In this section, the developed pseudo nonlinear feedback
linearization tracking controller for the attitude and altitude of
quadcopter systems is described. The quadcopter’s nonlinear
dynamics were converted into linear equivalent dynamics
using the feedback linearization control technology. A block
diagram of the feedback system is shown in Fig.2. In the
beginning, a state-space model was derived. The actual angu-
lar velocity � =

[
p q r

]T, the orientation represented by
the axis angle θ , position r, and velocity ṙ were used as
feedback signals. Moreover, the value of the desired angle
θd, the desired angular velocity �d, and the desired accel-
eration αd were considered as inputs for the controller. The
controller calculates the values of u1, u2, and u3 to ensure
that the quaternion error is equal to qe = [1 0 0 0]T. Addi-
tionally, it specifies the control input u4 to ensure that the
quadcopter altitude is equal to the desired altitude. Then, the
propeller speeds ωi are calculated depending on the values of
u1, u2, u3, and u4.

A. ATTITUDE TRACKING CONTROL DESIGN
The attitude stability of quadcopters has drawn a lot of atten-
tion, and its value may be seen in both flexible and challeng-
ing movements. The attitude controller aims to ensure that
the body frame is aligned with the desired frame. For this

FIGURE 2. Structure of the overall control system.

reason, the desired attitude of a quadcopter is represented by
the desired frame, which is denoted by [Xd Yd Zd]. The cor-
responding rotation matrix ofthe desired frame with respect
to the Earth frame is denoted by Rd ∈ SO (3).The desired
unit quaternion is defined as qd =

[
q0d,qvd

]
, which is used

to describe the orientation of the desired frame with respect
to the Earth fame. The relationship between the coordinate
frames is shown in Fig. 1. The desired angular velocity,
which is denoted by�d, is the angular velocity of the desired
body frame. A quaternion error must be defined to design
an attitude tracking controller. The quaternion error qe is to
measure the discrepancy between the desiredquaternion qd
and the actual quaternion q. qe is defined by Eq. (6).

qe = qd∗ ⊗ q (6)

To reach the desired orientation, rotation by the quaternion
error qe is required. To calculate the time derivative of qe,
both sides of the above equation are differentiated with
respect to time.

q̇e =
d
dt
(qd∗ ⊗ q) = (q̇d∗)⊗ q+ qd∗ ⊗ q̇ (7)

The time derivative of qd is defined as in Eq. (2) and is given
by the following form:

q̇d = qd ⊗ q�d (8)

Taking the conjugate of the time derivative of the qd equation
leads to:

(q̇d)
∗
= (qd ⊗ q�d) ∗ = q�d∗ ⊗ qd∗ (9)

Eq. (7) in view of Eq. (2) and Eq. (8) leads to:

q̇e = q�d∗ ⊗ qd∗ ⊗ q+ qd∗ ⊗ q⊗ q� (10)
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The time derivative of the unit quaternion error is also defined
like that of q̇.

q̇e = qe ⊗ q�e (11)

By substituting Eq. (11) into Eq. (10),

q�d∗ ⊗ qd∗ ⊗ q+ qd∗ ⊗ q⊗ q� = qe ⊗ q�e

Multiplying by qe∗ leads to:

qe∗ ⊗ q�d∗ ⊗ qd∗ ⊗ q+ qe∗ ⊗ qd∗ ⊗ q⊗ q� = q�e
(12)

On substituting the value of q∗e ,

q∗⊗qd⊗q�d∗⊗qd∗⊗q+ q∗⊗qd⊗qd∗⊗q⊗q� = q�e
(13)

The above equation is simplified using the properties of
quaternion multiplications, i.e., q∗⊗qd⊗qd∗⊗q = 1 gives:

−q∗ ⊗ qd ⊗ q�d ⊗ qd∗ ⊗ q+ q� = q�e (14)

The term: q∗ ⊗ qd ⊗ q�d ⊗ qd∗ ⊗ q = (q∗ ⊗ qd)⊗ q�d ⊗

(q∗ ⊗ qd)∗ with q�d =

[
0

�d/2

]
can be interpreted as the

rotation of the vector�d/2 by the rotation described by q∗⊗
qd. Hence, we have:(

q∗ ⊗ qd
)
⊗ q�d ⊗

(
q∗ ⊗ qd

)∗
=

[
0

RTRd�d/2

]
The mismatch between the rotation R and Rd matrices is
defined by Re = RT

dR.
The following equation is the dynamical equation for the

angular velocity tracking error �e ∈ R3

�e = �− RTRd�d = �− RT
e�d (15)

