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ABSTRACT With the development of automated and integrated large-scale industrial systems, accurate and
effective fault diagnosis methods are required to ensure the security and reliability of running mechanical
equipment. Due to the time consumption and poor generalization performance of conventional machine
learning-based methods, deep learning (DL)-based methods have wider application prospects due to their
end-to-end architectural properties. However, in the DLmodels, problems such as a large number of trainable
parameters, complicated hyperparameter tuning, and initialization instability increase the difficulty of model
training and limit higher performance. To address these disadvantages of theDLmethod, we proposed a novel
DL framework by applying convolutional neural networks (CNNs) based on the optimization of transfer
learning (TL). TL can help the model achieve higher precision with less computational cost by transferring
low-level features and fine-tuning high-level layers. In addition, data processing was implemented using
continuous wavelet transformation (CWT) to convert vibration signals into 2-D images, and support vector
machines (SVM) were employed to replace the fully connected layers for better classification. As a result,
the proposed method was superior to the classical deep architecture trained from scratch. The performance
of the proposed method is analyzed by presenting testing reports, convergence curves, and confusion
matrixes. Moreover, experiments comprised of cross-domain diagnosis, simulated composite fault detection,
and performance comparison on seven mechanical datasets, including bearings, gearboxes, and rotors, are
presented. Based on these results, it can be observed that our method achieved the highest accuracy under
various conditions.

INDEX TERMS Convolutional neural network, fault diagnosis, deep learning, continuous wavelet
transformation, transfer learning, support vector machine.

I. INTRODUCTION
Nowadays, developments in mechanical and electrical equip-
ment are focused on large-scale, automation and integration.
Coupled with the complexity and polytropic properties of
the operating conditions and working environment in the
mechanical and electrical fields, the probability of failure
increases gradually, so there is an urgent need for accurate and
effective fault diagnosis for complex equipment to improve
system security and reliability.

Mechanical fault diagnosis is a comprehensive technology
that crosses multiple disciplines to monitor, diagnose and
predict the running state and ensure the safe operation
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of machine equipment, and can essentially be considered
pattern recognition and classification issues. Traditionally,
the process of fault diagnosis can be divided into three key
stages: data acquisition, feature extraction, and health state
recognition. Data acquisition usually refers to the employ-
ment of multiple sensors that are installed on machines to
collect data such as vibration, current, and instantaneous
speed. Feature extraction involves the extraction of some
sensitive features from collected data by converting the
data to a low-dimensional feature vector representation,
generally including time-domain analysis, frequency-domain
analysis, and time-frequency-domain analysis. For health
state recognition, machine learning-based diagnosis models
are used to establish mapping relationships between extracted
features and corresponding health statuses.
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Researchers have been actively exploring the field of signal
processing, feature extraction, and intelligent fault diagnosis,
and many diagnosis methods have been proposed for certain
problems. Gu et al. [1] proposed a method based on the filter-
ing algorithm, Hilbert-Huang transform (HHT), and energy
entropy to extract the fault characteristic of the rotor bearing
system, and then used support vector machines (SVMs)
to defect fault types. This signal processing method was
validated to be effective through experiments. Wang and
Chan [2] combined wavelet packet transform (WPT), local
weighted scatter smoothing method (LOWESS), and least
square support vector machine (LSSVM) to detect gear wear
degree, and the final diagnosis accuracy reaches 98.33%.
Yang et al. [3] used complete-information-based principal
component analysis (CIPCA) to reduce data dimensionality,
and then used a back-propagation neural network (BPNN) to
predict the failure of unmanned aerial vehicles. The proposed
CIPCA-BPNN method can make accurate predictions before
the failure occurred.

Even though these methods have achieved high accuracy,
there are still several limitations. Artificial feature extraction
greatly relies on expert knowledge, which means that it
usually needs complex mathematical operations and some
understanding of the signal to be processed. For some
complex systems with external environmental interference
and nonlinear inner-coupling, the shallow structure of con-
ventional methods is not sufficient to mine features sensitive
to all types of faults [4]. Furthermore, the designed diagnosis
methods are usually applied to carry out some specialized
tasks but are not applicable to others. Therefore, it is difficult
to design a method that provides reliable precision in all
situations. To improve the generalization and robustness
of the algorithm, deep learning (DL)-based methods with
self-adaptability have been widely used.

As an important branch of machine learning, DL has
expanded the field of artificial intelligence and been success-
fully applied in many other research fields, such as object
detection [5], image segmentation [6], natural language
processing [7], fault diagnosis [8], visual tracking [9], and
smart manufacturing [10]. In DL, which is derived from
the research of neural networks, hierarchical representations
from original data are learned in deep architectures with
multiple hidden layers. As a result, abstract features can
be extracted automatically, and the uncertainty caused by
human interference can be reduced. In general, DL-based
methods have end-to-end characteristics that can be used
to spontaneously complete the whole process of feature
extraction, data dimension reduction, and health status
recognition. Moreover, deep architectures can represent the
complex mapping relationship between signals and health
status well and are appropriate for fault diagnosis tasks that
have diverse, nonlinear, and high-dimensional characteristics.
Therefore, DL-based methods can overcome the limitations
of conventional diagnosis methods and provide a novel
alternative for intelligent fault diagnosis.

