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ABSTRACT We use the fully discrete interpolation coefficient mixed finite element methods to solve the
semi-linear parabolic optimal control problems. The space discretization of the state variable is separated
using interpolation coefficient mixed finite elements. We approximate the state and the co-state by Raviart-
Thomas mixed finite elements on the lowest order, which is approximated by piecewise constant elements.
By applying mixed finite element methods to estimate errors, we get priori errors estimates for both the
coupled state and the control approximations. We finally confirm the theoretical results numerically by a
numerical example.

INDEX TERMS Priori error estimate, interpolation coefficients, mixed finite element methods, fully
discrete, semi-linear parabolic optimal control problem.

I. INTRODUCTION
Optimal control problems (OCPs) are extremely important
topics on engineering and science numerical simulation, and
there exists a large number of references related to OCPs
by finite element methods (FEMs). Falk [1] derived a priori
error estimate of the standard FEMs for linear elliptic OCPs.
Chen and Liu [2], [5] and Chen and Lu [4] studied errors esti-
mates for nonlinear OCPs and established the finite element
approximation of them. Arada et al. [6] estabilshed the finite
element approximation of semi-linear elliptic OCPs, and
they obtained error estimates for OCPs with the maximum
norm. Kammann and Tröltzsch [7] solved nonlinear parabolic
boundary control problems and gave estimation of posteriori
error. For the parabolic OCPs, the scholars studied the errors
estimates of the multiscale FEMs in [11] and mixed finite
element methods (MFEMs) in [12]. Meidner and Vexler [38]
and U. Langer et al. [16] used FEMs to solve priori error
estimate about discretization of OCPs on the space-time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ton Duc Do .

Jiang et al. studied the optimal applications of the multiscale
finite element method in [18], [19]. Sun
textit et al. [32] gave an advanced ALE-mixed finite ele-
ment method for a cardiovascular fluid-structure interaction
problem with multiple moving interfaces. Neittaanmaki and
Tiba [39] gave several improvements to the parabolic OCPs.
Some progress in parabolic optimal control problems can be
found in [20]–[23], but there was only few published results
on a priori error estimates of fully discrete interpolation
coefficients mixed finite element methods for semi-linear
parabolic optimal control problem.

The existing literature rarely involves the use of MFEMs to
solve priori estimates of its fully discrete interpolation coef-
ficients. MFEMs are based on the mixed variational principle
for FEMs. The characteristic of MFEMs is simultaneous to
select two basic unknown functions, namely, the displace-
ment function and the force function. The mixed energy
principle is used to derive the basic equations of MFEMs.
In the past decades, some superconvergence and error esti-
mates about quadratic OCPs by MFEMs have been derived
from [3], [13], [24], [37]–[47]. Kwon and Milner [28] Milner
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studied L∞-error estimates for mixed methods for semilinear
second-order elliptic equations. Shi and Liu [29] gave the
superconvergent analysis of a nonconforming MFEMs for
non-stationary conduction-convection problem. Akram
textit et al. [30] presents MFES for solving R-type
Pythagorean fuzzy linear programming problems. Some use-
ful references for better understanding this paper can be found
in [8], [9], [14], [25], [28], [34].

At the same time, a lot of works have been done by many
scholars on study for OCPs by interpolation coefficient finite
element methods. Larson et al. [33] studied the semi-discrete
for nonlinear heat equation. Keil
textit et al. [36] solved chance constrained OCPs by using
biased kernel density estimators. Xiong and Chen [45] pre-
sented the superconvergence of rectangular finite volume
element on semi-linear elliptic problems. Zhang and Han [26]
solved compressible miscible displacement problem by a
new discontinuous Galerkin mixed finite element. Wang [42]
used interpolated coefficients FEMs to solve the semi-linear
parabolic equations and got a nonlinear model reduction.
According to the above literature, there are some obvious
differences between our paper and the above references, such
as, different questions and different methods. Liu and Li [47]
presented a numerical method for interval multi-objective
mixed-integer OCPs based on quantum heuristic algorithm.
Therefore, MFEMs with interpolation coefficients provide
scholars with a more efficient computational approach.

The novelty of this paper is that we add the FEM to
MFEMs for semi-linear parabolic equations, and analyze the
priori error of their fully discrete interpolation coefficients.
There are two differences between our paper and the ref-
erence [17]. Firstly, the research problems are different.
In [17], the author studied the nonlinear parabolic equations,
while, we mainly discuss the semi-linear parabolic OCPs.
Secondly, we mainly use the fully discrete interpolation coef-
ficient method, while [17] used the semi-discrete MFEMs to
approximate parabolic equations. By comparing, we can find
that our method in computation speed of competely discrete
interpolation coefficients is better than that of [17].

Nowwe consider the semi-linear parabolic OCP as follows

min
u(t)∈K⊂U

{
1
2

∫ T

0

(
||p− pd ||

2
+ ||y− yd ||2 + α||u||2

)
dt
}
(1)

such that

yt (x, t)+ divp(x, t)+ φ(y(x, t)) = f (x, t)+ u(x, t), (2)

p(x, t) = −A(x)∇y(x, t), (3)

y(x, t) = 0, x ∈ ∂�, y(x, 0) = y0(x), (4)

where α > 0, t ∈ J for J = (0,T ], x ∈ �, u(t) is the control
variable in control space U , and K is a closed convex set. p
denotes adjoint state variable, and y denotes state variable.
� is contained in R2 with smooth boundary, and it denotes
an open set which is regular bounded convex. T > 0 is a
constant.

