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ABSTRACT Localization plays a significant role in the production of ultrasound localization microscopy
images. For instance, detecting more microbubbles reduces the time of acquisition, while localizing them
more accurately improves the resolution of the images. Previous approaches to compare the multiple
localization algorithms rely on numerical simulation of a single steady microbubble, with or without
modeling its nonlinear response. In real-life situations, vessels have a nonconstant velocity profile, which
creates relative movement, producing dynamically overlapped microbubbles even at low concentrations.
These complexities deteriorate the behavior of the localization algorithms. To incorporate these effects on
the characterization of the localization methods, we designed a virtual medium containing four microtubes of
different inner diameters, where single-pixel microbubbles were allowed to flow within each microtube with
a parabolic velocity profile. A finite difference method was used to simulate the propagation of ultrasound
waves to obtain B-mode images that fed four direct microbubbles localization algorithms (i.e., weighted
centroid, 2D-spline interpolation, parabolic fitting, and onset detection). The performance of these methods
was quantified using the number of microbubbles detected, the microbubbles distribution, the full width at
half maximum, the maximum velocity, and the computational time as metrics. Our simulation results suggest
that 2D-spline and paraboloid fitting were the best methods, detecting 100% of the microbubbles with an
error in their distribution of 249 and 244microbubbles, respectively. Bothmethods with a computational time
cost of 18% and 7% lower than weighted centroid, respectively. We also present an experimental comparison
of these localization methods, finding results similar to the numerical ones.

INDEX TERMS FullWave simulations, localization algorithms, microvessel imaging, ultrasound localiza-
tion microscopy, ultrasound super-resolution.

I. INTRODUCTION
Ultrasound Localization Microscopy (ULM) has been iden-
tified as a powerful technique to visualize microvessels and
detect blood flow in a noninvasive manner. ULM relies on
the localization of individual ultrasound contrast agents or
microbubbles (MBs) injected into the bloodstream [1]. This
imaging modality has been proposed to help in the diagnosis
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of health issues [2], such as, cognitive decline related to
age [3], early cancer diagnose [4], and early liver fibrosis [5],
by analyzing the vascular anatomy, blood velocity, and vessel
tortuosity with resolution in the order of ten microns. For
this reason, this technique is also known as ultrasound super-
resolution imaging. Although ULM has been successful, this
technique is not mature enough since there are some chal-
lenges to overcome. One of these challenges is to select
the best method to localize the contrast agents. Previous
studies have proposed different localization methods on the
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radio-frequency data (e.g., centroid, and local maximum) and
on the beamformed data (e.g., weighted centroid, onset detec-
tion, Gaussian fit, 50% peak detection, and interpolation-
based methods) [6]–[9]. To the best of our knowledge, and
even considering the variety of available localization meth-
ods, no study compares their performance in realistic multi-
bubbles scenarios.

Several steps are necessary to produce a ULM image. First,
MBs of gas-encapsulated by a lipid shell with a diameter of
1-5 µm [10] are injected into the bloodstream. An ultrasound
transducer sonicates the region of interest to produce thou-
sands of ultrasound images. These images hold two sources
of information. First, a slowly-changing signal containing
mostly the background tissue, and second, a more rapidly-
changing signal coming from the moving MBs. Therefore,
these two signals are separated to allow proper detection of
the MBs, which is usually achieved by employing a Singular-
Value-Decomposition (SVD) filter [11]. Subsequently, the
MBs are localized, and their positions are recorded. Finally,
the MBs’ positions are accumulated to draw the vascular net-
work of the region of interest [12] overcoming the diffraction
limit.

Localization of MBs is a crucial step for producing ULM
images because, along with the resolution grid, they deter-
mine the final resolution of the image [1], [13]. Therefore,
the localization method is decisive for resolving the vascular
map. This crucial stage can be performed in both domains,
the radio-frequency or the beamformed image. In the radio-
frequency domain, the MBs’ echoes appear as hyperbolas,
while in the beamformed domain they appear as the point
spread function of the imaging system.