DL-based models have been successfully utilized for
machine fault diagnosis tasks. For instance, Ma et al. [11]
presented an information fusion method based on the
variational autoencoder (VAE) and random forest (RF) for
fault diagnosis of rolling bearings, achieving a classification
rate of 98.19%. Han et al. [12] developed a novel diagnosis
framework that combines the spatiotemporal pattern network
(STPN) and convolutional neural networks (CNNs), and the
performance of this hybrid scheme was validated on the wind
turbine and bearing data sets. Jang and Cho [13] extracted
features through short-time Fourier transform (STFT) and
classified the fault type of rotating machinery by using an
attentional autoencoder (AE) and a 1D CNN LSTM, which
realized fault diagnosis under different working conditions.
Zhao et al. [14] designed the multilabel cycle translating
adversarial network (MCTAN) to address the deficiency of
fault data in industrial applications, which truly improves the
performance of DL-based approaches.

Nevertheless, deep learning models also have some defi-
ciencies. Because of the large size of hidden layers in deep
architecture, the number of trainable parameters increases
rapidly, which greatly increases the calculated amount, time
consumption, and training difficulty. In addition, training a
network from scratch usually means random initialization
of weights and bias, whose indeterminacies could cause
lower efficiency and even influence the final results.
Moreover, training deep architectures require an abundance
of hyperparameter tuning, which is generally determined
subjectively but greatly affects performance. According to the
abovementioned deficiencies, the application of DL-based
methods could be a laborious and difficult task.

To make the DL-based algorithm more efficient and easier
to implement, the transfer learning (TL) strategy is adopted
in this paper. Instead of random initialization to train the
network from scratch, a deep model trained from sufficient
data as a start point is introduced using TL. Then, knowledge
acquired from previous related issues is applied to solve
the immediate problem. As a result, TL optimizes a deep
architecture with much better results at a lower cost, improves
the efficiency of the training process, and increases the
enablement and operability of DL-based methods [15].

TL has also been successful in cases of fault diagnosis
research. Shao et al. [16] were able to achieve high accuracy
on three main mechanical datasets by taking time-frequency
images as inputs and utilizing TL to accelerate the training
of CNN. Zhang et al. [17] proposed a fault diagnosis
approach combining DCNN and TL to detect faults in a
timely and accurate manner. Wen et al. [18] applied a
new TL-based sparse autoencoder for fault diagnosis across
different working conditions, and a test accuracy as high as
99.82% was achieved. He et al. [19] used ensemble transfer
CNNs to analyze multi-channel signals of rotating machinery
cross working conditions, which shows superiorities by
fully combining the properties of DL, TL, and ensemble
learning (EL).
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In this study, a novel intelligent fault diagnosis method
using continuous wavelet transformation (CWT), CNN,
SVM, and TL strategies are proposed for the detection of
rotating machinery health status. The main contributions of
this study are summarized as follows:

1) An effective fault diagnosis method is presented for
rotating machinery. CWT is used to process input
vibration signals and convert them into RGB images.
The diagnosis framework is based on CNN and SVM,
where CNN adaptively extracts high-level abstract
features, and SVM conducts fault category recognition
to replace fully connected layers.

2) The TL strategy is adopted to accelerate the training
process of CNN. All weight values in the diagnosis
architecture are transferred from a pretrained model
trained on ImageNet. Lower-level layers of the pre-
trained model have common knowledge on image
recognition and their weights are frozen. High-level
layers are applied to specific tasks and are fine-tuned
based on the machinal fault dataset.

3) We conduct a series of comparative experiments.
First, the performance of CNN models trained from
scratch is compared with using a pretrained model.
Second, a classifier SVM and fully connected layers
with softmax regression are compared with accuracy.
Finally, our proposed method is comprehensively com-
pared with other intelligent fault diagnosis algorithms,
including single point diagnosis, compound failure
detection, and comparisons on multiple fault datasets.

The remaining content of this paper is organized as follows.
Section II briefly introduces the theoretical knowledge,
including CWT, CNN, SVM, and TL. The overall work-
flow of the diagnosis process is introduced in Section III.
In Section IV, we introduce related experimental settings
and carry out some preliminary research. More comparative
experiments are presented in Section V. Finally, conclusions
and future work are presented in Section VI.

II. THEORETICAL BACKGROUND
A. CONTINUOUS WAVELET TRANSFORM
Joint time-frequency analysis (JTFA) is a useful technique to
process nonstationary signals and provides joint distribution
information about time- and frequency-domains. We utilize
JTFA to obtain time-frequency images from one-dimensional
signals since CNN requires image data as input. Common
methods of JTFA include STFT, HHT, and CWT. Among
these methods, CWT is desirable for signal time-frequency
analysis and processing.

CWT decomposes a signal into components at different
scales and gradually refines the signal at multiple scales. High
frequency resolution in the low frequency range and high time
resolution in the high frequency range are achieved through
CWT, which is automatically adapted to the requirements of
time-frequency signal analysis [20]. Inner product operation
of the raw signal and wavelet functions is conducted by
wavelet transform. The wavelet function family is obtained

FIGURE 1. The basic architecture of CNN.

from the temporal telescopic and translational operation of
the mother wavelet, which is shown as:

ψa,τ (t) =
1
√
a
ψ

(
t − τ
a

)
(1)

where a, τ are the scale factor and translation factor,
respectively, and ψ (t) is the mother wavelet. The wavelet
basis Morlet was selected in this study. CWT executes
convolutional operation of signal f (t) and wavelet functions
ψa,τ (t). For a function f (t) ∈ L2 (R), the mathematical
expression of CWT is defined as:

CWT f (a, τ ) = 〈f (t), ψa,τ (t)〉

=
1
√
a

+∞∫
−∞

f (t) ψ∗
(
t − τ
a

)
dt (2)

where ψ∗ (·) denotes the complex conjugate of ψ (·).
Through this operation, the one-dimensional time-domain
signal f (t) is converted to the joint distribution on the time-
frequency domain, with two parameters a, τ .