The quadcopter system’s variables were changed from�e and
qe to �e and xe, where xe is defined as follows.

xe = �e + k1qve = �e + k1Mqe (16)

whereM =

 0 1 0 0
0 0 1 0
0 0 0 1

, and k1 is a positive constant. The
state equation of xe is given by Eq. (17):

Jẋe = J�̇e + k1JMq̇e (17)

To calculate �̇e, both sides of Eq. (15) are differentiated with
respect to time as follows:

�̇e = �̇− (RT
e�ḋ) = �̇− ( ˙RT

e �d + RT
e �̇d)

The state equation of �e is represented in the body frame as
follows:

�̇e = �̇+�× RT
e�− RT

e �̇d (18)

By substituting Eq. (18) into Eq. (3), the following equation
is obtained:

J�̇e + J
(
−�× RT

e�+ RT
e�d.

)
+�× J�+ Jr�

×

 0
0
ωr

 =MB (19)

Eq. (19) in view of Eq. (17) leads to the following equation:

Jẋe = k1JMqe ⊗ q�e − J(−�× RT
e�+ RT

e �̇d)

−�× J�− Jr �×

 0
0
ωr

+MB (20)

In the state space of �e and xe, Eq. (19) with Eq. (20) define
the quadcopter rotational dynamics. The control law of the
quadcopter orientation is denoted by Eq. (21):

MB = −k1JMqe ⊗ q�e − k2xe + J(−�× RT
e�+ RT

e �̇d)

+�× J�+ Jr �×

 0
0
ωr

 (21)

By substituting Eq. (21) into Eq. (19) and Eq. (20), Eqs. (22)
and (23) are obtained.

Jẋe = −k2xe (22)

J�̇e = −k2xe − k1JMqe ⊗ q�e (23)

Eqs. (22) and (23)describethe system model that has equilib-
rium points at xe = 0 and �e = 0, which is equivalent to
qe = [±1 0 0 0]T and �e= 0 to be stable.

B. STABILITY ANALYSIS
The Lyapunov stability theorem was utilized to demonstrate
the correctness of this controller. The candidate Lyapunov
function V (xe,�e) is defined as follows.

V (xe,�e) = 0.5 (Mqe)TMqe + 0.5xTe Jxe (24)

Substituting for Mqe from Eq. (16) gives

V (xe,�e) =
1

k21
0.5 (xe −�e)

T (xe −�e)+ 0.5xTe Jxe

The Lyapunov function V (xe,�e) is positive definite
because the J matrix is positive definite. Also, V (xe,�e) =

0 if and only if xe = 0 and �e = 0. Thus, the first two
conditions for the Lyapunov function validity are verified.
To verify the stability of the proposed controller, we must
prove that the time derivative of V (xe,�e) is negative in a
domain that encloses the equilibrium point.

The time derivative of V (xe,�e) is given by

V̇ (xe,�e) =
1

k21
(xe −�e)

T (xe −�e )̇+ xTe Jẋe (25)

whose time derivative in view of Eq. (22) and Eq. (23) is given
by

V̇ (xe,�e) =
1

k21
(xe −�e)

T (k1Mq̇e)− k2xTe xe (26a)
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In view of Eq. (16), and Eq.(11), Eq. (26a) can be simplified
to:

V̇ (xe,�e) = (Mqe)T (Mqe ⊗ q�e)− k2xTe xe (26b)

where qe =
[
q0e,qve

]T
, andMqe = qve.

By substituting for qe and q�e in the previous equation,
then

V̇ (xe,�e) = qTveM
([

q0e
qve

]
⊗

[
0

�e/2

])
− k2xTe xe

(26c)

After some quaternion multiplications, one can deduce that:

V̇ (xe,�e) =
1
2
qTveM

([
−qTve�e

q0e�e + qve ×�e

])
− k2xTe xe

(26d)

After the simplification of the first term in the RHS,
V̇ (xe,�e) can be written as follows:

V̇ (xe,�e) =
1
2
qTve (q0e�e + qve ×�e)− k2xTe xe (26e)

Further simplification leads to:

V̇ (xe,�e) =
q0e
2

qTve�e − k2xTe xe (26f)

Let�e = �pe+�ne, where�pe is the parallel component to
the vector qve, and�ne is the normal component to the vector
qve. The control parameters k1 and k2 are always positive.
Therefore, �pe and �ne can be defined as follows:

�pe = α1k1qve
�ne = �−�pe

where α1 is a real constant. By substituting �pe and �ne in
Eq.(26f),

V̇ (xe,�e) = 0.5α1k1q0eqTveqve − k2xTe xe

Substituting for xe gives:

V̇ (xe,�e) = 0.5α1k1q0eqTveqve − k2 (�e + k1qve)T

× (�e + k1qve) (26g)

The xTe xe term can be defined by the parallel and normal
components of �e as follows:

(�e + k1qve)T (�e + k1qve)

=
(
�ne +�pe + k1qve

)T (
�ne +�pe + k1qve

)
(27)

where qve and �ne are normal. Therefore,

(�e + k1qve)T (�e + k1qve)

= �T
ne�ne + (α1 + 1)2 k21q

T
veqve (28)

By substituting Eq. (28) into Eq. (26g), V̇ (xe,�e) becomes

V̇ (xe,�e) = 0.5α1k1q0eqTveqve − k2�T
ne�ne

− k2 (α1 + 1)2 k21q
T
veqve

This may be expressed in the following manner:

V̇ (xe,�e) = −k1
(
k1k2 (α1 + 1)2 − 0.5α1q0e

)
qTveqve

− k2�T
ne�ne

where V̇ (xe,�e) should be positive definite to meet the
Lyapunov stability requirement and the controller parameters
k1, k2 are assumed to always be positive. Hence, V̇ (xe,�e)

is positive definite if k1k2 (α1 + 1)2 − 0.5α1q0e > 0, which
can be simplified as follows:

α21 + (2−
q0e

2k1k2
)α1 + 1 > 0 (29)

This equation’s discriminator is given by:

D = (1−
q0e

4k1k2
)
2
− 1 (30)

where q0e is constrained to be positive. Hence, if 0 <
q0e

4k1k2
<

2, D is smaller than zero (D < 0), implying that the require-
ment given in Eq. (29) can be held for any value of α1.
Given that q0e < 1, by putting the constraint k1k2 >

1
8 on

the system, for any values of qe and �e, the system can be
stabilized. Finally, V̇ (xe, �e) is deduced as follows:

V̇ (xe,�e) = −k12qTveqve − k2�T
ne�ne (31)

where the constant k12 = k1
(
k1k2 (α1 + 1)2 − 0.5α1q0e

)
is

positive if the constants k1 and k2 satisfy the conditionthat
k1k2 >

1
8 . Hence, V̇ (xe,�e) ≤ 0. Also, it may be demon-

strated that V̇ (xe,�e) = 0 only if xe = 0 and�e = 0. Global
asymptotic stability is achieved if these requirements are met.

C. ALTITUDE CONTROLLER
In this section, we describe the designed feedback control
scheme for the altitude stabilization of the quadcopter. To this
end, Eq. (6) was used; however, we were concerned with
controlling the altitude z. As a result, the used quadcopter
altitude dynamics equation is expressed as follows:

mz̈ = −mg+ r33Fb − ktż (32)

where r33 is the last row and last column element of the
rotation matrix R.

Eq. (32) can be linearized by applying the following con-
trol law:

Fb =
mg+ v+ktż

r33
where v is a newly added control input. This change is correct
whenever r33 6= 0. In a modified form, the altitude dynamics
may be stated as follows

mz̈ = v (33)

Eq. (33) represents an ordinary linear system with a control
input v. It may be utilized to stabilize a system like this by
employing a PD controller in the following way:

v = −k3(z− zd )− k4(ż− żd ) (34)

where zd is the desired altitude.
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TABLE 1. Quadcopter parameters and constant.

A good combination of k3 and k4 can stabilize the system
indicated by Eq. (34). The following equation describes the
altitude control law:

Fb =
mg− k3(z− zd )− k4(ż− żd )− ktż

r33
The attitude controller is independent from the altitude

controller, but the attitude affects the altitude controller.
As the quadcopter orientation gets nearly vertical, we lose
the ability to control the altitude because propellers forces are
nearly horizontal. If the quadcopter orientations change by
more than 90 degs, the propellers effectively push the quad-
copter down in the same direction of gravity force; therefore,
we cannot control the quadcopter altitude.