We suppose that f belongs to L2(J ;L2(�)), whereas pd , yd
are continuously differentiable. For any < > 0 the function
φ(·) ∈ W 2,∞(−<,<), where φ′(y) ∈ L2(�) and φ′(y) ≥ 0.
We define the symmetric coefficient 2 × 2 matrix A(x) =
(ai,j(x))2×2 ∈ L∞(�;R2×2). Then there exists c > 0 which
satisfies the conditions: for any X ∈ R2, XtAX ≥ c‖X‖2R2 .
In addition, we present the control variable G which

satisfies:

G=
{
u(x, t)∈L2(J ;L2(�)) : u(x, t)≥0 a.e. x∈�, t ∈J

}
.

(5)

Now, we define Wm,p
0 (�) = {ν ∈ Wm,p(�), ν|∂� = 0}

as the standard notation on Sobolev spaces. There exists the
norm || · ||m,p given by ||ν||pm,p =

∑
|α|≤m
||Dαν||pLp(�) and

the semi-norm | · |m,p given by |ν|pm,p =
∑
|α|=m

||Dαν||pLp(�).

For p = 2, we denote Hm(�) as Wm,2(�), and Hm
0 (�)

as Wm,2
0 (�), and use || · ||m to express || · ||m,2, and

use || · || to express || · ||0,2. Let Ls(0,T ;Wm,p(�)) to
express the Banach space with all Ls integrable functions,
where Wm,p(�) is equipped with norm ||ν||Ls(J ;Wm,p(�)) =( ∫ T

0 ||ν||
s
Wm,p(�)dt

) 1
s
for s ∈ [1,∞), and the standard mod-

ification can be made for s = ∞. From [35] we can get more
details about OCPs.

The remaining paper is structured as follows. Section II
constructs interpolation coefficient mixed finite element dis-
cretization for the semi-linear OCP. Section III derives
the intermediate variables for its priori error estimates.
Section IV derives detailed steps to solve the elemental
approximation control problem of semi-linear parabolic opti-
mality using MFEMs. Section V gives a specific numerical
example.

II. INTERPOLATION COEFFICIENTS MIXED METHODS
Firstly, we give the parabolic equation of co-state as
follows

−zt − div(A(∇z+ p− pd ))+ φ
′(y)z = y− yd , (6)

which satisfies

z(x, t) = 0, x ∈ ∂�, t ∈ J ,

z(x,T ) = 0, x ∈ �.

We shall give a completely description of OCP. SetH (div) be
{ν ∈ (L2(�))2, divν ∈ L2(�)} with the norm ||ν||H (div) =

(‖ ν||20 + ||divν||
2
0)

1/2, we denote V = L2(J ,H (div)) and
W = L2(J ,L2(�)).
We know that (p, y, u) belongs to V ×W ×G when (1)-(4)

are rewritten into the following weak form

min
uh∈Kh

{
1
2

∫ T

0

(
||p−pd ||

2
+ ||y−yd ||2+α||u||2

)
dt
}
, (7)

(A−1p, ν)− (y, divν) = 0, (8)

(yt , ω)+ (φ(y), ω)+ (divp, ω) = (f + u, ωh), (9)
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y(x, 0) = y0(x), (10)

where ν ∈ V , ω ∈ W and x ∈ �.
We know the conclusion (see, e.g., [35]) that OCPs

(7)-(10) have at least a solution (p, y, u). There exists a
co-state variable (q, z) belongs to V × W , so (p, y, q, z, u)
satisfies the following conditions

(A−1p, ν)− (y, divν) = 0, (11)

(yt , ω)+ (divp, ω)+ (φ(y), ω) = (f + u, ω), (12)

y(x, 0) = y0(x), (13)

(z, divν)− (A−1q, ν) = (p− pd , ν), (14)

(divq, ω)− (zt , ω)+ (φ′(y)z, ω) = (y− yd , ω), (15)

z(x,T ) = 0, (16)∫ T

0
(αu+ z, û− u)dt ≥ 0, (17)

for t ∈ (0,T ], where ν ∈ V , ω ∈ W , û ∈ G and x ∈ �.
We suppose that the parabolic equations (2) and (6) have

sufficient regularity, where y and z belong to L2(H2(�)), p
and q belong to (L2(H2(�)))2, and u ∈ L2(W 1,∞(�)) .
Set Th as a regular triangulation on �, and τ ∈ Th is

assumed to satisfy the angle condition, which means that
there is a positive constant C such that

C−1h2τ ≤ |τ | ≤ Ch
2
τ , ∀ τ ∈ Th,

where |τ | means the area of τ , hτ is the diameter of τ , h is
equal to max hτ .
Let Vh × Wh ⊂ V × W denotes the Raviart-Thomas

space [15] of the lowest order associated with the triangu-
lation Th of �, namely, V (τ ) = {ν ∈ P20(τ )+ x · P0(τ )}. Let
P0(σ ) equalW (τ ) for any τ ∈ Th, we have

Vh := {νh ∈ V : ∀ τ ∈ Th, νh|τ ∈ L2(J ,V (τ ))},

Wh := {ωh ∈ W : ∀ τ ∈ Th, ωh|τ ∈ L2(J ,W (τ ))},

Gh := {̂uh ∈ K : ∀ τ ∈ Th, ûh|τ ∈ L2(J ,P0(τ ))},

where Pγ means total degree for most γ on the space poly-
nomials.