B. CONVOLUTIONAL NEURAL NETWORK
CNN is a widely used deep learning model that has powerful
abilities in the field of image processing. It can achieve
automatic abstracts of hierarchical features to avoid manual
feature extraction operations. Relying on its characteristics
of local receptive fields, weight sharing, and sparse connec-
tions, a CNN usually contains fewer parameters than fully
connected network, which means it can more efficiently
utilize data, dramatically reduce the training difficulty, and
is not easily overfit [21]. In general, the architecture of
a standard CNN commonly contains convolutional layers,
pooling layers, and fully connected layers, as shown in Fig. 1.

1) CONVOLUTIONAL LAYER
The operation of feature extraction is conducted through
convolutional layers, where an identical square convolutional
kernel, which can be regarded as a scanner with a specified
window size, is used to slide on the input feature graph and
scan every pixel of the input feature graph according to a
specified stride. For each step, the convolutional kernel will
coincide with several pixels and corresponding elements in
the overlap area will be multiplied, summed, and offset to
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obtain a new pixel value of the output feature image. Features
are extracted through a convolution filter with multiple
kernels, and the mathematical calculation of the convolution
operation is given by:

x lj = f

∑
i∈Mj

x l−1i ∗ k lij + b
l
j

 (3)

where Mj represents the localized receptive area of feature
graphs, k lij indicates the jth weight value of the convolutional
kernel in the lth layer, x lj is the jth pixel value of feature
images om the lth layer, blj is the jth bias value in the lth
layer kernel, ∗ represents the convolution operation, f (·)
is the activation function, including the sigmoid function,
tanh function and rectified linear unit (ReLU), which are
expressed as:

sigmoid (x) =
1

1+ e−x
(4)

tanh (x) =
ex − e−x

ex + e−x
(5)

ReLU (x) = max {0, x} (6)

2) POOLING LAYER
Pooling layers are commonly set behind the convolutional
layers, and they are combined to form convolution blocks.
Multiple convolution blocks are stacked to build the deep
architecture. Pooling layer perform subsampling operation
to remove the redundant information of image data, reduce
the amount of feature data, and improve the robustness and
calculation efficiency of the algorithm. The pooling operation
is mathematically defined as:

x lj = f
(
β lj down

(
x l−1i

)
+ blj

)
(7)

where down (·) indicates the pooling operation, and the most
commonly used pooling processes are average pooling and
maximum pooling, which means the average value or the
maximum value within a pooling region is selected to be
propagated to the next layer, respectively.

3) FULLY CONNECTED LAYER
The fully connected layers receive the one-dimensional
extracted features from previous convolution blocks and
perform classification or regression. Softmax regression is
commonly used at the output layer to output a probability
distribution, which can represent the final predicted results
of each category, and is mathematically defined as:

Softmax
(
X (i)

)
=


p
(
y(i) = 1

)
p
(
y(i) = 2

)
...

p
(
y(i) = n

)
= 1∑n

i=1 e
θTk X

(i)


eθ

T
1 X

(i)

eθ
T
2 X

(i)

...

eθ
T
n X

(i)


(8)

where X (i) is the input value of the ith sample, y(i) ∈
{1, 2, . . . , n}T represents the corresponding predicted label of

the ith sample, and θ ∈ [θ1, θ2, . . . , θn]T denotes the softmax
parameter. The softmax classifier makes each element of
the output vector a positive value, and all elements sum
to 1, which coordinates the cross-entropy loss to update the
parameters in the network.

C. SUPPORT VECTOR MACHINE
Support vector machine (SVM) is a generalized linear
classifier of binary data through supervised learning, whose
decision boundary is the maximum-margin hyperplane of
learning samples. By using the kernel method, the non-
linear classification can be addressed. With many unique
advantages, SVM is mostly applied to complete classification
tasks of multiclass, nonlinear, and high-dimensional samples
by searching for the optimal separating hyperplane with
minimum generalization error.

For a training datasetZ= {(x1, y1) , (x2, y2) , . . . , (xn, yn)},
where xi denotes the ith input feature vector, yi is the
corresponding category label and i = 1, 2, . . . , n represents
the sample number. The maximum-margin separating
hyperplane wT xi + b = 0 is built in feature space, where
the weight vector w and offset term b are optimization
parameters, and 1/ ‖w‖ represents the margin, whose
maximization is equal to minimizing ‖w‖2. By introducing
the slack variable ξi and penalty factor C , the learning
problem of SVM, which is equivalent to the soft interval
maximization problem, can be described as follows:

min
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi
(
wT xi + b

)
≥ 1− ξi, ∀ (xi, yi) ∈ Z

ξi ≥ 0, i = 1, 2, . . . ,N (9)

where w and b are adjustable parameters to minimize the
objective function, the penalty parameter C controls the
tradeoff between smoothing decision boundary and correct-
ing classification training points, and the slack variable ξi
relaxes training data to prevent overfitting. By selecting a
suitable kernel function K (x, xi) and a penalty parameter C ,
the classification decision function can be given by:

f (x) = sign

(
n∑
i=0

a∗i yiK (x, xi)+ b
∗

)
(10)

where a∗i and b
∗ are the optimal solutions, and kernel function

K (x, xi) is the critical technology of SVM, which has a
higher impact on the model performance. The kernel function
mainly includes the linear kernel, polynomial kernel, and
radial basis function (RBF). The mathematical expression of
these kernel functions is defined as:

Linear :K (x, xi) = xT xi + c (11)

Polynomial :K (x, xi) =
(
axT xi + c

)d
(12)

RBF :K (x, xi) = exp
(
−γ ‖x − xi‖2

)
(13)
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In this study, SVM is used to classify the output features
extracted by CNN, which are likely linearly separable.
Therefore, we first attempt to adopt a linear kernel to
construct a suitable multiclass classifier.