IV. SIMULATION RESULTS
This study is a follow-up to a previous publication [49] whose
task is to regulate the attitude and altitude of a quadcopter.
In this part, we compare the proposed tracking controller
to the three state-of-the-art controllers (Non linear1, Non
linear2, Non linear3) described in [48], [44], and [52], respec-
tively. A case study is conducted on a quadcopter with phys-
ical parameters provided in [53].Hence the initial conditions
and nominal parameters have been presented in Table 1. The
simulations were run on a PC with 8GB of RAM, a 64-bit
operating system, and an Intel(R)z Core (TM) i5-10300H
CPU running at 2.50GHz.

For the proposed controller, the value of the control param-
eters is determined to improve the step responses by select-
ing a suitable value for the settling time and overshoot

(2 sec, 5%), then the system poles are determined to achieve
this performance. The gains are determined based on the
value of the obtained poles. Then, the authors performed
fine tuning and selected the proper value of the gain to get
the best performance under the conditions that we deduced
from the Lyapunov theory, which states that (k1k2 > 1

8 ).
We applied the control law of the proposed controller (attitude
and altitude) with a constant (k1 ∼ k4 = 4).

A. THREE STATE OF THE ART CONTROLLERS
1) NON LINEAR1CONTROLLER EQUATION
The first controller’s equation (Non linear1) is expressed as
follows [48]:

uin = −3−1 (xin) bin (xin)+3−1 (xin)Vin

where uin denotes the system’s vector of inputs uin =[
Fb MB

]
, and 3 (xin) is the decoupling matrix, which is

defined as follows:

3 (xin) =



cθcφ
m

0 0 0

0
1
Jx

tθ sφ
Jy

cφ tθ
Jz

0 0
cφ
Jy

−
sφ
Jz

0 0
sφ
Jycθ

cφ
Jzcθ


bin (xin) =

[
−g θ̇ ψ̇

(
Jy−Jz
Jx

)
φ̇ψ̇

(
Jz−Jx
Jy

)
φ̇θ̇
(
Jy−Jz
Jx

) ]T
where c, s, and t are shorthand forms for the cosine, sine,
and tangent functions, respectively. xin is the vector of state
variables xin =

[
z φ θ ψ ż p q r

]T
.Vin

is the transformed input variables vector obtained from four
single-input single-output chains of two integrators.

For Non linear1, analyzing the step responses was used
to evaluate the gains. The Q and R matrices used in each
subsystem’s optimum gains computation are listed in Table 2
in [48].

2) NON LINEAR2 CONTROLLER EQUATION
The second controller’s equation (Non linear2) is expressed
as follows [44], MB and Fb, as shown at the bottom of the
next page, where (φ, θ, ψ) denotes the rotations around the
X, Y, and Z axes to characterize the quadcopter’s orientation,
and c1 ∼ c8 are positive constants.The terms e1 ∼ e8 refer to
the errors related to the attitude and altitude dynamics, which
could be determined using the below formulas.

e1 = φ − φd
e2 = φ̇ − φ̇d + c1e1
e3 = θ − θd
e4 = θ̇ − θ̇d + c3e3
e5 = ψ − ψd
e6 = ψ̇ − ψ̇d + c5e5
e7 = z− zd
e8 = ż− żd + c7e7
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TABLE 2. The settling time for the proposed system and the controllers in
[48], [44], and [52] for step trajectory.

For Non linear2, the following values had been chosen for
the control parameters: c1 ∼ c4 = 2.5, c5 c6 = 2, c7 = 2.2,
c8 = 0.5 (see simulation results section in [44]).

3) NON LINEAR3 CONTROLLER EQUATION
The third controller’s equation (Non linear3) is expressed as
follows [52].

MB = −α1qe − α2q∼ + JRT (Qe) �̇d + S(�−d )J�
−

d

The constants α1 and α2 are both positive constants. The
vector parts of the unit quaternions Qe and Q∼ are qe and
q∼, respectively. The unit quaternion tracking error Qe is
the difference between the actual unit quaternion Qand the
desired unit quaternion Qd. The difference between the unit
quaternion tracking error Qe and the auxiliary feedback unit
quaternion signal Q− is denoted by the letter Q∼. For this
controller, Q− is the output of the auxiliary system.

FIGURE 3. Rotors speedaction for response to desired θdx = 45◦ for the
proposed system and the controllers proposed in [48], [44], and [52].

For Non linear3, the following values had been chosen
for the control parameters: α1 and α2 = 30 (see simulation
results section in [52]).

B. ACTUATOR EFFORTS
The propeller speeds (which represent actuator efforts) for the
proposed controller and the other three candidate controllers
are shown in Fig. 3 for a step-change in orientation by θdx =
45◦. The propeller speedsmust at least support the quadcopter
weight and extra loading due to quadcopter dynamics and air
friction. Practical propeller actuators have a physical speed
limit. This speed limit is included in our simulation model
(450 rad/s).