By using (7)-(10) with the mixed finite element discretiza-
tion, we let (ph, yh, uh) be the solution of

min
uh∈Kh

{
1
2

∫ T

0

(
||ph − pd ||

2
+ ||yh−yd ||2+α||uh||2

)
dt
}
,

(18)

(A−1ph, νh)− (yh, divνh) = 0, (19)

(yht , ωh)+ (divph, ωh)+ (φ(yh), ωh) = (f +uh, ωh),

(20)

yh(x, 0) = Y (x, 0), (21)

for νh ∈ Vh, ωh ∈ Wh, x ∈ �, and Y (x, 0) is projected by the
elliptic mixed method for y0(x) on finite dimensional space
Wh. Then OCPs (18)-(21) have at least a solution (ph, yh, uh),
and that (ph, yh, uh) is the solution of (18)-(21), so we set

(qh, zh) as the co-state, and (ph, yh, qh, zh, uh) satisfies the
equations as follows

(A−1ph, νh)− (yh, divνh) = 0, (22)

(yht , ωh)+ (divph, ωh)+ (φ(yh), ωh) = (f + uh, ωh), (23)

yh(x, 0) = Y (x, 0), (24)

(A−1qh, νh)− (zh, divνh) = −(ph − pd , νh), (25)

−(zht , ωh)+ (divqh, ωh)+(φ
′(yh)zh, ωh) = (yh−yd , ωh),

(26)

zh(x,T ) = 0, (27)

(zh + αuh, ûh − uh) ≥ 0, (28)

where νh ∈ Vh, ωh ∈ Wh, ûh ∈ Gh, and x ∈ �. Define
interpolation operator Ih : L2(J ;C(�̄))→ Wh by

Ihv(x, t) =
M∑
j=1

vjϕj(x, t),

where {ϕj(x, t)}Mj=1 is the standard Lagrangian nodal basis
of Wh.

We assume yh(x, t) =
M∑
j=1

yjϕj(x, t), then

φ(yh(x, t)) = φ
( M∑

j=1

yjϕj(x, t)
)
.

By definition of the interpolating operator Ih, we get

Ihφ(yh(x, t)) =
M∑
j=1

φ(yj)ϕj(x, t), (29)

while the interpolation error estimate [33] for 1 ≤ p ≤ ∞ is

‖v− Ihv‖0,p ≤ Ch‖v‖1,p, (30)

where v belongs to L2(J ;C(�̄)) ∩ L2(J ;W 1,p(τh)) for τh ∈
Th. By substituting Ihφ(yh) for φ(yh) in (20), we have

(A−1ph, νh)− (yh, divνh) = 0, (31)

(yht , ωh)+(divph, ωh)+(Ihφ(yh), ωh)= (f +uh, ωh), (32)

yh(x, 0) = Y (x, 0), (33)

(A−1qh, νh)− (zh, divνh) = −(ph − pd , νh), (34)

−(zht , ωh)+ (divqh, ωh)+ (φ′(yh)zh, ωh) = (yh − yd , ωh),

(35)

zh(x,T ) = 0, (36)

(zh + αuh, ûh − uh) ≥ 0, (37)

for any νh ∈ Vh, ωh ∈ Wh, ûh ∈ Gh, and x ∈ �.
Now, we construct different methods about time discretiza-

tion. Define N = T/4t for4t > 0, and tn = n4t for n ∈ Z,
then set

9n
= 9(x, tn), dt9n

=
9n
−9n−1

4t
.
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Moreover, we give a definition of the discrete time norm as

|||9|||Lp(H s(�)) :=

(
N∑
n=1

4t||9n
||
p
s

) 1
p

,

for 1 ≤ p <∞, while the standard modification can be made
for p = ∞. Let the solution (pnh, y

n
h, q

n−1
h , zn−1h , unh) satisfy

(A−1pnh, ν)− (ynh, divν) = 0, (38)

(dtynh, ω)+ (divpnh, ω)+ (Ihφ(ynh), ω) = (f + unh, ω), (39)

y0h(x) = Y (x, 0), (40)

(A−1qn−1h , ν)− (zn−1h , divν) = −(pnh − pd , ν), (41)

−(dtznh, ω)+ (divqn−1h , ω)+(φ′(ynh)z
n−1
h , ω)= (ynh−yd , ω),

(42)

zNh (x) = 0, (43)

(znh + αu
n
h, û− u

n
h) ≥ 0, (44)

for n = 0, 1, · · · ,N , where νh ∈ Vh, ωh ∈ Wh, ûh ∈ Gh, and
x ∈ �.
Note thatQh is a standard L2-orthogonal projection, we can

get

(̂u− Qĥu, ûh)U = 0, ∀ ûh ∈ Gh, (45)

||̂u− Qĥu||−s ≤ Ch1+s |̂u|1, û ∈ H1(�), (46)

for s = 0, 1, where G→ Gh, û ∈ G.

III. ERROR ESTIMATES OF INTERMEDIATE VARIABLES
In this section, let’s consider adding intermediate vari-
ables to the error estimation of problems. We first define
(p(̂u), y(̂u), q(̂u), z(̂u)) as the state solution, such that

(A−1p(̂u), ν)− (y(̂u), divν) = 0, (47)

(yt (̂u), ω)+ (divp(̂u), ω)+(φ(y(̂u)), ω)= (f +û, ω), (48)

y(̂u)(x, 0) = y0(x), (49)

(A−1q(̂u), ν)− (z(̂u), divν) = −(p(̂u)− pd , ν), (50)

−(zt (̂u), ω)+ (divq(̂u), ω)+ (φ′(y(̂u))z(̂u), ω)

= (y(̂u)− yd , ω), (51)

z(̂u)(x,T ) = 0, (52)

for any ν ∈ V , ω ∈ W , and x ∈ �.
Since we have assumed the domain � is a 2-dimensional

regular one, for λ > 0, the Dirichlet problem

Lλβ = −div(A(x)∇β)+ λβ = g, x ∈ �, (53)

β = 0, x ∈ ∂�, (54)

is uniquely solvable for g ∈ L2(�) and ||β||2 ≤ C||g||0 for
all g ∈ L2(�).