D. TRANSFER LEARNING OF CNN
TL is an essential machine learningmethod, where previously
learned knowledge is applied to help solve new problems
faster. Instead of training a neural network with a deep
architecture from scratch by randomly initializing a large
number of weights, which is a time-consuming process that
occupies more computing resources, transferring the weights
from a pretrained model as a starting point is a more efficient
process. These pretrained models are already trained by
another dataset to complete a task, and the knowledge learned
has been stored in the pretrained model’s weights which are
transferred to the new task.

The concept domain denotes the data space and distri-
bution, and there are two domains involved in TL: source
domain Ds and target domain Dt . These domains have
different distributions, but they are related to each other
to a certain extent. Let Ds = {χs,P (Xs)} and Dt =
{χt ,P (Xt)} denote the source and target-domain datasets
respectively, where χ is the feature space and P (X) is the
marginal probability distribution. Their corresponding tasks
are expressed as Ts = {Ys, fs (·)} and Tt = {Yt , ft (·)},
where Y is the label space and f (·) is the prediction function.
Then, Ds and Dt are assumed to be sampled from different
marginal distributions P (Xs) and P (Xt), respectively. The
pretrained model is obtained in the source domain Ds, and
it contains knowledge of the updated weights to fit the
prediction function fs (·). Through the transfer of weights,
the knowledge information can be applied from Ds to Dt ,
making the model trained in Ds faster to convergence and fit
prediction function ft (·), which means it can more accurately
predict the label Yt corresponding to χt .

As an algorithm suitable for learning hierarchical rep-
resentations from images, CNNs usually extract common
features like edges and curves from images in the lower-level
layers, which are appropriate for most image classification
tasks, while the high-level layers tend to learn more abstract
representations that are applied to a small minority of specific
situations. Therefore, the weights in the lower-level can be
transferred and frozen in the newly established model, while
the weights of the higher hidden layers need to be updated
based on the new dataset to complete the task of the target
domain; this process is called fine-tuning. TL of CNNs using
pretrained model with natural images has been successful
in research areas such as biomedical image recognition.
In this study, a CNN model trained on ImageNet dataset
will be applied to recognize time-frequency images from the
mechanical fault dataset [16].

III. METHODOLOGY
We proposed a novel machinal fault diagnosis method that
combines CWT, deep CNNs, TL, and SVMs to detect the

FIGURE 2. Transfer learning procedure.

running status of rolling machinery with high precision
accuracy. In CWT, one-dimensional signals are converted
to 2-D images. In CNNs, deep architectures are used to
extract highly abstract features from input data. In TL,
an optimization strategy is adopted to help improve model
performance and reduce time consumption. In SVMs,
classifiers are created to complete status recognition and
output final results.

The proposed method consists of the following stages:
data acquisition, time-frequency imaging, data partitioning,
pretrained model building, CNN model fine-tuning, SVM
classifier training, and performance evaluation. The whole
framework of the proposed method is shown in Fig. 3.

1) Data acquisition: The data used in this study are
open-source public datasets, that can be obtained
from major websites, and the CWRU bearing fault
dataset will be used as a typical case. These data are
one-dimensional vibration signals acquired by sensors.

2) Time-frequency imaging: As the input shape of CNN
is 2-D images with 3 channels, the one-dimensional
signals need to be divided into fixed length samples and
then converted to time-frequency images by CWT.

3) Data partitioning: All of the images are divided into a
training dataset and a testing dataset. The training data
are fed into the pretrained model to update the internal
parameters, and the testing data are used to verify the
performance of model.

4) Pretrained model building: The pretrained models
in this work are classical deep CNNs trained on
the ImageNet dataset. These CNNs are loaded with
weights trained on ImageNet by removing top layers
and replacing them with global average pooling. Then,
two fully connected layers with softmax regression
followed, whose weights were randomly initialized.
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FIGURE 3. The workflow of the proposed fault diagnosis method using TL
strategy.

5) Fine-tuning: The parameters in the low-level layers
are set to be untrainable, while the parameters of
the high-level layers are all trainable, they will be
fine-tuned based on the mechanical fault datasets.
After model convergence, all parameters in the deep
architecture will be saved.

6) SVM training: The saved CNNs extract high-level
features of images by applying GAP, and these features
are used to train the SVM classifier in the form of
a 2-D tensor. By adjusting hyperparameters γ and C,
the decision function with the highest classification
accuracy will be used to recognize health status.

7) Performance evaluation: The final fault diagnosis
models are comprised of the completely trained CNNs
and SVMs. The testing dataset is used to evaluate the
performance of this model with indicator accuracy.

IV. EFFECTIVENESS VALIDATION
A. DATASET DESCRIPTION
The fault experimental dataset utilized in this study is
provided by the Case Western Reserve University (CWRU)
Data Center [22]. This database is a standard reference and is
extensively used to validate the proposed approach. As shown
in Fig. 4, the test rig for the CWRU dataset consists of a 2 hp
Reliance Electric motor (left), a torque transducer/encoder
(middle), and a dynamometer (right).

The vibration data used in this study were collected at a
sampling frequency of 12 kHz from the drive end bearings
of the motor under four different operational conditions with
bearing loads ranging from 0-3 hp. Single-point failures
of SKF deep-groove ball bearings were manufactured by
using electrical discharge machining (EDM) technology,
with wear diameters of 0.007 in (0.1778 mm), 0.014 in
(0.3556 mm), and 0.021 in (0.5334 mm) seeded on the rolling

FIGURE 4. CWRU bearing fault diagnosis testbench.