C. RESPONSE TO VARIOUS TRAJECTORY
The performances of the four controllers are evaluated
through some trajectories, such as step trajectory inFig.4,
ramp trajectory in Fig.5, and parabolic trajectory in Fig.6.
The performances of all controllers along step trajectory,
ramp trajectory, and parabolic trajectory are illustrated in
chronological order. Four cases are studied to prove the sta-

MB =



Jx
l
(−θ̇ ψ̇

(
Jy − Jz
Jx

)
+
Jr
Jx
θ̇�+

(
c21 − 1

)
e1 − (c1 + c2) e2)

Jy
l
(−φ̇ψ̇

(
Jz − Jx
Jy

)
−
Jr
Jy
φ̇�+

(
c23 − 1

)
e3 − (c3 + c4) e4)

Jx
l
(−φ̇θ̇

(
Jy − Jz
Jx

)
+

(
c25 − 1

)
e5 − (c5 + c6) e6)


Fb =

m(g+
(
c27 − 1

)
e7 − (c7 + c8) e8)

cos (φ) cos(θ )
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FIGURE 4. Transient response of the step trajectory for the proposed system and the controllers proposed in [48], [44], and [52] (a) response to desired
θdx = 45◦, (b) response to desired θdz = 60◦, (c) response to desired zd = 1, and (d) response to desired θdx = 30◦, θdz = 45◦, zd = 1.

bility in different states for the proposed controller and the
three previous work controllers.

1) STEP TRAJECTORY
Four cases were studied: (1) response to desired θdx = 45◦,
(2) response to desired θdz = 60◦, (3) response to desired
zd = 1, and (4) response to desired θdx = 30◦, θdz =

45◦, zd = 1. Various quality metrics, including the steady-
state error and settling time, were performed to illustrate
the validity and efficiency of the proposed controller with
various reference controllers. For the proposed controller,
the steady-state error for the attitude and altitude in the
four cases was zero. Also, the steady-state error for the
three reference controllers was roughly zero with respect to
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FIGURE 5. Transient response of the ramp trajectory for the proposed system and the controllers proposed in [48], [44], and [52]. (a) response to desired
θdx = t , from t = 0 to t = 15 s and then stabilization at θdx = 45◦; (b) response to desired θdz = t , from t = 0 to t = 15 s and then stabilization at
θdz = 60◦; (c) response to desired zd = t ; d) response to desired θdx = t, θz = t , from t=0 to t=15s, zd = t and then stabilization at θdx = 30◦, θz = 45◦.

the attitude response. Moreover, Nonlinear1 suffered from
a noticeable overshoot. The altitude response for the two
references (Non linear1, Non linear2) controllers suffered
from a noticeable error as shown in Fig.4.Also, Non linear2
controller had a big error because it does not consider fric-

tion air in its controller. The settling time of the proposed
system and the controllers in [48], [44], and [52], for step
trajectory is presented in Table.2. Non linear3 controller
showed the fastest response; however, it had a noticeable
error in the transient response. Nonlinear1 and Nonlinear3
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FIGURE 6. Transient response of the parabolic trajectory for the proposed system and the controllers proposed in [48], [44], and [52]. (a) response to
desired θdx = t2, from t = 0 to t = 15 s and then stabilization at θdx = 45◦; (b) response to desired θdz = t2, from t = 0 to t = 15 s and then stabilization
at θdz = 60◦; (c) response to desired zd = t2; (d) response to desired θdx = t2, θdz = t2, from t = 0 to t = 15s, zd = t2.

controllers showed the fastest responses with respect to the
attitude response. The proposed controller was moderate
with respect to the time response and the settling time for

the attitude response; however, it showed the best altitude
response.
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TABLE 3. The Integral Absolute Error (IAE) for the proposed system and
the controllers in [48], [44], and [52] for ramp trajectory.