In the literature, we distinguish at least two families of
localization methods: the first is based on direct localization
algorithms and the second is based on inverse problem algo-
rithms. The main difference between them is that the former
does not need a model to perform the localization. However,
an advantage of the algorithms based on inverse problems
is that they allow the localization of MBs with higher con-
centration in the bloodstream. Therefore, these algorithms
relax the constraint of separability between contrast agents,
minimizing the number of images needed to reconstruct the
whole vascular network of the region of interest [14]–[17].

Among the direct localization methods, the weighted cen-
troid applied over the beamformed data appears as the most
popular one due to its simplicity and low computational
cost [6], [18], [19]. Other localization methods found in
the literature are based on the curve fitting around local
maximums in the beamformed data [7]. MBs can also be
localized in the radio-frequency domain by fitting a hyperbola
[20], [21], which offers the possibility to exclude outliers and
phase jumps.

Previous studies compared six localization methods: onset,
50% point, peak detection, centroiding, and two different
Gaussian fit [8]. Onset detection has been found to provide
the most accurate detection of the MBs’ position and the best
contrast to noise ratio. Additionally, the authors explained

FIGURE 1. A: Sound-speed map showing the four microtubes with an
inner diameter of 105 µm, 276 µm, 381 µm, 574 µm. B: sound-speed map
zoomed showing the parabolic velocity profile of the MBs.
C: a conventional B-mode ultrasound image of the medium shown in A.
D: the conventional B-mode ultrasound image after the Singular-value-
decomposition (SVD) filter was applied. The whole image span 15 mm
wide. However, only 4 mm wide is shown for visualization purposes.
US: Ultrasound.

that onset detection is less sensitive to nonlinear ultrasonic
response because it detects the beginning of the MB, where
harmonics have less influence when compared to the center
of the acoustical MB response. However, this comparison
was made by using only one microbubble model, which
lacks some key features of realisticmicrobubbles-tissue-wave
interaction, such as MBs’ superposition, the relative velocity
between MBs and reverberations, among others.

In this work, we compared the performance of four local-
ization methods: weighted centroid, 2D spline interpola-
tion, paraboloid fitting, and onset detection. The comparison
was performed by using numerical simulations (FullWave
solver [22]) over a virtual medium consisting of four ves-
sels with different diameters. To incorporate relative veloc-
ity between MBs, a Poiseuille flow was imposed within
the vessel. The metrics evaluated were the number of MBs
detected, the MBs’ distribution, the Full Width at Half Max-
imum, the computational time, and the maximum velocity
of the MBs. This analysis was contrasted with a phantom
experiment.

II. METHODS
A. SIMULATIONS WITH FULLWAVE SOLVER
A digital 2D heterogeneous sound-speed map was created
to resemble a set of four microvessels embedded in soft
tissue, with a random distribution of 12 scatters per reso-
lution cell to fully develop acoustic speckles at the back-
ground [23] (Fig. 1A). The microvessels were positioned
angled 10◦ with respect to the horizontal plane and they were
set to have the following inner diameters: 105 µm, 276 µm,
381 µm, 574 µm and an the outer diameters of 208 µm,
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TABLE 1. Sound-speed values to create the sound-speed map.

611µm, 1079µm, 936µm, respectively, from top to bottom.
Microubbles (MBs) were allowed to flow within the vessels
(Fig. 1B and the supplementary movie 1). Initially, the MBs
were uniformly distributed, with a concentration of 0.5 MBs
per resolution cell, on a medium much larger than the region
of interest, which was subsequently cropped. This procedure
was done to have all the MBs moving independently to each
other and to avoid using periodic boundary conditions on the
flow. The sound-speeds assigned to each tissue/material are
organized in Table 1. This digital 2D map was used as a
gold-standard medium to evaluate the localization methods
and the data obtained by the gold-standard medium will be
referred to as the ground truth.

Numerical simulations were performed by using the Full-
Wave solver, a plane wave imaging sequence was propa-
gated into the virtual medium with a central frequency of
7.813 MHz, which is equivalent to a wavelength (λ) of
197 µm. This numerical tool utilizes finite differences in
the time domain to solve the wave equation in a heteroge-
neous and attenuatingmedium [22]. The FullWave simulation
captures wave physics such as refraction, reflection, clutter,
diffraction, and multiple scattering. This software has been
validated by the biomedical imaging community inmany peer
review studies such as [23]–[25].