Then we give the definition (Pn (̂u),Y n (̂u),Qn (̂u),Zn (̂u)) as
an elliptic for û ∈ G, mixedmethod projection of the solution,
which solves the differential problem in the finite dimen-
sional spaceVh×Wh, that is the map (P(̂u),Y (̂u),Q(̂u),Z (̂u))
given by

(A−1(pn (̂u)− Pn (̂u)), ν)− (yn (̂u)− Y n (̂u), divν) = 0, (55)

(div(pn (̂u)− Pn (̂u)), ω)+ λ(yn(̂u)− Y n (̂u), ω) = 0, (56)

(A−1(qn(u)− Qn (̂u)), ν)− (zn (̂u)− Zn (̂u), divν) = 0, (57)

(div(qn (̂u)− Qn (̂u)), ω)+ λ(zn (̂u)− Zn (̂u), ω) = 0, (58)

for any νh ∈ Vh and ωh ∈ Wh.
Set λ > 0 be fully large in order to get the bilinear form

associated with Lλ(·) on H1
0 (�). From [10], we know that λ

can be chosen as

C
(
||ξ ||20+||η||

2
0
)
≤ (λ(η, η)+A−1ξ, ξ ), ∀ ξ ∈ V , η ∈ W .

(59)

Let

τ n1 = yn(unh)− Y
n(unh), σ n1 = pn(unh)− P

n(unh), (60)

τ n2 = zn(unh)− Z
n(unh), σ n2 = qn(unh)− Q

n(unh). (61)

The estimates for τ n1 , τ
n
2 , σ

n
1 , and σ

n
2 have been given in [17]

as follows.
Lemma 3.1: For t ∈ J and for fully small and indepen-

dent h, there exists C>0,

||τ n1 ||0 + ||τ
n
1 ||0,∞ + ||σ

n
1 ||0 ≤ Ch, (62)

||τ n2 ||0 + ||τ
n
2 ||0,∞ + ||σ

n
2 ||0 ≤ Ch, (63)

||divσ n1 ||0 + ||divσ
n
2 ||0 ≤ Ch. (64)

The estimates for τ n1t , τ
n
2t , σ

n
1t , and σ

n
2t have been given in [17]

as follows.
Lemma 3.2: For t ∈ J and for fully small and indepen-

dent h, there exists C>0,

||τ n1t ||0 + ||τ
n
1t ||0,∞ + ||σ

n
1t ||0 ≤ Ch, (65)

||τ n2t ||0 + ||τ
n
2t ||0,∞ + ||σ

n
2t ||0 ≤ Ch, (66)

||divσ n2t ||0 + ||divσ
n
1t ||0 ≤ Ch. (67)

By means of Lemmas 3.1-3.2 and Gronwall’s Lemma
(see, e.g., [41]), we can get the errors estimates.
Theorem 3.1: There exists C > 0, which is independent

of h, such that

|||y(unh)− yh|||L∞(J ;L2(�)) + |||p(u
n
h)− ph|||L∞(J ;H (div))

≤ C(h+4t), (68)

|||z(unh)− zh|||L∞(J ;L2(�)) + |||q(u
n
h)− qh|||L∞(J ;H (div))

≤ C(h+4t). (69)

Proof: Let ηn1 = Y n(unh) − y
n
h, η

n
2 = Pn(unh) − pnh, where

n = 1, 2, · · · ,N. We obtain that

(ynt (u
n
h), ω)+(divp

n(unh), ω)+(φ(y
n(unh)), ω) = (f + unh, ω),

(70)

for any ω belongs to W .
We can get following equation (71) by the elliptic mixed

projection

(Y nt (u
n
h), ωh)+ (divPn(unh), ωh)

= (ynt (u
n
h), ωh)+(divp

n(unh), ωh)−(τ
n
1t , ωh)+λ(τ

n
1 ,ωh), (71)
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for any ωh ∈ Wh. By combining (70) and (71), we have

(Y nt (u
n
h), ωh)+ (divPn(unh), ωh)

= (f + unh, ωh)− (φ(yn(unh)), ωh)− (τ n1t , ωh)+ λ(τ
n
1 , ωh),

Next, from (39) and (72), we derive that

(Y nt (u
n
h)− dty

n
h, ωh)+ (divηn2, ωh)+ λ(η

n
1, ωh)

= (Ihφ(ynh)−φ(y
n(unh)), ωh)−(τ

n
1t , ωh)−λ(y

n
h−y

n(unh), ωh),

(72)

It follows from substituting (38) into (55),

(A−1(Pn(unh)− p
n
h), νh) −(Y

n(unh)− y
n
h, divνh) = 0, (73)

for any vh belongs to Vh.
Put ωh = ηn1 into (72) and put νh = η

n
2 into (73), then we

get

(dtηn1, η
n
1)+(A

−1ηn2, η
n
2)+λ(η

n
1, η

n
1)

= (dtY n(unh)−Y
n
t (u

n
h), η

n
1)

+ (Ihφ(ynh)−φ(y
n(unh)), η

n
1)−(τ

n
1t , η

n
1)−λ(y

n
h−y

n(unh), η
n
1).