2) RAMP TRAJECTORY
A saturated ramp is used instead of a normal ramp to prevent
the quadcopter from spinning around itself. Four cases were
studied: (1) response to desired θdx = t, from t = 0 to t =
15s and then stabilization at θdx45◦; (2) response to desired
θdz = t, from t = 0 to t = 15s and then stabilization at
θdz = 60◦; (3) response to desired zd = t; (4) response to
desired θdx = t, θz = t, from t = 0 to t = 15s, zd = t
and then stabilization at θdx = 30◦, θz = 45◦. The results of
the four controllers were compared, as shown in Fig.5. For
the attitude and altitude responses, the proposed controller
showed the fastest response compared with the other three
controllers. The integral absolute error IAE = 1

N

∫ N
0 e (t) dt ,

was used to summarize the trajectory tracking for the ramp
trajectory, as shown in Table 3. For the attitude, and the alti-
tude response, the proposed model achieved the smallest IAE
(almost zero) compared with the three reference controllers.

3) PARABOLIC TRAJECTORY
A saturated parabola is used instead of a normal parabola
to prevent the quadcopter from spinning around itself. Four
cases were studied: (1) response to desired θdx = t2, from
t = 0 to t = 15s and then stabilization at θdx = 45◦;
(2) response to desired θdz = t2, from t = 0 to t = 15s
and then stabilization at θdz = 60◦; (3) response to desired
zd = t2; (4) response to desired θdx = t2(θdz = t2, from
t = 0 to t = 15s, zd = t2) and then stabilization at
θdx = 30◦, θz = 45◦. The four controllers were compared,
as shown in Fig.6. For the attitude and altitude responses, the

TABLE 4. The Integral Absolute Error (IAE) for the proposed system and
the controllers in [48], [44], and [52] for parabolic trajectory.

proposed model showed the fastest response compared with
the three reference controllers. Table 4 illustrates the IAE of
trajectory tracking for parabolic trajectory. For the attitude
response, the proposed model had a constant IAE (almost
zero), unlike the two reference controllers. Moreover, for the
altitude response, the proposed model had the lowest IAE.
The Non linear2 controller had a big error in case 1.

Based on the previous results of the three trajectories, the
proposed nonlinear feedback linearization tracking controller
for attitude and altitude displayed accurate tracking and con-
vergence performances compared with the three reference
quadcopter controllers.

D. FLIGHT SCENARIO
Trajectory tracking performance is tested by applying various
motion scenarios. Two motion scenarios were examined:

1) LINEAR SEGMENT
The quadcopter is assumed to be hovering at a height of 2m
and follows a linear segment trajectory (for t ∈ [0, 5]θx
change from 0 to 30◦), (for t ∈ [5, 10], θx = 30◦, θz change
from 30◦ to 60◦ ),(for t ∈ [10, 15]θx = 30◦, θy change from
30◦ to 45◦) and (for t > 15, θx = 30◦, θy = 45◦, θz = 60◦).
The desired attitude and altitude for the proposed controller
and the three state-of-the-art controllers (Non linear1, Non
linear2, Non linear3) are described in [48], [44], and [52]
respectively as shown in Fig.7. The results proved the supe-
rior performance of the proposed controller compared to the
comparative controllers.
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FIGURE 7. Result of flight scenario the proposed system and the
controllers in [48], [44], and [52] for linear segment trajectory.

FIGURE 8. Result of flight scenario for the proposed system and the
controllers in [48], [44], and [52] for sine wave trajectory.

2) SINE WAVE
The quadcopter is assumed to be hovering at a height of 2m
and follows a sine wave trajectory. The desired attitude can
be expressed as:

θx =
π

4
sin (t)

θy = 0

θz =
π

6
sin (t)

In this flight scenario, the proposed controller also achieved
the best performance in both the attitude and the altitude as
shown in Fig.8.

V. CONCLUSION
In this paper, we propose a controller for tracking the attitude
and altitude of quadcopter systems based on pseudo feedback
linearization. The simulation results have been presented fol-
lowed by comparisons between three quadcopter controllers
from literature to demonstrate the proposed controller’s per-
formance. Moreover, in comparison with the reference con-
trollers, by preserving the restrictions of the control inputs,
the proposed quadcopter system can effectively track the nec-
essary trajectories with a reasonable tracking error. As well
as a quadcopter mathematical model has been developed
considering the aerodynamic rotation, translation drag, and
moment, which were ignored in most of the previous studies
on this topic that making the controller is more realistic. The
control strategy’s stability was demonstrated under various
trajectories (i.e., step, ramp, and parabolic trajectory) by
using different metrics. The simulation presented a variety of
states for the three controllers to demonstrate their stability
in different states. Moreover, trajectory tracking performance
is tested by applying two different flight scenarios. For both
flight scenarios, the results proved the superior performance
of the proposed controller compared to the comparative con-
trollers. The Lyapunov stability theorem has been used to
verify the proposed controller’s global asymptotic stability.
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