TABLE 1. Description of the rolling bearing fault dataset under each
operational condition.

elements, inner raceway, and outer raceway, respectively.
Therefore, each operational condition includes 9 fault types
corresponding to 3 different fault severities and 3 different
fault locations. Adding the normal condition into the
consideration, bearing fault diagnosis can be considered a
classification task with 10 running statuses. Fig. 5 shows
these 9 types of time-domain vibration signals, which vary
in amplitude and frequency components.

The overlap sampling method was adopted to obtain
training samples from the raw vibration signal. There is
overlap between each segment of the signal and the one
following it, and we set the slip length to 200 data points.
The training set and test set are comprised of 500 training
samples and 100 testing samples for each running status,
respectively. Each sample contains 1000 data points and then
will be transformed into a 64×64 size image with 3 channels
by CWT. Data from all load conditions are included in the
experimental dataset. Table 1 shows the sample distribution
in the experiment.

B. HYPERPARAMETER SELECTION
The CNN model as a feature exactor is the most significant
component of the fault diagnosis model. Therefore, there is
a sufficient necessity to select appropriate hyperparameters
to build an effective CNN. In general, the hyperparame-
ters mainly include learning rates, optimizers, mini-batch
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FIGURE 5. Raw time-domain signal of vibration for each status.

TABLE 2. The experimental results of five optimizers.

size, network structure, and dropout rates. In this section,
we implement multiple trials to investigate the influence of
different hyperparameter settings by using the Keras library.

1) OPTIMIZER SELECTION
The optimizer determines the training time and convergence
speed of the network. The alternative optimizers include
the steepest gradient descent (SGD), RMSProp, AdaGrad,
AdaDelta, and Adam. We trained CNN models in 15 epochs
by using these optimizers with an effective learning rate,
and training time and test accuracy are listed in Table 2.
Fig. 6 illustrates the training accuracy curves of the five
optimizers. It can be clearly seen that RMSProp and Adam
achieve the highest accuracy and the fastest convergence
speed. However, RMSProp takes the longest training time.
To sum up, Adam with a learning rate of 0.0001 is adopted as
the optimizer in subsequent experiments.

2) MINI-BATCH SIZE SELECTION
To prevent local optima, the mini-batch gradient descent
method is usually used to train network models. In this

FIGURE 6. The accuracy curves comparison of five optimizers.

section, the appropriate value of mini-batch size is selected
and training time and test accuracy are noted as evaluation
indicator. Table 3 records the experimental results. When
the mini-batch size is 64 or 128 does the model achieve a
slightly higher accuracy than the others. However, the time
consumption is the lowest when the mini-batch size is 128.
Hence, we set the value of the mini-batch size as 128 in the
following experiment to accelerate model training.

3) MODEL ARCHITECTURE SELECTION
The architecture of a neural network has a critical impact
on the model performance. There are several CNNs can be
obtainedwith pretrainedweights from the applicationmodule
in Keras Library, including VGGNet, ResNet, Xception,
MobileNet, and DenseNet. These CNNs have been verified
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TABLE 3. The experimental results of various mini-batch sizes.

TABLE 4. The experimental results of five CNNs.

to be valid and are easily implemented on our dataset.
Table 5 shows the top-1 and top-5 accuracies refer to the
CNN’s performance on the ImageNet validation dataset.

These CNNs are introduced simply as follows:
1) VGGNet: VGGNet is a deep CNN developed by Visual

Geometry Group of Oxford University. It uses multiple
small convolution kernels to replace a large convolution
kernel and successfully increases the network depth to
16-19 layers with fewer parameters [23].

2) ResNet: ResNet was proposed by He et al. in 2015.
By using residual structures, a deep architecture with
152 layers was successfully trained. This mechanism
greatly alleviates the vanishing or exploding gradients
caused by the deep architecture [24].

3) Xception: Xception is an improvement to InceptionV3
structure proposed by Google. It uses depthwise
separable convolution to replace the original convolu-
tion operation and introduces residual connections to
accelerate convergence [25].

4) MobileNet: MobileNet uses deep separable convolu-
tion to build a lightweight network, which is appro-
priate for mobile and embedded devices. Compared
to other advanced models, it shows almost equally
powerful performance with minimal memory [26].

5) DenseNet: DenseNet is proposed in 2017. It uses the
novel dense connection mechanism to realize feature
reuse, which avoids vanishing gradients and achieves
better performance with fewer parameters [27].

These CNNs were trained in 15 epochs, except ResNet50
was trained longer to alleviate overfitting. The performance
of different CNNs is compared through convergence speed,
training time, and test accuracy, as shown in Fig. 7 and
Table 4. Fig. 7 illustrates the convergence of each CNN
through accuracy curves. All CNNs achieve extremely
high accuracy, almost 100%, on the training set after
15 epochs, and DenseNet121 has the fastest convergence

TABLE 5. The overview of CNNs trained on ImageNet.

FIGURE 7. The accuracy curves comparison of five CNNs.

speed. Table 4 demonstrates the efficiency of five CNNs.
It is obvious that VGG16 and DenseNet121 have the
highest precision within a shorter training time, but VGG16
occupies more space. In addition, the accuracy achieved by
MobileNet is similar to Xception, while MobileNet occupies
lower space. It is noteworthy that ResNet50 has the worst
performance on the test set, as overfitting has not been
completely eliminated. In summary, DenseNet121 is the best
choice to complete this task, and VGG16 and MobileNet are
also satisfying alternatives with higher accuracy and lower
memory, respectively.