The flow inside a vessel of a living organism is not
constant across its transversal section [26]. This fact pro-
duces that MBs move with a relative velocity between them
within the same vessel [27]. To incorporate this phenomenon,
a parabolic velocity profile was imposed into the microtubes
obeying the classical fluid dynamics for a tube with constant
cross-section [28]. Thus, the local velocity inside the vessels
(v(r)) as a function of the distance from their center (r) was
set to be v(r) = vmax(1 − r2/a2), where vmax is the fluid
maximum velocity at the center of the vessels. The veloc-
ity of the MBs was imposed by creating 1000 sound-speed
maps in which each MB was displaced from frame to frame
following this expression. The maximum velocity at each
vessel was remained constant at 10 pixels/frame. The grid
size of the virtual medium was set to λ/15 in both directions,
axially and laterally. A FullWave simulation was prepared
to propagate a single plane-wave at a center frequency of
7.813MHz with a Courant-Friedrichs-Lewy condition (CFL)
of 0.4 [29] on each of the 1,000 sound-speed maps. After the
radio-frequency data were obtained, conventional delay-and-
sum beamforming was applied to reconstruct 1,000 B-mode
images with a 0.2 λ lateral grid size and 0.066 λ axial grid
size (see Fig. 1C).

FIGURE 2. Localization methods scheme. A: Weighted centroid with the
red X showing the centroid. B: 2D spline showing the yellow X like the
pixel with maximum intensity and the red X the four pixels used to
determine the spline. C: Paraboloid fitting showing the yellow X like the
pixel with maximum intensity and the red X the eight pixels used to fit a
parabola. D: Onset detection showing the yellow X like the pixel with
maximum intensity and then the red X, the pixels with 30% of the
maximum intensity.

B. DETECTION AND LOCALIZATION OF MICROBUBBLES
A Singular-Value-Decomposition (SVD) filter [30], [31] was
applied over the B-mode movie to separate MBs from back-
ground tissue. The cut-off of the filter was determined empir-
ically, eliminating the first ten and the last ten singular values
(see Fig. 1D and the supplementary movie 2). To localize
the MBs, four methods were tested, and applied over the
enveloped-detected and beamformed data after the SVDfilter
was performed. Before localizing the MBs, we removed the
local peaks that have a smaller width compared to a wave-
length. The peak removal was done by utilizing a convolution
with a λ×λwindow. Additionally, a threshold was applied to
remove the background noise. To produce the best result for
each localization method, the threshold was optimized based
on the predicted and the tabulated diameter of the microtube,
independently for each localization algorithm. We clarify
here that the localization methods found an optimal threshold
that depends on the size of the tube. Therefore, the thresh-
old selected was computed as the average of the optimal
threshold for each tube. After performing localization, the
positions of all MBs in all frames were accumulated to pro-
duce a single super-resolution image for each localization
method. The localization algorithms tested in this study are
explained as follows:

Weighted Centroid (WC) is the simplest and the most
popular method [6], [18], [19]. After the threshold was
applied, the image was binarized, producing clusters of pixels
that are probable MBs. Then, the center pixel for each group
of eight or more pixels was localized. Finally, we calculated
the centroid based on the neighbors’ intensities (Fig. 2A).

In 2D Spline (2DS) interpolation, the local maximum
intensity pixel was localized with diffraction-limited resolu-
tion (yellow X mark on Fig. 2B). Then, by using the equation
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FIGURE 3. A: Experimental setup. MBs are injected into a microtube of
280 µm of inner diameter, using a transducer ATL 12−5 to produce the
conventional B-mode image. B: The B-mode image. C: the B-mode image
after applying an Singular-Value-Decomposition (SVD) filter. PBS:
Phosphate-buffered solution; MBs: Microbubbles. panel a created with
bioRender.com.

of a 2D paraboloid, given by f (x, y) = ax2+by2+cx+dy+f ,
the constants a, b, c, d and f were exactly determined for
each MB using the maximum intensity pixel in addition
to the two vertical and the two lateral closest neighbors
(red X mark on Fig. 2B). Many recent studies have used
spline interpolation [3], [13], [32], showing that it offered
a lower Root-Mean-Squared-Error (RMSE) and better pre-
cision when compared to the weighted average, bi-linear
interpolation, cubic interpolation, and Lanczos interpolation.
However, the 2DS showed poorer RMSE and precision when
compared to the radial symmetry method [9].