(74)

We shall estimate the left side of (74).
We apply the coercivity property (59) and get

(A−1ηn2, η
n
2)+ λ(η

n
1, η

n
1) ≥ C(||η

n
1||

2
0 + ||η

n
2||

2
0). (75)

Note that

(dtηn1, η
n
1)

=
1

21t

(
1, (ηn1)

2
− (ηn−11 )2

)
+

1
21t

(
1, (ηn1 − η

n−1
1 )2

)
.

(76)

Taking Rn =
∫ ηn1
0 sds, we find

Rn − Rn−1 =
∫ ηn1

ηn−11

sds. (77)

Note that (76) can be transformed into

Rn − Rn−1

1t
≤

Rn − Rn−1

1t
+

1
21t

(
1, (ηn1 − η

n−1
1 )2

)
= (dtηn1, η

n
1). (78)

We use the Lemma 3.2 to derive the estimation of the right
side of (74)∣∣(dtY n(unh)− Y nt (unh), ηn1)∣∣ ≤ CE2

n + C||η
n
1||

2
0, (79)∣∣(τ n1t , ηn1)∣∣ ≤ Ch2 + C||ηn1||
2
0, (80)

where

E2
n =

(∫ tn

tn−1

∥∥∥∥∂2Y∂t2 (·, s)
∥∥∥∥ ds

)2

≤ C(4t)2. (81)

Using Lemma 3.1, φ(·) ∈ W 2,∞(−R,R) and the triangle
inequality, we have

(Ihφ(ynh)− φ(y
n(unh)), η

n
1)

= (Ihφ(ynh)− φ(y
n
h)+ φ(y

n
h)− φ(y

n(unh)), η
n
1)

= (Ihφ(ynh)− φ(y
n
h), η

n
1)+ (φ(ynh)− φ(y

n(unh)), η
n
1)

≤ Ch||ηn1||0 · ||φ(y
n
h)||1 + C||η

n
1||0 · ||y

n
h − y

n(unh)||0
≤ Ch||ηn1||0 + C||η

n
1||0 · (||τ

n
1 ||0 + ||η

n
1||0)

≤ C||ηn1||
2
0 + Ch

2, (82)

and

(ynh − y
n(unh), η

n
1) ≤ ||y

n
h − y

n(unh)||0 · ||η
n
1||0

≤ (||τ n1 ||0 + ||η
n
1||0) · ||η

n
1||0

≤ C||ηn1||
2
0 + Ch

2. (83)

Then we multiply each estimates of the terms in (74)-(83) by
4t and sum on n, we get

Rl + C
l∑

n=1

(
||ηn1||

2
0 + ||η

n
2||

2
0

)
4t

≤ C
(
h2 + (4t)2

)
4t + C

l∑
n=1

||ηn1||
2
04t, (84)

for 2 ≤ l ≤ N and η01 = 0 has been used. By virtue of the
Gronwall’s Lemma, we verify that

||ηl1||
2
0 +

l∑
n=1

(
||ηn1||

2
0 + ||η

n
2||

2
0

)
≤ C

(
h2 + (4t)2

)
, (85)

or equivalently,

||ηl1||
2
0 ≤ C

(
h2 + (4t)2

)
, for any l ≤ N . (86)

So we get

|||Y (unh)− yh|||L∞(L2(�)) ≤ C(h+4t). (87)

According to the trigonometric inequality of Lemma 3.1,
we have

|||y(unh)− yh|||L∞(L2(�)) ≤ C(h+4t). (88)

Then, by defining the test function as dtηn1 and taking
in (72), we have

(dtηn1, dtη
n
1)+ (divηn2, dtη

n
1)+ λ(η

n
1, dtη

n
1)

= (dtY n(unh)− Y
n
t (u

n
h), dtη

n
1)+ (Ihφ(ynh)− φ(y

n(unh)), dtη
n
1)

− (τ n1t , dtη
n
1)− λ(y

n
h − y

n(unh), dtη
n
1), n = 1, 2, · · · ,N .

(89)

Combining (38) and (55), we obtain

(A−1ηn2, νh)− (ηn1, divνh) = 0. (90)

By taking different time into (90), and let νh = ηn2 as test
function, we get

(A−1dtηn2, η
n
2)− (dtηn1, divη

n
2) = 0, (91)

for n = 1, 2, · · · ,N .
Substituting (91) into (89) we get

(dtηn1, dtη
n
1)+ (A−1dtηn2, η

n
2)+ λ(η

n
1, dtη

n
1)
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= (dtY n(unh)− Y
n
t (u

n
h), dtη

n
1)+ (Ihφ(ynh)− φ(y

n(unh)), dtη
n
1)

− (τ n1t , dtη
n
1)− λ(y

n
h − y

n(unh), dtη
n
1),

(92)

for n = 1, 2, · · · ,N .
From the inequality (78), we have

C
(ηn1)

2
− (ηn−11 )2

24t
≤ λ(ηn1, dtη

n
1), (93)

C
(ηn2)

2
− (ηn−12 )2

24t
≤ (A−1dtηn2, η

n
2). (94)

Now we limit each term of (92) on the right side

(Ihφ(ynh)− φ(y
n(unh)), dtη

n
1)

= (Ihφ(ynh)− φ(y
n
h)+ φ(y

n
h)− φ(y

n(unh)), dtη
n
1)

= (Ihφ(ynh)− φ(y
n
h), dtη

n
1)+ (φ(ynh)− φ(y

n(unh)), dtη
n
1)