C. VERIFICATION OF TL AND SVM
To verify the effectiveness of the TL strategy, comparative
experiments were conducted with pretrained models and
models trained from scratch. The test accuracies and training
times of five CNNs under two conditions are presented
in Fig. 8 and Fig. 9, respectively. It can be clearly seen
that the performance of VGG16, ResNet50, and MobileNet
was significantly improved by the TL strategy, where the
accuracies obtained by the pretrained model are much higher
than that of trained from scratch. As the original architectures
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FIGURE 8. Test accuracy comparison of CNNs trained from scratch and
using pretrained models.

FIGURE 9. Training time comparison of CNNs trained from scratch and
using pretrained models.

of Xception and DenseNet121 are sufficiently powerful to
realize the task of this section, there is little difference in
test accuracies under two conditions. However, the training
time of every CNN was drastically reduced when TL was
applied. Therefore, it can be concluded that TL improves
model training efficiency and accelerates the training
process.

The previous experiments all utilized fully connected
layers and softmax regression as classifiers to output
predicted value, as they easily coordinate with categorical
cross-entropy functions to update weights in networks.
To further promote the CNNs accuracies on the test set,
we attempted to replace fully connected layers by SVMs
with linear kernels to implement classification. The results
are shown in Fig. 10, where the CNNs combined with SVMs
show better performance than softmax classifiers. As the
softmax classifiers essentially conform exacted features to
the probability distribution, it is not as powerful as SVMs
in a multiclassification task. Moreover, the linear kernels
used in SVMs alleviate the overfitting phenomenon existing
in fully connected layers. That is probably the reason
that ResNet50, whose performance is the worst among

FIGURE 10. Test accuracy comparison of SVMs and fully connected layers
with softmax regression.

these models, has been greatly improved when utilizing the
SVMs.

D. T-SNE-BASED VISUALIZATION
To verify the feature extraction ability of the proposed
method, t-distributed stochastic neighbor embedding (t-SNE)
is used to visualize the data distribution of the extracted
features [28]. t-SNE is a technology capable ofmapping high-
dimensional data into a 2-dimensional space map, where the
mutual distance of data points is determined by the similarity
of samples, as shown in Fig. 11. Samples with different labels
are presented in different colors. Fig. 11(a) demonstrates the
distribution of 1000 samples of raw data in the test dataset,
which has the highest degree of confusion. It is difficult for
an algorithm to recognize the correct class of these data.
Some data processing methods can extract valid features and
filter out distractions, including CWT, FFT, EMD, andWPD,
as shown in Fig. 11(b), Fig. 11(c), Fig. 11(d), Fig. 11(e). It can
be seen that these methods have the ability to extract features
to a certain degree, but they are not completely competent for
it, and the distinction of features extracted by these methods
is still rather fuzzy. Even though FFT successfully separates
different samples from each other, it cannot gather the same
samples together. However, the CNN model of the proposed
method nearly realized complete feature extraction; for
samples, each status is gathered together, and different groups
are clearly separated. Therefore, the CNN adopted in this
study is proven useful to assist high accuracy classification.

E. RESULTS ANALYSIS AND EVALUATION
For binary classification, 4 situations can be defined accord-
ing to the combination of the actual class and predicted
results, which contain true positive (TP), false positive (FP),
true negative (TN) and false negative (FN), as shown in
Table 6. It is obvious that the total number of samples is equal
to the sum total of TP, FP, TN, and FN.

To analyze the generalization ability of the trained model,
several evaluation criteria are essential for performance
measure [29], including accuracy rate (Acc), precision (P),
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FIGURE 11. Visualization of data processing based on t-SNE: (a) Raw Signal; (b) CWT; (c) FFT; (d) EMD; (e) WPD; and (f) CNN.

TABLE 6. Confusion matrix for binary classification.

recall (R), F1-score (F1) and confusion matrix, which are
calculated as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
(14)

P =
TP

TP+ FP
(15)

R =
TP

TP+ FN
(16)

F1 =
2× P× R
P+ R

(17)

where accuracy represents the proportion of correctly clas-
sified samples, precision represents the proportion of truly
predicted positive samples in all predicted positive results,
recall is the ratio of truly predicted positive samples to all
actual positive samples, and F1 indicates the comprehensive
consideration of precision and recall. Table 7 lists the P, R,

TABLE 7. The evaluation results of the proposed method.

and F1 of our proposed method by applying DenseNet121
based on TL and SVM.

The confusion matrix is useful to intuitively explain the
details of fault misjudgment and location for each category in
the multiclassification task, where the vertical axis indicates
the values of the practical label and the horizontal axis
shows the predicted results. The elements on the main
diagonal are the number of true judgment samples, while
other points present misjudgment numbers. Fig. 12 shows
the multiclass confusion matrix of CNN-SVM models by
applying DenseNet121 and VGG16 as feature exactors.
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FIGURE 12. Confusion matrixes of CNN-SVM models.

Through the confusion matrix, it can be seen that only 1
sample belonging to ‘RF21’ is misjudged by DenseNet121 as
‘RF07’, while VGG16 misjudges 3 samples in the same way
and 1 ‘RF14’ sample is wrongly judged as ‘OF21’. Therefore,
conclusions can be drawn that misjudgment easily occurs
among different fault severities of rolling element fault.
Moreover, DenseNet121 and VGG16 both have excellent
generalization performance without misjudgment among
normal samples and inner race faults.