In Paraboloid Fitting (PF), and similar to the pre-
vious method, the maximum intensity pixel in the
diffraction-limited grid (yellow X mark on Fig. 2C) along
with all its eight neighbors (red X marks on Fig. 2C) were
used to fit a paraboloid, given by f (x, y) = ax2+ by2+ cx +
dy + exy + f . In contrast to the previous method, an exact
determination of the constants was not performed. In this
case, a fit was done by using the minimum squares method.
Thus, the constants obtained a, b, c, d , e, and f were the ones
that best represent the pixel around themaximumof eachMB.

By using theOnset Detection (OD)method, the pixel with
the highest intensity in the diffraction-limited grid (yellow X
mark on Fig. 2D) was found first. Then, cubic interpolation
was used to find the coordinate of the first value that matched
30% of the maximum intensity in the central line. This pro-
cess was repeated to find the same value on each adjacent
column. Lately, a parabola was fit to compute its central
position. This algorithmwas adapted from the onset detection
method described in [8]. In this study, instead of using 30%
of the maximum intensity peak, they used three times the
standard deviation above the noise level. The aim was to have

a more accurate MB localization due to variable MB signal
appearances caused by different sizes, MB resonances, and
partial volume effects. Conversely, we have found that three
times the standard deviation was outside the image in most
cases, so we used 30% of the peak intensity to define the
onset.

C. TRACKING AND VELOCITY ESTIMATION OF MBs
After localizing the MBs in all frames, their coordinates
were compared to find the closest neighbor between con-
secutive frames [12]. This tracking allows the estimation of
the velocity of each MB in pixel/frame. The velocity data
were converted into a 2D image by averaging the velocity
of all the MBs at every frame. Then, the velocity profile
across the microtubes was computed by averaging along the
corresponding microtube.

D. EXPERIMENTAL SET-UP
A syringe pump (Pump 11 Elite, Harvard Apparatus) was
used to set a flow rate of 1.5 mL/min through a microtube
(IntramedicTM PE Tubing, Fisher Scientific) with 280 µm
of inner diameter. In-lab-made lipid-encapsulated MB con-
trast agents [33] were diluted to 90% in Phosphate-Buffered
Solution (PBS) and infused through the microtube (see the
setup in Fig. 3A). Ultrasound images were acquired by
using a Verasonics Vantage 128 scanner using a transducer
Philips ATL 12−5 narrow, operating at a center frequency of
7.8MHz. The scanner was programmed to emit a single plane
wave sequence and to acquire 1,500 frames at 100 frames per
second. The beamformed image was produced, as one can see
in Fig. 3B. Note that only the microtubes’ walls are visible,
with an exaggerated size compared to the true size of the
tube. The SVD filter was applied over the B-mode images
to remove the stationary part of the signal and detect the
MBs. This configuration allowed the detection of five MBs
per frame, approximately (see Fig. 3C).

E. METRICS
Five metrics were introduced to compare the localization
methods with the ground truth: number of MBs detected,
MBs’ distribution error, error in the Full Width at Half Maxi-
mum (FWHM), maximum fluid velocity, and computational
time.

The average number of MBs detected per frame was cho-
sen as a metric. The more MBs detected, the fewer frames
needed to reconstruct the vascular network of the region of
interest. However, this metric is not sufficient to quantify the
performance of a localization method, which can present two
different sources of error, one related to false-positive cases
and one related to false negative cases. Therefore, in addition
to the average number of detected MBs, the MBs’ distribu-
tion error was used as a metric to compare with the gold-
standard distribution. The MBs’ distribution was computed
by summing all MBs in the super-resolution image along the
tube direction, and it will depict the probability distribution
of the number of MBs detected across the width of the
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FIGURE 4. A: The super-resolution image for each detection method and the ground truth. The color bar indicates the number of MBs detected. Note that
the yellow square indicates the direction of the sum to produce the distribution of MBs. B: the distribution of MBs. C: Velocity map calculated by each
method. The color bar shows the velocity in pixel/frame. Note that in the middle, the velocity is larger (yellow). D: The parabolic profile of the velocity for
all microtubes. WC: Weighted centroid; 2DS: 2D spline; PF: Paraboloid fitting; OD: Onset detection.

tube. A RMSE was computed by comparing the probability
distribution that resulted from the super-resolution images
produced by each localization method with the one produced
by the ground truth.