≤ Ch||φ(ynh)||1 · ||dtη
n
1||0 + C||y

n
h − y

n(unh)||0 · ||dtη
n
1||0

≤ C(h+4t)||dtηn1||0
≤ C(h+4t)2 + δ||dtηn1||

2
0, (95)

and

(ynh − y
n(unh), dtη

n
1) ≤ ||y

n
h − y

n(unh)||0 · ||dtη
n
1||0

≤ C(h+4t)||dtηn1||0
≤ C(h+4t)2 + δ||dtηn1||

2
0, (96)

where δ > 0 is fully small. And we can get the following
inequalities

(dtY n(unh)− Y
n
t (u

n
h), dtη

n
1) ≤ CE2

n + δ||dtη
n
1||

2
0, (97)

(τ n1t , dtη
n
1) ≤ Ch2 + δ||dtηn1||

2
0, (98)

where E2
n is defined in (81).

Next, from applying the bounds for each term of the sum in
both sides, we have

l∑
n=1

||dtηn1||
2
04t +

||ηl1||
2
0 + ||η

l
2||

2
0

2

≤ C
(
h2 + (4t)2

)
4t + Cδ

l∑
n=1

||dtηn1||
2
04t

+C
(
||η11||

2
0 + ||η

1
2||

2
0

)
. (99)

From the Gronwall’s Lemma, we have

l∑
n=1

||dtηn1||
2
0 + ||η

l
1||

2
0 + ||η

l
2||

2
0

≤ C
(
h2 + (4t)2

)
+ C

(
||η11||

2
0 + ||η

1
2||

2
0

)
. (100)

Now, we get some bounds on η11 and η12. By using (85),
we obtain

||η11||0 + ||η
1
2||0 ≤ C(h+4t). (101)

A combination of (100) and (101) yields

l∑
n=1

||dtηn1||
2
0 + ||η

l
1||

2
0 + ||η

l
2||

2
0 ≤ C

(
h2 + (4t)2

)
, (102)

or equivalently,

||ηl2||
2
0 ≤ C

(
h2 + (4t)2

)
, (103)

where l ≤ N.
Then, according to the triangle inequality, Lemma 3.1

and (102), we get

|||p(unh)− ph|||L∞(J ;L2(�)) ≤ C(h+4t). (104)

From (39) and taking wh = divηn2 as a test function, we get

(div(pn(unh)− p
n
h), divη

n
2)

= −(ynt (u
n
h)− dty

n
h, divη

n
2)− (φ(yn(unh))− Ihφ(y

n
h), divη

n
2).

(105)

Thanks to (56) and (105), we obtain

(divηn2, divη
n
2) = −(y

n
t (u

n
h)− dty

n
h, divη

n
2)

− (φ(yn(unh))− Ihφ(y
n
h), divη

n
2)

+ λ(yn(unh)− Y
n(unh), divη

n
2)

≤ C
(
h2 + (4t)2

)
+ δ||divηn2||

2
0. (106)

So, we have

||divηn2||0 ≤ C(h+4t). (107)

It is easy to see the following inequality according to the
triangle inequality, Lemma 3.1 and (107)

|||p(unh)− ph|||L∞(H (div)) ≤ C(h+4t). (108)

Hence we have proved (68). The process of proving (69) can
also refer to the above steps, which is omitted here. �

Let some intermediate errors as follows

εn1 = pn − pn(unh), εn1 = yn − yn(unh), (109)

εn2 = qn − qn(unh), εn2 = zn − zn(unh). (110)

From (11)-(16), we obtain

(A−1εn1 , ν)− (εn1, divν)= 0, (111)

(ynt −dty
n(unh), ω)+(divε

n
1 , ω)+(φ̃

′(yn)εn1, ω)= (un−unh, ω),

(112)

for n = 1, 2, · · · ,N . And

(A−1εn−12 , ν)− (εn−12 , divν) = −(εn1 , ν), (113)

−(znt − dtz
n(unh), ω)+ (divεn−12 , ω)+ (φ′(yn)εn−12 , ω)

+ (φ̃′′(yn)rn1 z
n−1(unh), ω) = (εn1, ω), (114)

for n = N ,N − 1, · · · , 1, where νh ∈ Vh, ωh ∈ Wh.
Theorem 3.2: There exists C > 0, that is independent of h

and 4t , such that

|||y− y(unh)|||L∞(L2(�)) + |||p− p(u
n
h)|||L∞(J ;H (div))
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≤ C(h+4t + |||u− uh|||L2(L2(�))), (115)

|||z− z(unh)|||L∞(L2(�)) + |||q− q(u
n
h)|||L∞(H (div))

≤ C(h+4t + |||u− uh|||L2(L2(�))). (116)

Proof: Define the test functions as ν = εn1 and ω = ε
n
1

for n = 1, 2, · · · ,N, then from equations (111) and (112),
we get

(A−1εn1 , ε
n
1 )+ (φ̃′(yn)εn1, ε

n
1)

= (un − unh, ε
n
1)− (ynt − dty

n(unh), ε
n
1).