In conclusion, our proposed method achieves desired
results on CWRUbearing dataset, and themaximum accuracy
reached 99.9% when DenseNet121 is used as a feature
extractor. In addition, we simply compare our method with
other existing algorithms, which are all validated on CWRU
dataset, and take accuracy as a performance indicator [30],
as shown in Table 8. It can be concluded that our proposed
method has achieved current state-of-the-art results.

TABLE 8. Comparison of approaches on CWRU bearing dataset.

V. COMPARATIVE EXPERIMENTS
To further demonstrate the validity and superiority of the
proposed method, we conducted three groups of experiments
to test the model’s performance in the form of accuracy, and
compare it with four other mainstream intelligent methods on
the same fault dataset. These experiments separately explored
the application of three different aspects, including the
cross-domain diagnosis of a single point fault, performance
tests under simulated composite faults, and experiments
on multiple different datasets. The comparative algorithm
includes two traditional machine learning methods, pure
support vector machine (SVM) and k-nearest neighbor
(KNN), and two deep learning algorithms, deep neural
network (DNN) and one-dimensional convolutional neural
network (1D CNN). Several methods of signal processing
are used in combination with these algorithms, including
fast Fourier transform (FFT), empirical mode decomposition
(EMD), and wavelet packet decomposition (WPT). These
methods are introduced simply as follows:

1) EMD-SVM: The vibration signal is decomposed into
a series of intrinsic mode functions (IMFs) through
EMD, and the first six IMFs are selected to perform
data dimension reduction by principal component
analysis (PCA). Then, the obtained low dimensional
feature vectors are delivered into the SVM classifier as
the input data space to search for the optimal separating
hyperplane, where the kernel function adopts the radial
basis function.

2) WPT-KNN: Wavelet packets decompose the original
signal stepwise by using multiple iterations, and the
decomposition level of the wavelet packet tree is
3 layers. As a result, 8 terminal nodes of subbands with
different frequencies are obtained. Then, we calculate
the wavelet packet energy entropy of each subband and
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TABLE 9. Working environments of each subdatasets.

integrate them into 8-dimensional vectors as the input
data space, which is used to build the KNN classifier.
KNN determines the category of the samples according
to the category of the nearest samples.

3) FFT-DNN: FFT is implemented to convert the
time-domain signal to the frequency-domain first, and
then the obtained data are delivered into DNN to update
the weights and basis. DNN adopts a classical five-
layer structure, in which the unit number of the input
layer is equal to the shape of the input vector, and the
unit number of the output layer is determined by the
number of recognition categories. The unit numbers of
the three hidden layers are set liberally in descending
order. Finally, the output layer uses softmax regression
to output the predicted probability distribution of each
category [39].

4) 1D CNN: For this method, no transformation is
implemented, and the raw temporal vibration signals
are directly subjected to all operations. The architecture
of the adopted CNN model is composed of two
convolutional layers and two pooling layers. With
the increasing of layers, the depth of the feature
vector increases while the width decreases [40]. The
following two fully connected layers accomplish the
classification task and output final results.

A. CROSS-DOMAIN DIAGNOSIS OF SINGLE POINT FAULT
To analyze the model’s performance with other intelligent
algorithms, the accuracy results, one of the most critical
indicators of diagnosis methods, are compared in this section.
All fault statuses are single point failures, which means
that one element will not appear in more than two kinds
of faults. Furthermore, to explore the generalization and
stability of the proposed method, we divided the dataset
into several subdatasets under various working environments.
These subdatasets are expressed as A-H, and the difference
among them is the working load of training data and testing
data, as shown in Table 9. Especially, for subdatasets B, D,
and F, the working loads of the training data and testing data
are different and they belong to cross-domain fault diagnosis.
The accuracy results of cross-domain diagnosis will more
fully explain whether the model adapts to complicated and
volatile working situations.

Fig. 13 shows the experimental results of the proposed
methods and four other intelligent algorithms. It can be
observed that the proposed method generally achieves the
best performance. Moreover, CNN and DNN are both

FIGURE 13. The comparison of testing accuracies on several subdatasets.

deep learning models, while SVM and KNN are shallow
architectures, so the former performs better than the latter.
It is worth noting that FFT-DNN performs excellently on A,
C, E, G, and H; however, it achieves the worst results on
cross-domain diagnosis tasks for subdatasets B, D, and F.
It can be inferred that FFT makes the samples under different
working loads too diverse. In contrast, the algorithms that
adopt the CNN architecture can always remain stable on
the cross-domain diagnosis. Through the testing accuracy of
two traditional algorithms, it can be seen that WPT shows
better feature extraction ability than EMD. In other words,
deep architectures more easily achieve high accuracy than
conventional methods. CNN can better adapt to cross-domain
diagnosis, and wavelet analysis performs well in the field of
feature extraction. Therefore, the proposed method combined
with the above advantages has the best performance.

B. PERFORMANCE TEST FOR SIMULATED COMPOSITE
FAULTS
In practical applications, composite faults are more common
than single faults. Therefore, it is necessary to evaluate the
algorithm’s ability to detect compound faults. However, the
CWRU bearing dataset contains no type of composite faults,
so we construct simulated multiple fault signals through
mathematical calculations. For example, samples of inner
race fault and outer race fault with the same length are
selected, we add them point by point and then determine
the arithmetic average, so the samples with inner race
fault and outer race fault are obtained. Using this process,
we constructed 6 kinds of simulated compound faults,
as shown in Table 10. Note that ‘‘OF 07 × 2’’ means that
2 points of failure exist on the bearing’s outer race, whose
samples are calculated from six o’clock OF07 and three o
’clock OF07.