The error on the FWHM was computed, comparing each
method to the ground truth. Experimentally, it compares the
FWHM with the tabulated size of the tube. Note that four
microtubes were presented in the simulation. Therefore, the
average FWHM error reported corresponds to the average
of these four microtubes. However, only one microtube was
present in the experimental phantom. The velocity profile was
calculated, as commented in section C, and the maximum
velocity of each microtube was used as a metric. Finally, the
computational time spent per frame to localize the MBs was
measured for each method. All the processing presented was
done using a LENOVOThinkPad workstation having an Intel
Core I7 with 32 GB of RAM.

III. RESULTS
A. NUMERICAL RESULTS
Fig. 4A shows super-resolution images created from the accu-
mulation of the centers of detected MBs for the Weighted

Centroid (WC), 2D Spline (2DS), Paraboloid Fitting (PF),
Onset Detection(OD), and the ground truth, respectively. The
color bar indicates the number of MBs detected in each
pixel. WC method detects significantly fewer MBs when
compared to the other methods, as visible from amuch darker
image. The super-resolution images obtained from 2DS and
PFmethods look very similar to each other, and they compare
well to the ground truth. OD detects fewer MBs than PF and
2DS but more than WC.

To analyze this information quantitatively, the microbub-
bles (MBs) were summed along the vessel direction, as
indicated by the yellow arrow in Fig. 4A, to produce the distri-
bution of MBs across the cross-section of the tube (Fig. 4B).
Surprisingly, this result indicates that the wider the microtube
is, the fewerMBs are detected for theWCmethod. This effect
can be seen in the blue curve decreasing in amplitude for
wider microtubes. On the other hand, the 2DS and PF pro-
duced a similar distribution of MBs compared to the ground
truth. Finally, ODmakes evident substantial differences in the
MB distributions since it detects more MBs at the upper edge
of the microtube than at the bottom wall. The fluctuations
in the MB distribution of the ground truth are produced by
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FIGURE 5. Metrics for each method on the simulation study. A: Number
of microbubbles (MBs) detected per frame, B: RMSE of MB distribution,
C: FWHM error, D: maximum velocity (pixel/frame); E: computational time
per frame. RMSE: Root-Mean-Square Error; FWHM: Full Width at Half
Maximum. WC: Weighted centroid; 2DS: 2D spline; PF: Paraboloid fitting;
OD: Onset detection .

the low number of MBs initially placed at the first frame of
the simulation (about 188 in the smallest tube). In subsequent
frames, the localized MBs are the same ones as in the first
frame but displaced. This fact produces a nonindependent
distribution of MBs between the first frame and the others,
propagating the fluctuation to the total distribution of MBs
shown in Fig. 4B.
Fig. 4C depicts the velocity maps calculated by using the

localizations obtained by each method. The color bar indi-
cates the velocity in pixel/frame. Note that, as imposed, the
speed at the center was detected larger than at the edges of
the tube. As expected, these images show a similar micro-
tube diameter compared to the ones in Fig. 4A, which is
corroborated by the velocity profiles shown in Fig. 4D for all
microtubes. Interestingly, the velocity profiles show a great
similarity among all the methods, especially considering the
three smallest microtubes, detecting a maximum velocity of
about 9 pixels/frame. In the biggest microtube, however, the
OD underestimates the velocity even more than in the other
ones, with a maximum velocity of fewer than 8 pixels/frame.
Even though the methods have similar results in the veloc-
ity estimation, they still have a difference compared to the
ground truth, mainly due to overlapped MBs. This finding
is discussed in the next section. Although the WC was the
method that detected the fewest MBs, it produced a good
estimate of the velocity profile of the microtubes.