Combined (79) with the δ-Cauchy inequality, we have

||εn1 ||
2
0 + ||ε

n
1||

2
0

≤ C
(
h2 + (4t)2 + ||un − unh||

2
0

)
+ δ||εn1||

2
0, (117)

for any fully small δ > 0. And we get

||εn1 ||0 + ||ε
n
1||0 ≤ C(h+4t + ||u

n
− unh||0). (118)

Let w = divεn1 as a test function in (112), then we get

||divεn1 ||
2
0 = (un − unh, divε

n
1 )− (ynt − dty

n(unh), divε
n
1 )

− (φ̃′(ynh)ε
n
1, divε

n
1 )

≤ C||ynt − dty
n(unh)||

2
0 + C||u

n
− unh||

2
0

+C||εn1||
2
0 + δ||divε

n
1 ||

2
0. (119)

Moreover, using the estimation (118), we have

||divεn1 ||0 ≤ C(h+4t + ||u
n
− unh||0). (120)

Similarly, define the test functions ν = εn−12 and ω =
εn−12 for n = N ,N − 1, · · · , 1, then from equations (113)
and (114), we get

(A−1εn−12 , εn−12 )+ (φ′(yn)εn−12 , εn−12 )

= (εn1, ε
n−1
2 )+ (znt − dtz

n(unh), ε
n−1
2 )

− (φ̃′′(yn)zn−1(unh)ε
n
1, ε

n−1
2 ).

Then, we use (79) and the δ-Cauchy inequality to obtain

||εn−12 ||
2
0 + ||ε

n−1
2 ||

2
0

≤ C
(
(4t)2 + h2 + ||un − unh||

2
0

)
+ δ||εn−12 ||

2
0, (121)

or equivalently,

||εn−12 ||0 + ||ε
n−1
2 ||0 ≤ C(h+4t + ||u

n
− unh||0). (122)

Using the δ-Cauchy inequality and taking ω = divεn−12 as a
test function in (114), we have

||divεn−12 ||
2
0

= (εn1, divε
n−1
2 )− (φ′(yn)εn−12 , divεn−12 )

+ (znt −dtz
n(unh), divε

n−1
2 )−(φ̃′′(yn)zn−1(unh)ε

n
1, divε

n−1
2 )

≤ C||znt − dtz
n(unh)||

2
0 + C||ε

n
1||

2
0

+C||εn−12 ||
2
0 + δ||divε

n−1
2 ||

2
0. (123)

By using the estimations (118) and (122), we confirm that

||divεn−12 ||0 ≤ C(h+4t + ||u
n
− unh||0). (124)

The above process proves Theorem 3.2. �

IV. A PRIORI ERROR ESTIMATES
We present a detailed approach to the approximation prob-
lem of semi-linear parabolic optimal control for mixed finite
element systems with fully discrete interpolation coefficients
estimated in this section. Define S(·) as a G-differential uni-
form convex functional for K → R, which is subjected to the
following equations

S(un) =
1
2
||pn − pd ||

2
+

1
2
||yn − yd ||2 +

α

2
||un||2,

S(unh) =
1
2
||pn(unh)− pd ||

2
+

1
2
||yn(unh)− yd ||

2
+
α

2
||unh||

2.

for S(·) is uniform convex near the solution u (see, e.g., [27]).
We are going to prove the following equations

(S ′(un), v) = (zn + αun, v),

(S ′(unh), v) = (zn(unh)+ αu
n
h, v),

where (pn(unh), y
n(unh), q

n−1(unh), z
n−1(unh)) is the solution

of (47)-(52) with ũ = unh. In many applications, S(·) is
uniform convex near the solution u (see, e.g., [27]). Then
there is a c > 0, independent of h, such that∫ T

0
(S ′(u)− S ′(v), u− v) ≥ c|||u− v|||2L2(J ;L2(�)), (125)

for v ∈ U , and for some fully small ε > 0, ‖u −
v‖L2(0,T ;L2(�)) ≤ ε. The convexity of S(·) is closely related to
the second order sufficient conditions of the optimal control
problem, which is assumed in many studies on numerical
methods of the problem. Then we get the following results
by using Theorem 3.2.
Theorem 4.1: Let (pn, yn, qn−1, zn−1, un) belong to

(V ×W )2 × G, and (pnh, y
n
h, q

n−1
h , zn−1h , unh) belong to (Vh ×

Wh)2×Gh, which is the solutions of (11)-(17) and (38)-(44),
respectively. Suppose that zn + αun ∈ H1(�), we obtain

|||u− uh|||L2(J ;L2(�)) ≤ C(h+4t), (126)

|||y−yh|||L∞(J ;L2(�))+|||p− ph|||L∞(J ;H (div))≤C(h+4t),

(127)

|||z−zh|||L∞(J ;L2(�))+|||q− qh|||L∞(J ;H (div))≤C(h+4t).

(128)

Proof: Firstly, by putting û = unh into (17), and putting
ûh = Qhun into (44), we get∫ T

0
(zn + αun, unh − u

n) ≥ 0, (129)

and ∫ T

0
(znh + αu

n
h,Qhu

n
− unh) ≥ 0. (130)

It follows (129), (130), and Qhun−unh = Qhun−un+un−unh
that we have∫ T

0
(znh + αu

n
h − z

n
− αun, un − unh)

+

∫ T

0
(znh + αu

n
h,Qhu

n
− un) ≥ 0. (131)
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We get the following derivations by using the uniform con-
vexity of S(·) and (131),

c|||u− uh|||2L2(J ;L2(�))

≤

∫ T

0
(S ′(un), un − unh)−

∫ T

0
(S ′(unh), u

n
− unh)

=

∫ T

0
(zn + αun, un − unh)−

∫ T

0
(zn(unh)+ αu

n
h, u

n
− unh)

≤

∫ T

0
(znh − z

n(unh), u
n
− unh)+

∫ T

0
(α(unh−u

n),Qhun−un)

+

∫ T

0
(znh−z

n(unh),Qhu
n
−un)+

∫ T

0
(zn+αun,Qhun−un)

+

∫ T

0
(zn(unh)− z

n,Qhun − un). (132)

Secondly, we use the δ-Caunchy inequality and Theo-
rem 3.1 to estimate the right side of (132). For any δ > 0,∫ T

0
(znh − z

n(unh), u
n
− unh)

≤ |||zh − z(unh)|||L2(J ;L2(�)) · |||u− uh|||L2(J ;L2(�))
≤ δ|||u− uh|||2L2(J ;L2(�)) + C(h+4t)

2. (133)

It is easy to see by using the δ-Caunchy inequality and (46),∫ T

0
(α(unh − u

n),Qhun−un) ≤ Ch2+δ|||u−uh|||2L2(J ;L2(�)).