Fig. 14 indicates the performance of the five algorithms
on compound fault recognition based on the F1-score. It can
be observed that the proposed method has superior F1-scores
compared with the other four algorithms, as the F1-scores of

50970 VOLUME 10, 2022



W. Zhang et al.: Intelligent Machine Fault Diagnosis Using CNNs and Transfer Learning

TABLE 10. The description of simulated composite faults.

each running condition of the proposed method reach over
95%, and the average value is nearly 98%. FFT-DBN also
has excellent performance based on the F1-score, followed
by 1D CNN, WPT-KNN, and EMD-SVM. It is obvious that
composite fault diagnosis is more difficult than single point
failure, especially for classes 2, 3, 4, 5, 6, the F1-scores of
all five algorithms are visibly lower than other conditions.
This illustrates that samples under these conditions are
less discriminative. However, even with this disadvantage,
the proposed method and the FFT-DNN method can still
maintain high accuracy, which shows favorable stability and
capability.

C. EXPERIMENTS ON MULTIPLE DATASETS
To further explain the good performance of the proposed
method in various cases, this section conducts diagnosis
experiments on several datasets. These datasets are all vibra-
tion signals of roller machinery faults, including bearings,
gearboxes, and rotors, and furthermore involve the most
common faults in rotating machinery. For CWRU Bearing
dataset, we implemented two experiments corresponding to
sampling frequencies 12k and 48k. Other datasets, such as
the MFPT Fault Datasets, IMS Bearing Datasets, the UPB
Datasets, Gear Fault Dataset, MaFaulDa, and the Rotor Fault
Dataset, are also used to verify the effectiveness of the
algorithm. These datasets are introduced simply as follows:

1) MFPT Fault Datasets: Data were assembled and
prepared on behalf of Machinery Failure Prevention
Technology (MFPT) by Dr. Eric Bechhoefer, Chief
Engineer, NRG Systems. These datasets are comprised
of data from a bearing test rig (nominal bearing data,
an outer race fault at various loads, and inner race fault
and various loads) and three real-world faults [41].

2) IMS Bearing Datasets: These datasets were provided
by the Center for Intelligent Maintenance Systems
(IMS), University of Cincinnati. Three datasets are
included in the data packet. Each dataset describes
a test-to-failure experiment and consists of individual
files that are 1-second vibration signal snapshots
recorded at specific intervals. Each file consists of
20,480 points with the sampling rate set at 20 kHz [42].

3) UPB Datasets: The test platform was developed at
the University of Paderborn in Germany. In total,

FIGURE 14. The F1-scores of composite faults of different methods.

experiments with 32 different bearing damages in
ball bearings of type 6203 were performed, including
undamaged (healthy) bearings (6x), artificially dam-
aged bearings (12x), and bearings with real damages
caused by accelerated lifetime tests (14x) [43].

4) Gear Fault Dataset: Gearbox failure data were shared
by Professor Jiong Tang and his team from the
University of Connecticut. This dataset is comprised
of time-domain gear fault vibration data and gear
fault data after angle-frequency domain synchronous
analysis. Gear fault types include healthy, missing,
crack, spall, and 5 kinds of chips [44].

5) MaFaulDa: The Machinery fault database (MaFaulDa)
is composed of 1951 multivariate time-series acquired
by sensors on a SpectraQuest Machinery Fault Sim-
ulator (MFS) Alignment-Balance-Vibration (ABVT).
The dataset is comprised of six different simulated
states: normal function, imbalance fault, horizontal
misalignment faults, vertical misalignment faults, inner
bearing faults, and outer bearing faults [45].

6) Rotor Fault Dataset: These data are denoised signals
processed by wavelet thresholding-based denoising.
They are represented by a 2-dimensional matrix. The
vibration signals belong to the normal rotor, contact-
rubbing, unbalance, and misalignment. Each column
represents the length of data, 2048, or time, 1 s [46].

The results are shown in Fig. 15. It can be observed
that three deep learning algorithms perform obviously better
than the other two. These algorithms achieved nearly 100%
accuracy on several datasets, such as the IMS, MaFaulDa,
and Rotor Fault Dataset. For the other datasets, the 1D CNN
is slightly inferior but still maintains an accuracy over 90%.
Therefore, time-domain analysis is insufficient compared
with frequency-domain analysis and time-frequency-domain
analysis. The difference in the results on various datasets
mainly depends on the performance of the algorithm
and the data distribution. For the same algorithm, high
accuracy is easily achieved when the distinction among
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FIGURE 15. The testing accuracies on several datasets of five algorithms.

data is higher, as CWRU-12k is easier to recognize than
CWRU-48k. For the same dataset, the algorithm with
better performance achieves better results. In conclusion,
the proposed method and FFT-DNN are the best performers
in this experiment, followed by 1D CNN, WPT-KNN, and
EMD-SVM.

VI. CONCLUSION AND FUTURE WORK
In conclusion, we proposed a novel intelligent fault diag-
nosis method, where raw signals are processed by CWT,
a diagnosis model composed of CNN and SVM is used
as feature extractor and classifier, respectively, and TL is
used as the optimal strategy. From comparative experiments,
the validity of TL and SVM has been verified. In addition
to testing accuracy, t-SNE visualization, evaluation reports,
and confusion matrixes are used to present details of model
performance. Furthermore, we made comparisons between
the proposed method and other algorithms, implemented
them on seven mechanical datasets, and comprehensively
analyzed the effectiveness, generalization, and stability of
our approach, which increased diagnosis precision at a
lower calculation cost. In future work, we will consider
expanding the application field of diagnosis algorithms,
focusing on more practical cases and more complicated
reality, and sequentially improving algorithm performance by
incorporating other state-of-the-art research.
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