Fig. 5 summarizes the results obtained from the five met-
rics among the four localization methods tested. The ground
truth has, on average, 264 MBs/frame, while WC detects
only 62 MB/frame. The 2DS, PF, and OD detect 265, 265,
and 230MBs/frame, respectively. WC also has a large RMSE
of 648 MBs in the MBs’ distribution and produces a big error

FIGURE 6. Super-resolution images of the experimental setup for each
localization method. The colorbar shows the quantity of MBs detected.
WC: Weighted Centroid; 2DS: 2D Spline; PF: Paraboloid fitting; OD: Onset
detection.

of 31% in the FWHM. This poor image quality comes from
the fact that WC neglects slightly overlapped MBs. In con-
trast, the 2DS produces a much better super-resolution image,
which depicts microtubes with a RMSE in the distribution
of 249MBs, and a FWHMerror of 12%. Similarly, PF depicts
the microtubes slightly clearer with a MBs’ distribution error
of 244 MBs and a FWHM error of 11%. OD shows a RMSE
in the distribution of 390MBs. This high error occurs because
OD tends to distort the shape of the distribution of MBs,
populating the upper edge of the tube more and producing
a higher FWHM error of 27%. Surprisingly, 2DS was found
to be the fastest method (8.0 ms/frame) regarding the compu-
tational time cost, being even faster than WC (9.8 ms/frame).
On the contrary, ODwas the slowest method (17.1ms/frame),
approximately twice slower than 2DS. Regarding PF, this
method presents a time cost of 9.1ms/frame. Finally, themax-
imum velocity of the ground truth was set to 10 pixels/frame.
However, the WC, 2DS, PF, and OD detected 9.0, 9.0, 9.0,
and 8.5 pixels/frame, respectively.

B. EXPERIMENTAL RESULTS
To validate our simulation results, a microtube phantom
experiment was performed. Fig 6 shows the super-resolution
image of the microtube phantom made with each method.
Contrary to the numerical case, in the experiment there is no
access to the real MBs’ distribution and the real number of
MBs inside the tube. In order to produce a fair comparison
between the localization methods, the initial threshold for
each method was optimized to match the FWHM of the tube
with the tabulated inner diameter of the microtube of 280µm.
Each method found 4.0, 5.4, 4.7, and 5.0 number of

detected MBs per frame for WC, 2DS, PF and OD, respec-
tively (Fig. 7A), which agrees with the simulation result
(Fig. 5A) where the WC detected the lowest number of MBs.
Note that there is a factor in the order of 50 between the
detected MBs in the simulation and in the experiment, which
is explained by the presence of only one microtube in the
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FIGURE 7. Metrics for each method on the experimental study. A: number
of MBs detected per frame, B: FWHM error (%), C: maximum velocity
(mm/s), D: computational time per frame (ms), E: the distribution of MBs
for the four methods. FWHM: Full width at half maximum. WC: Weighted
centroid; 2DS: 2D spline; PF: paraboloid fitting; OD: Onset detection.

experiment and by the difference in the MBs’ concentration.
The FWHM error was 7.9% for the WC, 2.9% for 2DS, 1.1%
for PF, and 3.9% for OD (Fig. 7B), which agrees with the
numerical result again(Fig. 5C), where WC and OD present
the highest FWHM errors. A difference between simulation
and experimental results is that PF shows a smaller error when
compared to 2DS for the experimental part. In general, the
experimental part produces an error on the FWHM signif-
icantly smaller when compared to the numerical analogous
because only onemicrotube is used in the experimental phase.
We found the maximum velocity of the MBs to be 343 mm/s,
346 mm/s, 333 mm/s, and 375 mm/s for WC, 2DS, PF,
and OD, respectively while the ground truth was 405 mm/s
(Fig. 7C). This result is comparable to the one obtained in the
numerical scenario (Fig. 5D), and in both cases the estimated
velocity is similar among the tested localization algorithms.
Finally, the computational time cost was comparable with the
localization methods: 5.0 ms for WC, 4.2 ms for 2DS and
PF, and 4.3 ms for OD. Fig. 7E shows the MBs’ distribution
across the width of the tube for each method. Note that
2DS, PF, and OD have almost the same behavior, while WC
detected fewer MBs in the center of the tube.

IV. DISCUSSION AND CONCLUSION
This study presented a qualitative and quantitative com-
parison between four direct microbubbles (MBs) localiza-
tion methods, Weighted Centroid (WC), 2D Spline (2DS),
Paraboloid Fitting (PF), Onset Detection (OD), to produce
ultrasound super-resolution images.