(134)

From (46) we get the projection of Qh approximation prop-
erty, so we have∫ T

0
(znh − z

n(unh),Qhu
n
− un) ≤ C(h+4t)2. (135)

Considering Theorem 3.2, the property (46), and the δ-
Cauchy inequality, we have∫ T

0
(zn(unh)−z

n,Qhun−un) ≤ Ch2+δ|||u−uh|||2L2(J ;L2(�)).

(136)

So,

||ω||−k,� = sup
%∈0,% 6=0

|(ω, %)|
||%||k,�

, (137)

and combined with (46), we have∫ T

0
(zn + αun,Qhun − un)

≤ C||zn + αun||1,� · ||Qhun − un||−1,� ≤ Ch2. (138)

Substituting (133)-(138) into (132), it is clear that

|||u− uh|||L2(J ;L2(�)) ≤ C(h+4t). (139)

Therefore we have proved (126).
Finally, considering Theorem 3.1, Theorem 3.2, (139), the

triangle inequality, and by taking the state and the co-state
variables in our estimate problems, we have that

|||y−yh|||L∞(J ;L2(�))+|||p−ph|||L∞(J ;H (div)) ≤ C(h+4t),

(140)

TABLE 1. The errors estimates for the control and the state variables.

and

|||z−zh|||L∞(J ;L2(�))+|||q−qh|||L∞(J ;H (div)) ≤ C(h+4t).

(141)

By using inequalities (140) and (141), we obtain (127)
and (128). �

V. NUMERICAL EXAMPLE
We are going to give the theoretical results by an example
in this section, to verify the prior error estimates in the state,
the co-state and the control. OCPs are handled with the code
developed in the freely available AFEPACK, see for details
in [31].

We define the OCPs as follows

min
u(t)∈K⊂U

{
1
2

∫ T

0

(
||p− pd ||

2
+ ||y− yd ||2 + ||u||2

)
dt
}
,

yt + divp+ y5 = u+ f , x ∈ �,

y(x, t) = 0, x ∈ ∂�,

divq+ 5y4z− zt = y− yd , x ∈ �,

z(x, t) = 0, x ∈ ∂�,

for p = −∇y, q = −∇z − p + pd , y(x, 0) = 0, and
z(x,T ) = 0.
Let � = [0, 1] × [0, 1], and T = 1. We compute the

convergence order via an equation: order ' log(Ei/Ei+1)
log(hi/hi+1)

,

where i means the spatial partition, Ei is the approximations
on L∞-norm for the state and the co-state, L2 norm is used
for control approximation.

The testing data is given as follows

u = max(1.0− z, 0),

y = sin 2πx1 sin 2πx2 sinπ t,

z = 2 sin 2πx1 sin 2πx2 sinπ t,

f = yt + divp+ y5 − u,

yd = zt + y− 5y4z− divq,

p =
(
2π cos 2πx1 sin 2πx2 sinπ t
2π cos 2πx2 sin 2πx1 sinπ t

)
,

q =
3
2
pd = 3

(
2π cos 2πx1 sin 2πx2 sinπ t
2π cos 2πx2 sin 2πx1 sinπ t

)
.

In the test, we define the state and the control vari-
ables for 4t = h on the same mesh partition. We study
the convergence of the solution and its order in this case.
Table 1. shows the deviations |||p− ph|||L∞(J ;H (div)), |||u −
uh|||L2(J ;L2(�)), |||q− qh|||L∞(J ;H (div)), |||y− yh|||L∞(J ;L2(�)),
and |||z − zh|||L∞(J ;L2(�)) with h =

1
16 ,

1
32 ,

1
64 ,

1
128 , respec-

tively. Fig. 1 shows the order of convergence through the
slope, where dofs means the degree of freedoms.
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FIGURE 1. Convergence orders of u − uh, p− ph, y − yh, q− qh and z − zh
in different norms.

From this numerical example, we find that the order of
convergence is O(h + 4t), which confirms our theoretical
results for prior error estimates.

VI. CONCLUSION AND FUTURE WORK
We explored the fully discrete interpolation coefficients
MFEMs for the OCPs governed by semi-linear parabolic
equations.We use the interpolation operator Ih(φ(yh)) to com-
pute the nonlinear term φ(yh), and interpolation coefficients
mixed finite elements is used to the space discretization of the
state variable, while the discretization of time is based on dif-
ference methods. By applying MFEMs, we gave the control
and coupled approximations with priori error estimates.

The priori error estimates for semi-linear parabolic prob-
lems by fully discrete interpolation coefficients MFEMs may
be new.

In the future, it is interesting to apply interpolation
coefficients for nonlinear hyperbolic problems by MFEMs.
Meanwhile, we may consider superconvergence of nonlinear
parabolic OCPs.
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