Onset detection was previously mentioned as one of the
most accurate methods to localize MBs because it reduces
the influence of the nonlinear response of MBs [8]. This

FIGURE 8. A: Common localization mistakes. The dashed yellow circle
around the MBs shows the right localization of the MBs. B: Graph
showing the maximum velocity with the chosen concentration, with half
of the concentration (Half. Conc.) and twice the concentration (Twice
Conc.) C: The velocity profile showing the maximum velocity in
10 pixels/frame as expected. WC: Weighted Centroid; 2DS: 2D Spline;
PF: Paraboloid Fitting; OD: Onset Detection.

conclusion was reached by considering the behavior of a sin-
gle steady MB. However, the results presented here showed
that onset detection localized the MBs’ positions accurately
only when the correct threshold to remove the background
noise was given. Furthermore, the election of this threshold
is not trivial, and for the case of onset detection andWeighted
Centroid it depends on the size of the microtube of interest,
making these two methods less robust. In contrast, 2D Spline
interpolation and Paraboloid Fitting work well with a thresh-
old that is similar for all the microtubes considered in the
simulation.

Fig. 8A shows some common localization mistakes regard-
ingWeighted Centroid (i.e., blue square) and Onset Detection
(i.e., magenta circle). A total of nine MBs in this image were
found. They were localized with a yellow dashed circle to
facilitate the visualization. This image presents three groups
of MBs: five MBs on the left, three at the center, and one on
the right. On the left side, WC method recognized all five
MBs as one. At the center, the three MBs were also recog-
nized as one. Thus, WC failed to detect slightly overlapped
MBs. On the other hand, Onset Detection misplace MBs that
are slightly overlapped vertically. In the left group ofMBs, for
instance, OD detects the five MBs, although the deep ones
appeared localized over the shallow ones. This explains the
distorted distribution of MBs shown in Fig. 4B. It is worth
noting that 2DS and PF detected eight of the nine MBs in the
correct position, showing only one problem when the overlap
is near to 50%. When there is no overlap, such as in the right
part of the image, no problems were found for any of the
localizationmethods. However, this phenomenon occurs only
when the MB concentration is very low, eventually slowing
down the total time of image acquisition.
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Regarding the MBs’ tracking and its velocity estimation,
the four methods measured the imposed parabolic flow pro-
file of the microtubes (Fig. 4D) using the nearest neighbor
approach. Although all the localization methods produce an
error of at least 10% in the peak velocity, Onset Detection
mistook the peak velocity even more, mainly when using
the largest microtube. This underestimation occurs due to
overlapped MBs and it is consistent with the distortion of
the MBs’ distribution profile produced by Onset Detection,
making this method more susceptible to velocity errors.

In this context, we have decreased the concentration of
MBs by half and obtained an improvement in the maximum
velocity error of 5% with WC, 6% with 2DS, 6% with PF,
and 12% with OD. Furthermore, when doubling the concen-
tration, a deterioration in the velocity result of 8% with WC,
2% with 2DS, 2% with PF, and 3% with OD (see Fig. 8B)
was found. To validate the correct nearest neighbor imple-
mentation, a single MB simulation was performed, imposing
a velocity of 10 pixels/frame. As seen in Fig. 8C, all the
methods measured the correct maximum velocity.

In conclusion, 2D Spline and Paraboloid Fitting were the
most robust methods regarding a medium with vessels of
different diameters and with relative motion between MBs.
Both methods were able to detect 100% of the MBs with an
error in the MBs’ distribution of 249 and 244 MBs for 2DS
and PF, respectively. For these two methods, the error in the
prediction of the size of the tube was in the order of 10%
with a computational time that is 18% lower for the case of
2DS and 7% lower for the PF case when compared to the
WC method. Although parameters such as MBs’ concentra-
tion of the experiments and simulation did not match, both
showed consistent observations regarding the localization
methods. A major drawback in previous studies is the lack
of a gold-standard to compare their proposed methods. Here,
we have presented a methodology to use FullWave solver to
simulate the interaction of ultrasound waves with MBs in a
relatively realistic medium. This research potentially allows
to study or to optimize other stages in the production of
ultrasound super-resolution images. In further work, we aim
to increase the complexity of the medium, with different
MBs’ concentrations and several vessels that have different
diameters and bifurcations.
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